## ES 250 First Midterm Practice Exam 1

1. 


a. To cause $v_{\mathrm{o}}=17.07 \mathrm{~V}$ choose $R=$ $\qquad$ 7 $\qquad$ $\Omega$.
b. To cause $v_{\mathrm{o}}=9.143 \mathrm{~V}$ choose $R=$ $\qquad$ 20 $\qquad$ $\Omega$.
c. If $R=14 \Omega$ then $v_{o}=$ $\qquad$ 11.6 $\qquad$ V
d. If $v_{\mathrm{o}}=14.22 \mathrm{~V}$ the voltage source supplies $\qquad$ 56.9 $\qquad$ W of power.
$v_{\mathrm{o}}=\left(\frac{8}{8+R}\right) 32$. When $v_{\mathrm{o}}=17.07 \mathrm{~V}$, then $17.07=\left(\frac{8}{8+R}\right) 32 \Rightarrow R=\frac{(8) 32}{17.07}-8=6.997 \simeq 7 \Omega$. When $v_{\mathrm{o}}=9.143 \mathrm{~V}$ then $9.143=\left(\frac{8}{8+R}\right) 32 \Rightarrow R=\frac{(8) 32}{9.143}-8=19.999 \simeq 20 \Omega$. When $R=14 \Omega$ then $v_{\mathrm{o}}=\left(\frac{8}{8+14}\right) 32=11.6363 \mathrm{~V}$. The power supplied by the voltage source is given by $32 \frac{v_{\mathrm{o}}}{8}=4 v_{\mathrm{o}}$ since $\frac{v_{\mathrm{o}}}{8}$ is the current in each of the series elements. When $v_{\mathrm{o}}=14.22 \mathrm{~V}$ the voltage source supplies 56.88 W .


The voltage source supplies 4.8 W of power and the current source supplies 3.6 W of power.

$$
R_{1}=\_12 \_\Omega \text { and } R_{2}=\_8 \quad \Omega
$$

Use the given power values to determine that $i=\frac{4.8}{12}=0.4 \mathrm{~A}$ and $v=\frac{3.6}{0.5}=7.2 \mathrm{~V}$. Then $R_{1}=\frac{12-7.2}{0.4}=12 \Omega$ and $R_{2}=\frac{7.2}{0.4+0.5}=8 \Omega$.

3. The input this circuit is the current of the current source, $i_{s}$. The output is the voltage measured by the meter, $v_{\mathrm{m}}$. The output is proportional to the input, that is $v_{\mathrm{m}}=k i_{\mathrm{s}}$, where $k$ is the constant of proportionality.

a. When $i_{\mathrm{s}}=3 \mathrm{~A}, R=12 \Omega$ and $r=10 \mathrm{~V} / \mathrm{A}$, then $i_{\mathrm{a}}=$ $\qquad$ 2.4 $\qquad$ A and $v_{\mathrm{m}}=$ $\qquad$ $9.6 \quad \mathrm{~V}$.
b. When $R=12 \Omega$, then $r=\ldots 6.25 \_$V/A is required to cause $v_{\mathrm{m}}=2 i_{\mathrm{s}}$.
c. When $r=10 \mathrm{~V} / \mathrm{A}$ then $R=$ $\qquad$ $\Omega$ is required to cause $v_{\mathrm{m}}=2 i_{\mathrm{s}}$.
d. When $R=12 \Omega$ and $i_{\mathrm{s}}=5 \mathrm{~A}$, then $r=$ $\qquad$ 7.5 $\qquad$ $\mathrm{V} / \mathrm{A}$ is required to cause $v_{\mathrm{m}}=12 \mathrm{~V}$.

