ES $2501^{\text {st }}$ Midterm Exam - Fall 2013
Name \qquad Student \# \qquad

1. Here are 4 separate circuits. Determine the values of i_{1}, i_{2}, i_{3} and i_{4}.

$i_{1}=$ \qquad A, $i_{2}=$ \qquad -0.4667 \qquad A, $\quad i_{3}=$ \qquad A and $i_{4}=$ \qquad A.
2. Determine the values of the gains of the dependent sources.

$a=\ldots \quad 8 _\quad \mathrm{V} / \mathrm{A}, \quad b=\ldots \quad 2.5 \ldots \quad \mathrm{~A} / \mathrm{A}, \quad c=\ldots 4.5 \ldots \quad \mathrm{~V} / \mathrm{V}$ and $d=\ldots 0.2 \ldots \mathrm{~A} / \mathrm{V}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. Here are 4 separate circuits. Determine the values of v_{1}, i_{2}, v_{3} and i_{4}.

$v_{1}=$ \qquad $\mathrm{V}, \quad i_{2}=$ \qquad -3.25 \qquad A, $v_{3}=\ldots 96$ \qquad V and $i_{4}=$ \qquad -220 \qquad mA .
4.

original circuit

equivalent circuit

The equivalent circuit on the right is obtained from the original circuit on the left by replacing parallel combinations of resistors by equivalent resistors. The value of the current in the equivalent circuit is $i_{\mathrm{s}}=0.8 \mathrm{~A}$. Determine the values of the following:

$$
R_{1}=_\quad 20 _\Omega, R_{5}=_8 _\Omega, v_{2}=_-6.4 _\mathrm{V}, \text { and } i_{3}=_-0.64 _\mathrm{A} .
$$

5.

The voltage source supplies 40 W of power and the current source supplies 13 W of power. Determine the values of the resistances.

$$
R_{1}=_20 _\Omega \text { and } R_{2}=_30 _\Omega
$$

6. Consider this voltage divider circuit. The vertical resistor represents a temperature sensor. Suppose the resistance R, in Ω, is related to the temperature T, in ${ }^{\circ} \mathrm{C}$, by the equation

$$
R=50+1.5 T
$$

(a) Suppose the temperature is $T=80^{\circ} \mathrm{C}$. The voltage measured by the meter will be $v_{\mathrm{m}}=\ldots 13.9 _\mathrm{V}$.
(b) Suppose instead that $v_{\mathrm{m}}=10.5 \mathrm{~V}$. The corresponding temperature is $T=\ldots 21.93 _{ }^{\circ} \mathrm{C}$.
7. Here are two ways to measure equivalent resistance. Determine the value of the resistance $R_{\text {eq }}$ measured by the Ohmmeter and of the voltage V_{m} measured by the voltmeter.

$$
R_{\mathrm{eq}}=_\quad 24 _\Omega \text { and } V_{\mathrm{m}}=_80 _\mathrm{V}
$$

8.

Encircled numbers are node numbers. The corresponding node voltages are:

$$
v_{1}=12 \mathrm{~V}, v_{2}=24 \mathrm{~V} \text { and } v_{3}=19.8 \mathrm{~V}
$$

The resistance of the resistor at the right of the circuit is

$$
R=_45 _\Omega \text {. }
$$

The power received by the $40-\Omega$ resistor is \qquad 3.6 \qquad W

The power supplied by the independent voltage source is \qquad 17.76 \qquad W.

The power supplied by the independent current source is \qquad 2.34 W N.
9.

The mesh currents in this circuit are:

$$
\begin{gathered}
i_{1}=3 \mathrm{~A}, \quad i_{2}=1 \mathrm{~A} \\
i_{3}=5 \mathrm{~A}
\end{gathered}
$$

and

Determine the following powers:

The 34-V voltage source supplies \qquad 102 \qquad W.

The $45-\mathrm{V}$ voltage source supplies \qquad 180 \qquad W.

The $8-\Omega$ resistor receives \qquad 32 \qquad W.

The $5-\Omega$ resistor receives \qquad 5 \qquad W.

