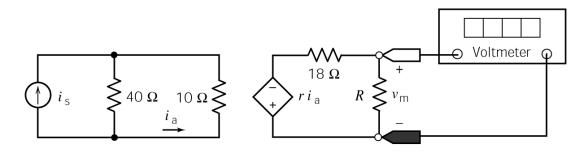
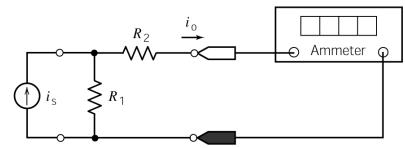

ES 250 First Midterm Practice Exam 1

1.

- a. To cause $v_0 = 17.07 \text{ V choose } R = \underline{\Omega}$.
- b. To cause $v_0 = 9.143 \text{ V choose } R = \underline{\Omega}$.
- c. If $R = 14 \Omega$ then $v_0 =$ _____V
- d. If $v_0 = 14.22$ V the voltage source supplies ______ W of power.


2.


The voltage source supplies 4.8 W of power and the current source supplies 3.6 W of power.

$$R_1 = \underline{\hspace{1cm}} \Omega$$
 and $R_2 = \underline{\hspace{1cm}} \Omega$

3. The input this circuit is the current of the current source, i_s . The output is the voltage measured by the meter, v_m . The output is proportional to the input, that is $v_m = k i_s$, where k is the constant of proportionality.

- a. When $i_s = 3$ A, R = 12 Ω and r = 10 V/A, then $i_a =$ _____ A and $v_m =$ _____ V.
- b. When $R = 12 \Omega$, then r =______ V/A is required to cause $v_{\rm m} = 2 i_{\rm s}$.
- c. When r = 10 V/A then $R = _____ \Omega$ is required to cause $v_m = 2 i_s$.
- d. When $R = 12 \Omega$ and $i_s = 5 A$, then $r = _____ V/A$ is required to cause $v_m = 12 V$.
- **4.** The input to this circuit is the source current, i_s . The output is the current measured by the meter, i_o . A current divider connects the source to the meter.

Given these observations:

A. The input $i_s = 5$ A causes the output to be $i_o = 2$ A.

B. When $i_s = 2$ A the source supplies 48 W.

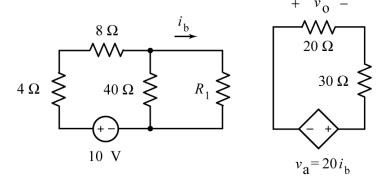
The values of the resistances are $R_1 = \underline{\hspace{1cm}} \Omega$ and $R_2 = \underline{\hspace{1cm}} \Omega$.

5. $-v_3$ + R_b V_2 R_a V_2 R_b V_2 R_b V_2 R_b V_2 R_b V_2 R_b V_2 R_b V_2 V_2 V_3 V_4 V_5 V_6 V_7 V_8 V_8 V_9 V_9

The equivalent circuit on the right is obtained from the original circuit on the left by replacing series and parallel combinations of resistors by equivalent resistors. The original circuit contains 3 equal resistances labeled $R_{\rm a}$ and another 3 equal resistances labeled $R_{\rm b}$. Determine the values of $R_{\rm a}$ and $R_{\rm b}$. Given that

 $v_2 = -81.6 \text{ V}$, determine the values of v_3 and i_4 .

$$R_{\rm a} = \underline{\hspace{1cm}} \Omega$$
, $R_{\rm b} = \underline{\hspace{1cm}} \Omega$, $v_3 = \underline{\hspace{1cm}} V$ and $i_4 = \underline{\hspace{1cm}} A$.


6. Given that

$$v_a = 8 \text{ V}$$
,

Determine the values of R_1 and v_0 :

 $R_{1} = \underline{\hspace{1cm}} \Omega,$ and

$$v_0 = \underline{\hspace{1cm}} V$$

7. 1.25 A R_1 2 2 A 12 V 0.5 A R_2

The encircled numbers are node numbers. The corresponding node voltages are

$$v_1 = 12 \text{ V}, \ v_2 = 21 \text{ V} \text{ and } v_3 = -3 \text{ V},$$

- a. The 0.5 A current source **supplies** _____ W of power.
- b. The 2 A current source **supplies** _____ W of power.
- c. $R_1 = \underline{\hspace{1cm}} \Omega$ and $R_2 = \underline{\hspace{1cm}} \Omega$
- d. The voltage source **supplies** _____ W of power.