Passive Convention Exercises

Exercise 1:

The values of the element voltages and currents are

$$v_1 =$$
 _____ V , $v_2 =$ ____ V , $i_1 =$ ____ A and $i_2 =$ ____ A .

The value of power received by the circuit element is _____ W.

Is it possible that the circuit element is a resistor? What would be the value of resistance?

Solution 1:

The values of the element voltages and currents are

$$v_1 = \underline{\hspace{1cm}} -15 \underline{\hspace{1cm}} V, v_2 = \underline{\hspace{1cm}} 15 \underline{\hspace{1cm}} V, i_1 = \underline{\hspace{1cm}} -3 \underline{\hspace{1cm}} A \text{ and } i_2 = \underline{\hspace{1cm}} 3 \underline{\hspace{1cm}} A.$$

The value of power received by the circuit element is ___45___ W.

Is it possible that the circuit element is a resistor? What would be the value of resistance?

It's possible to build an electronic circuit that acts like a negative resistance, but we expect the resistance of a resistor to be positive, or at least non-negative. Here, noticing that v_1 and i_1 adhere to the passive convention, the resistance would be

$$R = \frac{v_1}{i_1} = \frac{-15}{-3} = 5 \Omega$$

Consequently, the element can be a resistor.

Exercise 2:

The values of the element voltages and currents are

$$v_1 =$$
 _____ V , $v_2 =$ ____ V , $i_1 =$ ____ A and $i_2 =$ ____ A .

The value of power received by the circuit element is _____ W.

Is it possible that the circuit element is a resistor? What would be the value of resistance?

Solution 2:

The values of the element voltages and currents are

$$v_1 = \underline{\hspace{1cm}} -12 \underline{\hspace{1cm}} V, v_2 = \underline{\hspace{1cm}} 12 \underline{\hspace{1cm}} V, i_1 = \underline{\hspace{1cm}} 2 \underline{\hspace{1cm}} A \text{ and } i_2 = \underline{\hspace{1cm}} -2 \underline{\hspace{1cm}} A.$$

The value of power supplied by the circuit element is ___24___ W.

Noticing that v_1 and i_1 adhere to the passive convention, the resistance of the resistor would be

$$R = \frac{v_1}{i_1} = \frac{-12}{2} = -6 \ \Omega$$

Consequently, the element cannot be a resistor.

Exercise 3:

The values of the element voltages and currents are

$$v_1 =$$
______ V , $v_2 =$ _____ V , $i_1 =$ _____ A and $i_2 =$ _____ A .

The value of power received by the circuit element is _____ W.

The value of power supplied by the circuit element is _____ W.

Solution 3:

The values of the element voltages and currents are

$$v_1 = \underline{\hspace{1cm}} 45\underline{\hspace{1cm}} V, v_2 = \underline{\hspace{1cm}} -45\underline{\hspace{1cm}} V, i_1 = \underline{\hspace{1cm}} -3\underline{\hspace{1cm}} A \text{ and } i_2 = \underline{\hspace{1cm}} 3\underline{\hspace{1cm}} A.$$

The value of power received by the circuit element is __-135___ W.

The value of power supplied by the circuit element is ___135__ W.

Exercise 4:

Suppose $v_{\rm m} = 12$ V and $i_{\rm m} = -2$ A. The value of power dissipated by the resistor is _____ W.

Suppose the resistance of the resistor is 15 Ω and $i_m = -2$ A. The value of voltage measured by the voltmeter is $v_m =$ _____ V.

Suppose $v_{\rm m} = 60$ V and $i_{\rm m} = 5$ A. The value of resistance of the resistor is _____ Ω .

Solution 4:

Suppose $v_{\rm m} = 12$ V and $i_{\rm m} = -2$ A. The value of power dissipated by the resistor is __24__ W.

Suppose the resistance of the resistor is 15 Ω and $i_{\rm m}=-2$ A. The value of voltage measured by the voltmeter is $v_{\rm m}=$ __30__ V.

Suppose $v_{\rm m}=60~{\rm V}$ and $i_{\rm m}=5~{\rm A}$. The value of resistance of the resistor is __-12_ Ω . (It's probably not a good idea to suppose that $v_{\rm m}=60~{\rm V}$ and $i_{\rm m}=5~{\rm A}$.)