ES 250 First Midterm Practice Exam 2

1.

2.

The current in the $20-\Omega$ resistor is $i_{\mathrm{a}}=$ \qquad -1.25 A.

The voltage across the $10-\Omega$ resistor is $v_{\mathrm{b}}=$ \qquad V.

The (independent) voltage source current is $i_{\mathrm{c}}=-4.25$ \qquad A.

The Ohmmeter measures equivalent resistance.
a. To cause $R_{\text {eq }}=12 \Omega$, choose $R=$ \qquad 16 \qquad
b. If $R=14 \Omega$ then $R_{\text {eq }}=$ \qquad 11.5 \qquad Ω.
4. Consider this combination of resistors. Let R_{p} denote the equivalent resistance.

(a) Suppose $40 \Omega \leq R \leq 400 \Omega$. Determine the corresponding range of values of R_{p} :

$$
\ldots 53.33 _\Omega \leq R_{\mathrm{p}} \leq _117.33 _\Omega
$$

(b) Suppose instead $R=0$ (a short circuit). Then $R_{\mathrm{p}}=$ \qquad 32 \qquad Ω
(c) Suppose instead $R=\infty$ (an open circuit). Then $R_{\mathrm{p}}=$ \qquad 160 \qquad Ω
(d) Suppose instead the equivalent resistance is $R_{\mathrm{p}}=80 \Omega$. Then $R=$ \qquad 120 Ω
5.

Here's a single circuit drawn in four parts for convenience. The four parts are connected by the dependent sources. Given that $i_{1}=0.8 \mathrm{~A}$, determine the values of R_{1}, v_{2}, v_{3}, and i_{4}.

$$
R_{1}=_5 _\Omega, v_{2}=_-4 _\mathrm{V}, v_{3}=_2 _\mathrm{V} \text { and } i_{4}=_-0.96 _\mathrm{A} .
$$

6.

Encircled numbers are node numbers. The corresponding node voltages are:

$$
v_{1}=12 \mathrm{~V}, v_{2}=10.5 \mathrm{~V} \text { and } v_{3}=6 \mathrm{~V}
$$

The value of the gain of the CCCS is $k=$ \qquad 5.00 \qquad A/A.

The resistance of the resistor at the top of the circuit is $R=$ \qquad 600 \qquad Ω. (Round to an integer.)

The power supplied by the independent (0.1 A) current source is \qquad -0.6 \qquad W.
7.

Let i_{1}, i_{2} and i_{3} denote the mesh currents in meshes 1, 2 and 3 , respectively.

Determine the values of these mesh currents:
$i_{1}=$ \qquad A and $i_{2}=$ \qquad -3 \qquad A

Determine the value of the resistance R :

$$
R=_\quad 5 \quad \Omega
$$

