Passive Convention Exercises

Exercise 1:

The values of the element voltages and currents are

$$
v_{1}=\ldots \mathrm{V}, v_{2}=\ldots \mathrm{V}, i_{1}=
$$

\qquad A and $i_{2}=$ \qquad A.

The value of power received by the circuit element is \qquad W.

Is it possible that the circuit element is a resistor? What would be the value of resistance?

Solution 1:

The values of the element voltages and currents are

$$
v_{1}=_-15 _\mathrm{V}, v_{2}=_15 _\mathrm{V}, i_{1}=_-3 _\mathrm{A} \text { and } i_{2}=_3 _\mathrm{A} .
$$

The value of power received by the circuit element is \qquad 45 \qquad W.

Is it possible that the circuit element is a resistor? What would be the value of resistance?
It's possible to build an electronic circuit that acts like a negative resistance, but we expect the resistance of a resistor to be positive, or at least non-negative. Here, noticing that v_{1} and i_{1} adhere to the passive convention, the resistance would be

$$
R=\frac{v_{1}}{i_{1}}=\frac{-15}{-3}=5 \Omega
$$

Consequently, the element can be a resistor.

Exercise 2:

The values of the element voltages and currents are

$$
v_{1}=
$$

\qquad $\mathrm{V}, v_{2}=$ \qquad $\mathrm{V}, i_{1}=$ \qquad A and $i_{2}=$ \qquad A.

The value of power received by the circuit element is \qquad W.

Is it possible that the circuit element is a resistor? What would be the value of resistance?

Solution 2:

The values of the element voltages and currents are

$$
v_{1}=_-12 _\mathrm{V}, v_{2}=_12 _\mathrm{V}, i_{1}=_2 _\mathrm{A} \text { and } i_{2}=_-2 _\mathrm{A} .
$$

The value of power supplied by the circuit element is \qquad 24 \qquad W.

Noticing that v_{1} and i_{1} adhere to the passive convention, the resistance of the resistor would be

$$
R=\frac{v_{1}}{i_{1}}=\frac{-12}{2}=-6 \Omega
$$

Consequently, the element cannot be a resistor.

Exercise 3:

The values of the element voltages and currents are

$$
v_{1}=
$$

\qquad $\mathrm{V}, v_{2}=$ \qquad $\mathrm{V}, i_{1}=$ \qquad A and $i_{2}=$ \qquad A.

The value of power received by the circuit element is \qquad W.

The value of power supplied by the circuit element is \qquad W.

Solution 3:

The values of the element voltages and currents are

$$
v_{1}=_45 _\mathrm{V}, v_{2}=_-45 _\mathrm{V}, i_{1}=_-3 _\mathrm{A} \text { and } i_{2}=_3 __\mathrm{A} .
$$

The value of power received by the circuit element is \qquad -135 W

The value of power supplied by the circuit element is \qquad 135 \qquad _ W

Exercise 4:

Suppose $v_{\mathrm{m}}=12 \mathrm{~V}$ and $i_{\mathrm{m}}=-2 \mathrm{~A}$. The value of power dissipated by the resistor is \qquad W.

Suppose the resistance of the resistor is 15Ω and $i_{\mathrm{m}}=-2 \mathrm{~A}$. The value of voltage measured by the voltmeter is $v_{\mathrm{m}}=$ \qquad V.

Suppose $v_{\mathrm{m}}=60 \mathrm{~V}$ and $i_{\mathrm{m}}=5 \mathrm{~A}$. The value of resistance of the resistor is \qquad Ω.

Solution 4:

Suppose $v_{\mathrm{m}}=12 \mathrm{~V}$ and $i_{\mathrm{m}}=-2 \mathrm{~A}$. The value of power dissipated by the resistor is \qquad 24 W.

Suppose the resistance of the resistor is 15Ω and $i_{\mathrm{m}}=-2 \mathrm{~A}$. The value of voltage measured by the voltmeter is $v_{\mathrm{m}}=\ldots 30 _\mathrm{V}$.

Suppose $v_{\mathrm{m}}=60 \mathrm{~V}$ and $i_{\mathrm{m}}=5 \mathrm{~A}$. The value of resistance of the resistor is $\quad-12_{-} \Omega$. (It's probably not a good idea to suppose that $v_{\mathrm{m}}=60 \mathrm{~V}$ and $i_{\mathrm{m}}=5 \mathrm{~A}$.)