From current division $i_{\mathrm{a}}=-\left(\frac{40}{40+10}\right) i_{\mathrm{s}}=-\left(\frac{4}{5}\right) i_{\mathrm{s}}$. From voltage division $v_{\mathrm{m}}=-\left(\frac{R}{R+18}\right)\left(r i_{\mathrm{a}}\right)$. Combining these equations gives $v_{\mathrm{m}}=-\left(\frac{R}{R+18}\right)(r)\left(-\frac{4}{5}\right) i_{\mathrm{s}}$.
When $i_{\mathrm{s}}=3 \mathrm{~A}, R=12 \Omega$ and $r=10 \mathrm{~V} / \mathrm{A}, i_{\mathrm{a}}=-\left(\frac{4}{5}\right)(3)=-2.4 \mathrm{~A}$ and $v_{\mathrm{m}}=-\left(\frac{R}{R+18}\right)(10)(-2.4)=9.6 \mathrm{~V}$.
When $R=12 \Omega$ and $v_{\mathrm{m}}=2 i_{\mathrm{s}}$ then $2=-\left(\frac{12}{12+18}\right)(r)\left(-\frac{4}{5}\right) \Rightarrow r=2\left(\frac{30}{12}\right)\left(\frac{5}{4}\right)=6.25 \mathrm{~V} / \mathrm{A}$.
When $r=10 \mathrm{~V} / \mathrm{A}$ and $\nu_{\mathrm{m}}=2 i_{\mathrm{s}}$ then $2=-\left(\frac{R}{R+18}\right)(10)\left(-\frac{4}{5}\right) \Rightarrow \quad R+18=\left(\frac{R}{2}\right)(10)\left(\frac{4}{5}\right) \Rightarrow R=6 \Omega$.
When $R=12 \Omega, i_{\mathrm{s}}=5 \mathrm{~A}$ and $v_{\mathrm{m}}=12 \mathrm{~V}$ then $12=-\left(\frac{12}{12+18}\right)(r)\left(-\frac{4}{5}\right) 5 \Rightarrow r=\left(\frac{12}{4}\right)\left(\frac{30}{12}\right)=7.5 \mathrm{~V} / \mathrm{A}$.
4. The input to this circuit is the source current, $i_{\mathrm{s}}$. The output is the current measured by the meter, $i_{\mathrm{o}}$. A current divider connects the source to the meter.

Given these observations:

A. The input $i_{\mathrm{s}}=5 \mathrm{~A}$ causes the output to be $i_{\mathrm{o}}=2 \mathrm{~A}$.
B. When $i_{\mathrm{s}}=2$ A the source supplies 48 W .

The values of the resistances are $R_{1}=$ $\qquad$ $\Omega$ and $R_{2}=$ $\qquad$ $\Omega$.

From current division, $i_{\mathrm{o}}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) i_{\mathrm{s}}$. When $i_{\mathrm{s}}=5 \mathrm{~A}$ and $i_{\mathrm{o}}=2 \mathrm{~A}$ then $\frac{2}{5}=\frac{R_{1}}{R_{1}+R_{2}}$ so $2\left(R_{1}+R_{2}\right)=5 R_{1}$ or $2 R_{2}=3 R_{1}$. The power supplied by the source is given by $i_{\mathrm{s}}\left[\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right) i_{\mathrm{s}}\right]$. When $i_{\mathrm{s}}=2$ A the source supplies 48 W , so $48=2\left[\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right) 2\right] \Rightarrow 12=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$.

Then

$$
12=\frac{R_{1}\left(\frac{3}{2} R_{1}\right)}{R_{1}+\left(\frac{3}{2} R_{1}\right)}=\frac{\frac{3}{2} R_{1}}{\frac{5}{2}}=\frac{3}{5} R_{1} \Rightarrow R_{1}=\frac{5}{3}(12)=20 \Omega \text { and } \frac{3 R_{1}}{2}=30 \Omega .
$$



