## ES 250 First Midterm Practice Exam 1

1. 


a. To cause $v_{\mathrm{o}}=17.07 \mathrm{~V}$ choose $R=$ $\qquad$ 7 $\qquad$ $\Omega$.
b. To cause $v_{\mathrm{o}}=9.143 \mathrm{~V}$ choose $R=$ $\qquad$ 20 $\qquad$ $\Omega$.
c. If $R=14 \Omega$ then $v_{o}=$ $\qquad$ 11.6 $\qquad$ V
d. If $v_{\mathrm{o}}=14.22 \mathrm{~V}$ the voltage source supplies $\qquad$ 56.9 $\qquad$ W of power.
2.


The voltage source supplies 4.8 W of power and the current source supplies 3.6 W of power.

$$
R_{1}=\_12 \_\Omega \text { and } R_{2}=\_8 \quad \Omega
$$

3. The input this circuit is the current of the current source, $i_{\mathrm{s}}$. The output is the voltage measured by the meter, $v_{\mathrm{m}}$. The output is proportional to the input, that is $v_{\mathrm{m}}=k i_{\mathrm{s}}$, where $k$ is the constant of proportionality.

a. When $i_{\mathrm{s}}=3 \mathrm{~A}, R=12 \Omega$ and $r=10 \mathrm{~V} / \mathrm{A}$, then $i_{\mathrm{a}}=$ $\qquad$ 2.4 $\qquad$ A and $v_{\mathrm{m}}=$ $\qquad$ $9.6-\mathrm{V}$.
b. When $R=12 \Omega$, then $r=\ldots 6.25 \_$V/A is required to cause $v_{\mathrm{m}}=2 i_{\mathrm{s}}$.
c. When $r=10 \mathrm{~V} / \mathrm{A}$ then $R=$ $\qquad$ $\Omega$ is required to cause $v_{\mathrm{m}}=2 i_{\mathrm{s}}$.
d. When $R=12 \Omega$ and $i_{\mathrm{s}}=5 \mathrm{~A}$, then $r=$ $\qquad$ 7.5 $\qquad$ $\mathrm{V} / \mathrm{A}$ is required to cause $v_{\mathrm{m}}=12 \mathrm{~V}$.
4. The input to this circuit is the source current, $i_{\mathrm{s}}$. The output is the current measured by the meter, $i_{\mathrm{o}}$. A current divider connects the source to the meter.

Given these observations:

A. The input $i_{\mathrm{s}}=5 \mathrm{~A}$ causes the output to be $i_{\mathrm{o}}=2 \mathrm{~A}$.
B. When $i_{\mathrm{s}}=2$ A the source supplies 48 W .

The values of the resistances are $R_{1}=$ $\qquad$ 20 $\qquad$ $\Omega$ and $R_{2}=$ $\qquad$ 30 $\Omega$.


The equivalent circuit on the right is obtained from the original circuit on the left by replacing series and parallel combinations of resistors by equivalent resistors. The original circuit contains 3 equal resistances labeled $R_{\mathrm{a}}$ and another 3 equal resistances labeled $R_{\mathrm{b}}$. Determine the values of $R_{\mathrm{a}}$ and $R_{\mathrm{b}}$. Given that $v_{2}=-81.6 \mathrm{~V}$, determine the values of $v_{3}$ and $i_{4}$.

$$
R_{\mathrm{a}}=\_36 \_\Omega, \quad R_{\mathrm{b}} .=\_50 \_\Omega, \quad v_{3}=\_-40.8 \_\mathrm{V} \text { and } i_{4}=\_-4.08 \_\mathrm{A} .
$$

6. Given that

$$
v_{\mathrm{a}}=8 \mathrm{~V},
$$

Determine the values of $R_{1}$ and $v_{\mathrm{o}}$ :

$$
R_{1}=\_10 \_\Omega,
$$

and

$$
v_{\mathrm{o}}=\_-3.2 \_\mathrm{V}
$$



The encircled numbers are node numbers. The corresponding node voltages are

$$
v_{1}=12 \mathrm{~V}, v_{2}=21 \mathrm{~V} \text { and } v_{3}=-3 \mathrm{~V}
$$

a. The 0.5 A current source supplies $\qquad$ $-10.5$ $\qquad$ W of power.
b. The 2 A current source supplies $\qquad$ 48 $\qquad$ W of power.
c. $R_{1}=$ $\qquad$ 6 $\qquad$ $\Omega$ and
$R_{2}=$ $\qquad$ 4 $\qquad$
d. The voltage source supplies $\qquad$ $-3$ $\qquad$ W of power.

