First-Order Dynamic Circuits

A Table at the end of Chapter 8 of Introduction to Electric Circuits indicates that the response of a first-order circuit can be obtained using Thevenin or Norton equivalent circuits:

When the open circuit voltage, $V_{\text {oc }}$, is constant after $t=0$, the capacitor voltage is given by

$$
v(t)=V_{\text {oc }}+\left(v(0)-V_{\text {oc }}\right) e^{-a t} \text { for } t \geq 0
$$

where

$$
a=\frac{1}{R_{\mathrm{t}} C}
$$

When the open circuit voltage, I_{sc}, is constant after $t=0$, the inductor current is given by

$$
i(t)=I_{\mathrm{sc}}+\left(i(0)-I_{\mathrm{sc}}\right) e^{-a t} \text { for } t \geq 0
$$

where
$a=\frac{R_{\mathrm{t}}}{L}$

Example 1:

This diagram represents a circuit for time $t \geq 0$. Given the initial condition

$$
i(0)=2.4 \mathrm{~A}
$$

and the inductance

$$
L=6 \mathrm{H}
$$

Represent the inductor current $i(t)$ as a function of t for $t \geq 0$.

Example 2:

This diagram represents a circuit for time $t \geq 0$. Given the initial condition

$$
v(0)=2 \mathrm{~V}
$$

and the capacitance

$$
C=0.1 \mathrm{~F}
$$

Represent the capacitor voltage $v(t)$ as a function of t for $t \geq 0$.

Solutions

Example 1.

Use source transformations and equivalent resistances to simplify the part of the circuit connected to inductor until it is a Norton equivalent circuit.

Now recognize that

$$
I_{\mathrm{sc}}=0.8 \mathrm{~A} \text { and } R_{\mathrm{t}}=18 \Omega
$$

Then

$$
a=\frac{R_{\mathrm{t}}}{L}=\frac{18}{6}=3 \frac{1}{\mathrm{~s}}
$$

Finally

$$
i(t)=I_{\mathrm{sc}}+\left(i(0)-I_{\mathrm{sc}}\right) e^{-a t}=0.8+(2.4-0.8) e^{-3 t}=0.8+1.6 e^{-3 t} \text { for } t \geq 0
$$

Example 2

We need to determine the values of $I_{\mathrm{sc}}, V_{\mathrm{oc}}$ and R_{t} :

$$
\begin{gathered}
i_{\mathrm{a}}=\frac{12-V_{\mathrm{oc}}}{24} . \text { Then }(7+1)\left(\frac{12-V_{\mathrm{oc}}}{24}\right)=\frac{V_{\mathrm{oc}}}{6} \\
V_{\mathrm{oc}}=\left(\frac{7+1}{7+5}\right) 12=8 \mathrm{~V}
\end{gathered}
$$

$$
\begin{gathered}
i_{\mathrm{a}}=-\frac{v_{\mathrm{t}}}{24} \text {. Then } i_{\mathrm{t}}+7\left(-\frac{v_{\mathrm{t}}}{24}\right)=\frac{v_{\mathrm{t}}}{24}+\frac{v_{\mathrm{t}}}{6} \\
R_{\mathrm{t}}=\frac{v_{\mathrm{t}}}{i_{\mathrm{t}}}=\frac{24}{7+5}=2 \Omega
\end{gathered}
$$

Using $v_{\text {oc }}=8 \mathrm{~V}$ and $R_{\mathrm{t}}=2 \Omega$ we have

$$
a=\frac{1}{R_{\mathrm{t}} C}=\frac{1}{2 \cdot 0.1}=5 \frac{1}{\mathrm{~s}}
$$

and

$$
v(t)=V_{\text {oc }}+\left(v(0)-V_{\text {oc }}\right) e^{-a t}=8+(2-8) e^{-5 t}=8-6 e^{-5 t} \text { for } t \geq 0
$$

