ES 250 First Midterm Bonus Practice Problems

1. The voltage measured by the voltmeter is

$$v_{\rm m} = 20 {\rm V}$$

The value of the resistance R is _____ Ω .

The current source is supplies _____ W of power.

2. Given that

$$i_{\rm a}=2~{\rm A}$$
,

Determine the values of R_1 and v_0 :

$$R_1 = \underline{\hspace{1cm}} \Omega,$$

and

$$i_{0} =$$
______ A

3. The input to this circuit is the voltage of the voltage source, v_a . The output of this circuit is the voltage measured by the voltmeter, v_b . This circuit produces an output that is proportional to the input, that is

$$v_b = k v_a$$

where k is the constant of proportionality.

- a.) When $R = 240 \Omega$ and $v_a = 18 \text{ V}$, the output is $v_b =$ _____V.
- b.) When $R = 240 \Omega$ and $v_a = 18 \text{ V}$, the power supplied by the voltage source is _____W.
- c.) When $R = \underline{\hspace{1cm}} \Omega$ and $v_a = 18 \text{ V}$, the output is $v_b = 2 \text{ V}$.
- d.) When $R = \underline{\qquad} \Omega$, the output is $v_b = 0.2 \ v_a$. (That is, the constant of proportionality is k = 0.2.)

4.

Given that

$$i_1 = 0.625 \text{ A}$$
, $v_2 = -25 \text{ V}$, $i_3 = -1.25 \text{ A}$ and $v_4 = -18.75 \text{ V}$

Determine the values of R_1 , R_2 , R_3 and R_4 :

$$R_1 = \underline{\hspace{1cm}} \Omega, \ R_2 = \underline{\hspace{1cm}} \Omega, \ R_3 = \underline{\hspace{1cm}} \Omega \ \text{ and } \ R_4 = \underline{\hspace{1cm}} \Omega.$$

5. The 12 V source supplies 720 mW and the 18 V source supplies 4.32 W. Determine the values of the resistances R_1 and R_2 .

$$R_1 = \underline{\hspace{1cm}} \Omega$$
 and $R_2 = \underline{\hspace{1cm}}$

