First-Order Circuits

Example 1:

Determine the voltage $v_{0}(t)$.

Solution:

This is a first order circuit containing an
 inductor. First, determine $i_{\mathrm{L}}(t)$.

Consider the circuit for time $\boldsymbol{t}<\mathbf{0}$.

Step 1: Determine the initial inductor current.
$t<0$, at steady state:
The circuit will be at steady state before the source voltage changes abruptly at time $t=0$.

The source voltage will be 2 V , a constant.
The inductor will act like a short circuit.

$$
i_{\mathrm{L}}(0)=\frac{2}{10 \|(25+15)}=\frac{2}{8}=0.25 \mathrm{~A}
$$

Consider the circuit for time $\boldsymbol{t}>\mathbf{0}$.

Step 2. The circuit will not be at steady state immediately after the source voltage changes abruptly at time $t=0$. Determine the Norton equivalent circuit for the part of the circuit connected to the inductor.

Replacing the resistors by an equivalent resistor, we recognize

$$
v_{\text {oc }}=-6 \mathrm{~V} \text { and } R_{\mathrm{t}}=8 \Omega
$$

Consequently

$$
i_{\mathrm{sc}}=\frac{-6}{8}=-0.75 \mathrm{~A}
$$

Step 3. The time constant of a first order circuit containing an inductor is given by

$$
\tau=\frac{L}{R_{\mathrm{t}}}
$$

Consequently

$$
\tau=\frac{L}{R_{\mathrm{t}}}=\frac{4}{8}=0.5 \mathrm{~s} \text { and } a=\frac{1}{\tau}=2 \frac{1}{\mathrm{~s}}
$$

Step 4. The inductor current is given by:

$$
i_{\mathrm{L}}(t)=i_{\mathrm{sc}}+\left(i(0)-i_{\mathrm{sc}}\right) e^{-a t}=-0.75+(0.25-(-0.75)) e^{-2 t}=-0.75+e^{-2 t} \text { for } t \geq 0
$$

Step 5. Express the output voltage as a function of the source voltage and the inductor current.

Using current division:

$$
i_{\mathrm{R}}=\frac{10}{10+(25+15)} i_{\mathrm{L}}=0.2 i_{\mathrm{L}}
$$

Then Ohm's law gives

$$
v_{\mathrm{o}}=15 i_{\mathrm{R}}=3 i_{\mathrm{L}}
$$

Step 6. The output voltage is given by

$$
v_{0}(t)=-2.25+3 e^{-2 t} \text { for } t \geq 0
$$

Example 2:

Determine the current $i_{0}(t)$.

Solution:

This is a first order circuit containing a capacitor. First, determine $v_{\mathrm{C}}(t)$.

Consider the circuit for time $\boldsymbol{t}<\mathbf{0}$.

Step 1: Determine the initial capacitor voltage.
The circuit will be at steady state before the source voltage changes abruptly at time $t=0$.

The source voltage will be 5 V , a constant.
The capacitor will act like an open circuit.
Apply KVL to the mesh to get:
$t<0$, at steady state:

$$
(10+2+3) i_{\mathrm{x}}-5=0 \Rightarrow i_{\mathrm{x}}=\frac{1}{3} \mathrm{~A}
$$

Then

$$
v_{\mathrm{C}}(0)=3 i_{\mathrm{x}}=1 \mathrm{~V}
$$

Consider the circuit for time $\boldsymbol{t} \boldsymbol{>} \mathbf{0}$.

Step 2. The circuit will not be at steady state immediately after the source voltage changes abruptly at time $t=0$. Determine the Thevenin equivalent circuit for the part of the circuit connected to the capacitor. First, determine the open circuit voltage, $v_{\text {oc }}$:

Apply KVL to the mesh to get:

$$
(10+2+3) i_{x}-15=0 \Rightarrow i_{x}=1 \mathrm{~A}
$$

Then

$$
v_{o c}=3 i_{\mathrm{x}}=3 \mathrm{~V}
$$

Next, determine the short circuit current, $i_{\text {sc }}$:

Express the controlling current of the CCVS in terms of the mesh currents:

$$
i_{\mathrm{x}}=i_{1}-i_{\mathrm{sc}}
$$

The mesh equations are

$$
10 i_{1}+2\left(i_{1}-i_{\mathrm{sc}}\right)+3\left(i_{1}-i_{\mathrm{sc}}\right)-15=0 \quad \Rightarrow \quad 15 i_{1}-5 i_{\mathrm{sc}}=15
$$

And

$$
i_{\mathrm{sc}}-3\left(i_{1}-i_{\mathrm{sc}}\right)=0 \Rightarrow i_{1}=\frac{4}{3} i_{\mathrm{sc}}
$$

so

$$
15\left(\frac{4}{3} i_{\mathrm{sc}}\right)-5 i_{\mathrm{sc}}=15 \Rightarrow i_{\mathrm{sc}}=1 \mathrm{~A}
$$

The Thevenin resistance is

$$
R_{\mathrm{t}}=\frac{3}{1}=3 \Omega
$$

Step 3. The time constant of a first order circuit containing an capacitor is given by

$$
\tau=R_{\mathrm{t}} C
$$

Consequently

$$
\tau=R_{\mathrm{t}} C=3\left(\frac{1}{12}\right)=0.25 \mathrm{~s} \text { and } a=\frac{1}{\tau}=4 \frac{1}{\mathrm{~s}}
$$

Step 4. The capacitor voltage is given by:

$$
v_{\mathrm{C}}(t)=v_{\mathrm{oc}}+\left(v_{\mathrm{C}}(0)-v_{\mathrm{oc}}\right) e^{-a t}=3+(1-3) e^{-4 t}=3-2 e^{-4 t} \text { for } t \geq 0
$$

Step 5. Express the output current as a function of the source voltage and the capacitor voltage.

$$
i_{\mathrm{o}}(t)=C \frac{d}{d t} v_{\mathrm{C}}(t)=\frac{1}{12} \frac{d}{d t} v_{\mathrm{C}}(t)
$$

Step 6. The output current is given by

$$
i_{0}(t)=\frac{1}{12} \frac{d}{d t}\left(3-2 e^{-4 t}\right)=\frac{1}{12}(-2)(-4) e^{-4 t}=\frac{2}{3} e^{-4 t} \text { for } t \geq 0
$$