The equivalent circuit on the right is obtained from the original circuit on the left by replacing series and parallel combinations of resistors by equivalent resistors. The original circuit contains 3 equal resistances labeled $R_{\mathrm{a}}$ and another 3 equal resistances labeled $R_{\mathrm{b}}$. Determine the values of $R_{\mathrm{a}}$ and $R_{\mathrm{b}}$. Given that

$$
v_{2}=-81.6 \mathrm{~V} \text {, determine the values of } v_{3} \text { and } i_{4}
$$

$$
R_{\mathrm{a}}=\_36 \_\Omega, \quad R_{\mathrm{b}}=\_50 \_\Omega, \quad v_{3}=\_-40.8 \_\mathrm{V} \text { and } i_{4}=\_-4.08 \_\mathrm{A} .
$$

$$
R_{\mathrm{a}} \| 2 R_{\mathrm{a}}=\frac{2}{3} R_{\mathrm{a}}=24 \Rightarrow R_{\mathrm{a}}=24\left(\frac{3}{2}\right)=36 \Omega
$$

and

$$
\begin{gathered}
R_{\mathrm{b}}+\frac{R_{\mathrm{b}}}{2}=\frac{3}{2} R_{\mathrm{b}}=75 \Rightarrow R_{\mathrm{b}}=50 \Omega \\
v_{2}=-24(3.4)=-81.6 \mathrm{~V}, v_{3}=\frac{1}{2} v_{2}=\frac{1}{2}(-81.6)=-40.8 \mathrm{~V} \text { and } i_{4}=\frac{1}{2}\left(\frac{v_{2}}{10}\right)=\frac{-81.6}{20}=-4.08 \mathrm{~A}
\end{gathered}
$$

6. Given that

$$
v_{\mathrm{a}}=8 \mathrm{~V},
$$

Determine the values of $R_{1}$ and $v_{\mathrm{o}}$ :

$$
R_{1}=\_10 \_\Omega,
$$

and

$$
v_{\mathrm{o}}=\_-3.2 \_\mathrm{V}
$$



10 V


First,

$$
v_{\mathrm{o}}=-\frac{20}{20+30} 8=-3.2 \mathrm{~V}
$$

Next,

$$
\frac{8}{20}=i_{\mathrm{b}}=\frac{40}{40+R_{1}} i_{\mathrm{c}}=\frac{40}{40+R_{1}}\left(\frac{10}{12+40 \| R_{1}}\right)=\frac{40}{40+R_{1}}\left(\frac{10}{12+\frac{40 R_{1}}{40+R_{1}}}\right)=\frac{400}{12\left(40+R_{1}\right)+40 R_{1}}=\frac{400}{480+52 R_{1}}
$$

then

$$
\frac{8}{20}=\frac{400}{480+52 R_{1}} \Rightarrow 480+52 R_{1}=\frac{400(20)}{8}=1000 \Rightarrow \frac{1000-480}{52}=10 \Omega
$$

7. 



The encircled numbers are node numbers. The corresponding node voltages are

$$
v_{1}=12 \mathrm{~V}, v_{2}=21 \mathrm{~V} \text { and } v_{3}=-3 \mathrm{~V}
$$

a. The 0.5 A current source supplies $\qquad$ $-10.5$ $\qquad$ W of power.
b. The 2 A current source supplies $\qquad$ 48 $\qquad$ W of power.
c. $R_{1}=$ $\qquad$ 6 $\qquad$ $\Omega$ and $R_{2}=$ $\qquad$ 4 $\qquad$
d. The voltage source supplies $\qquad$ $-3$ $\qquad$ W of power.

The power received by the 0.5 A current source is $v_{2}(0.5)=21(0.5)=10.5 \mathrm{~W} \mathrm{~W}$ of power.

The 2 A current source supplies $\left(v_{2}-v_{3}\right)(2)=[21-(-3)](2)=48 \mathrm{~W}$ of power. $R_{1}=\frac{v_{2}-v_{1}}{2-0.5}=\frac{21-12}{2-0.5}=6 \Omega$ and $R_{2}=\frac{v_{3}}{1.25-2}=\frac{-3}{-0.75}=4 \Omega$

The voltage source supplies $12[1.25+0.5-2]=12(-0.25)=-3 \mathrm{~W}$ of power.

