ES 250 First Midterm Practice Exam 1

1.

- a. To cause $v_0 = 17.07 \text{ V choose } R = _____7____\Omega$.
- b. To cause $v_0 = 9.143 \text{ V choose } R = _____20_____\Omega$.
- c. If $R = 14 \Omega$ then $v_0 = _11.6 V$
- d. If $v_0 = 14.22$ V the voltage source supplies ____56.9____W of power.

2.

The voltage source supplies 4.8 W of power and the current source supplies 3.6 W of power.

$$R_1 = \underline{\hspace{1cm}} 12 \underline{\hspace{1cm}} \Omega$$
 and $R_2 = \underline{\hspace{1cm}} 8 \underline{\hspace{1cm}} \Omega$

3. The input this circuit is the current of the current source, i_s . The output is the voltage measured by the meter, v_m . The output is proportional to the input, that is $v_m = k i_s$, where k is the constant of proportionality.

- b. When $R = 12 \Omega$, then $r = __6.25 ___ V/A$ is required to cause $v_m = 2 i_s$.
- c. When r = 10 V/A then R = 6 Ω is required to cause $v_m = 2 i_s$.
- d. When $R = 12 \Omega$ and $i_s = 5$ A, then $r = ____7.5 ___$ V/A is required to cause $v_m = 12$ V.
- **4.** The input to this circuit is the source current, i_s . The output is the current measured by the meter, i_o . A current divider connects the source to the meter.

Given these observations:

A. The input $i_s = 5$ A causes the output to be $i_o = 2$ A.

B. When $i_s = 2$ A the source supplies 48 W.

The values of the resistances are $R_1 = \underline{20} \Omega$ and $R_2 = \underline{30} \Omega$.

The equivalent circuit on the right is obtained from the original circuit on the left by replacing series and parallel combinations of resistors by equivalent resistors. The original circuit contains 3 equal resistances labeled $R_{\rm a}$ and another 3 equal resistances labeled $R_{\rm b}$. Determine the values of $R_{\rm a}$ and $R_{\rm b}$. Given that

 $v_2 = -81.6 \text{ V}$, determine the values of v_3 and i_4 .

$$R_{\rm a} = _{__}36 _{__}\Omega$$
, $R_{\rm b} = _{__}50 _{__}\Omega$, $v_{\rm 3} = _{__}-40.8 _{__}{\rm V}$ and $i_{\rm 4} = _{__}-4.08 _{__}{\rm A}$.

6. Given that

$$v_a = 8 \text{ V}$$
,

Determine the values of R_1 and V_0 :

$$R_1 = \underline{\hspace{1cm}} 10 \underline{\hspace{1cm}} \Omega,$$

and

$$v_0 = _- -3.2 _- V$$

The encircled numbers are node numbers. The corresponding node voltages are

$$v_1 = 12 \text{ V}, \ v_2 = 21 \text{ V} \text{ and } v_3 = -3 \text{ V},$$

- a. The 0.5 A current source **supplies** _____-10.5____ W of power.
- b. The 2 A current source **supplies** _____48____ W of power.
- c. $R_1 = \underline{\qquad} 6 \underline{\qquad} \Omega$ and $R_2 = \underline{\qquad} 4 \underline{\qquad} \Omega$
- d. The voltage source **supplies** ______ -3_____ W of power.