ES 250 First Midterm Practice Exam 2

1.

 $i_a = _-0.333_A$, $i_b = __1__A$,

$$i_2 = _0.333_A,$$

$$v_1 = _{-1.333}_{-1.333}$$

2. The current in the 20- Ω resistor is $i_a =$ ___-1.25___A.

The voltage across the 10- Ω resistor is $v_b = _{--}30_{--}V$.

The (independent) voltage source current is $i_c = _-4.25$ ___A.

3.

The Ohmmeter measures equivalent resistance.

a. To cause $R_{\text{eq}} = 12 \Omega$, choose $R = \underline{16} \Omega$.

b. If $R = 14 \Omega$ then $R_{eq} = _11.5_{\Omega}$.

4.

Consider this combination of resistors. Let R_p denote the equivalent resistance.

(a) Suppose $40 \Omega \le R \le 400 \Omega$. Determine the corresponding range of values of R_p :

(b) Suppose instead R = 0 (a short circuit). Then $R_p = _{\underline{}} 32_{\underline{}} \Omega$

(c) Suppose instead $R = \infty$ (an open circuit). Then $R_p = _{\underline{}} 160_{\underline{}} \Omega$

(d) Suppose instead the equivalent resistance is $R_p = 80 \Omega$. Then $R = ___120___\Omega$

Here's a single circuit drawn in four parts for convenience. The four parts are connected by the dependent sources. Given that $i_1 = 0.8$ A, determine the values of R_1 , v_2 , v_3 , and i_4 .

$$R_1 = _{_{_{_{1}}}} 5 _{_{_{_{2}}}} \Omega$$
, $v_2 = _{_{_{_{_{1}}}}} -4 _{_{_{_{1}}}} V$, $v_3 = _{_{_{_{1}}}} 2 _{_{_{1}}} V$ and $i_4 = _{_{_{1}}} -0.96 _{_{_{1}}} A$.

6.

Encircled numbers are node numbers. The corresponding node voltages are:

$$v_1 = 12 \text{ V}, \ v_2 = 10.5 \text{ V} \text{ and } v_3 = 6 \text{ V}$$

The value of the gain of the CCCS is $k = ____5.00_$ ___ A/A.

The resistance of the resistor at the top of the circuit is $R = \underline{} 600 \underline{} \Omega$. (Round to an integer.)

The power supplied by the independent (0.1 A) current source is _____-0.6___W.

7.

Let i_1 , i_2 and i_3 denote the mesh currents in meshes 1, 2 and 3, respectively.

Determine the values of these mesh currents:

$$i_1 =$$
 ____2 A and $i_2 =$ ____-3 A

Determine the value of the resistance *R*:

$$R = \underline{\hspace{1cm}} 5\underline{\hspace{1cm}} \Omega$$