Ohm's and Kirchhoff's Laws

1. Consider this circuit.

Figure 1
For $t>0$, the inductor current and voltage are given by

$$
\begin{equation*}
i_{6}(t)=0.8-0.6 e^{-8 t} \mathrm{~A} \text { and } v_{6}(t)=12 e^{-8 t} \mathrm{~V} \tag{1}
\end{equation*}
$$

Determine the voltage source current $i_{4}(t)$, the current source voltage, $v_{5}(t)$ and the resistor voltage $v_{1}(t)$.

Solution

From KCL

$$
i_{2}(t)=i_{6}(t)=0.8-0.6 e^{-8 t} \mathrm{~A} \text { and } i_{3}(t)+i_{6}(t)=0 \Rightarrow i_{3}(t)=-0.8+0.6 e^{-8 t} \mathrm{~A}
$$

From Ohm's law

$$
\begin{equation*}
v_{2}(t)=6 i_{2}(t)=6\left(0.8-0.6 e^{-8 t}\right)=4.8-3.6 e^{-8 t} \mathrm{~V} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{3}(t)=9 i_{3}(t)=9\left(-0.8+0.6 e^{-8 t}\right)=-7.2+5.4 e^{-8 t} \mathrm{~V} \tag{3}
\end{equation*}
$$

(Notice that the current and voltage of the 6Ω resistor, $i_{2}(t)$ and $v_{2}(t)$, adhere to the passive convention. Similarly, $i_{3}(t)$ and $v_{3}(t)$, adhere to the passive convention.)

From KVL

$$
\begin{equation*}
v_{2}(t)+v_{6}(t)-v_{3}(t)-v_{5}(t)=0 \Rightarrow v_{5}(t)=v_{2}(t)+v_{6}(t)-v_{3}(t) \tag{4}
\end{equation*}
$$

so

$$
\begin{equation*}
v_{5}(t)=\left(4.8-3.6 e^{-8 t}\right)+12 e^{-8 t}-\left(-7.2+5.4 e^{-8 t}\right)=12+3 e^{-8 t} \mathrm{~V} \tag{5}
\end{equation*}
$$

From KCL

$$
0.2=i_{2}(t)+i_{4}(t) \Rightarrow i_{4}(t)=0.2-i_{2}(t)=0.2-\left(0.8-0.6 e^{-8 t}\right)=-0.6+0.6 e^{-8 t} \mathrm{~A}
$$

and

$$
i_{1}(t)=i_{4}(t)=-0.6+0.6 e^{-8 t} \mathrm{~A}
$$

From Ohm's law

$$
v_{1}(t)=-5 i_{1}(t)=-5\left(-0.6+0.6 e^{-8 t}\right)=3-3 e^{-8 t} \mathrm{~V}
$$

(Notice that the current and voltage of the 5Ω resistor, $i_{1}(t)$ and $v_{1}(t)$, do not adhere to the passive convention. Consequently $v_{1}(t)=-5 i_{1}(t)$ rather than $v_{1}(t)=5 i_{1}(t)$.)

As a check, apply KVL to the left mesh to get

$$
v_{5}(t)+v_{1}(t)-15=0 \Rightarrow v_{1}(t)=-v_{5}(t)+15=-\left(12+3 e^{-8 t}\right)+15=3-3 e^{-8 t} \mathrm{~V}
$$

as before.

Figure 2 Using MATLAB to check a KVL equation.
The computer program MATLAB (Hanselman and Littlefield, 2005) provides additional ways to check our results. For example, Equation 4 is valid at all times $t>0$. In Figure 2, Equation 4 is checked at time $\mathfrak{t}=0.2$ seconds using MATLAB. Voltages v_{6}, v_{2}, and v_{3} are
evaluated at time $t=0.2$ seconds using equations 1,2 and 3 . Next, The voltage v_{5} is calculated twice, using equations 4 and 5 . The two values of v_{5} are identical, indicating that our results are correct.

The computer program MATLAB also helps us to visualize the voltages and currents in our circuit. For example, Figure 3 shows a plot of the voltage v_{5} as a function of time. We see that v_{5} makes an exponential transition from 15 V at time zero to an eventual value of 12 V . These are the same values that are obtained from equation 5 by taking the limit of v_{5} as time goes to zero and to infinity.

The capacitor voltage, v5(t)

Figure 3 MATLAB plot of the voltage v_{5} as a function of time.
2. Consider this circuit.

The voltages across the 10Ω resistors are given to be

$$
v_{4}(t)=6.656 \cos \left(5 t+19.4^{\circ}\right) \mathrm{V} \text { and } v_{6}(t)=2.977 \cos \left(5 t+82.9^{\circ}\right) \mathrm{V}
$$

Determine the voltages $v_{2}(t)$ and $v_{5}(t)$ and the current $i_{3}(t)$.

Solution
From KVL

$$
\begin{aligned}
v_{2}(t)+v_{4}(t)-24 \cos (5 t)=0 \Rightarrow \quad v_{2}(t) & =-6.656 \cos \left(5 t+19.4^{\circ}\right)+24 \cos (5 t) \\
& =-(6.278 \cos (5 t)+2.211 \sin (5 t))+24 \cos (5 t) \\
& =17.722 \cos (5 t)-2.211 \sin (5 t) \\
& =17.859 \cos \left(5 t-7.2^{\circ}\right) \mathrm{V}
\end{aligned}
$$

Alternately, we can solve this problem using complex arithmetic instead of trigonometry. We use phasors to associate a complex number with each cosine:

$$
A \cos (\omega t+\theta) \leftrightarrow \quad A \angle \theta
$$

Representing the cosines as complex numbers gives

$$
-6.656 \cos \left(5 t+19.4^{\circ}\right)+24 \cos (5 t) \leftrightarrow-6.656 \angle 19.4^{\circ}+24 \angle 0^{\circ}
$$

Adding the complex numbers gives

$$
-6.656 \angle 19.4^{\circ}+24 \angle 0^{\circ}=-(6.278+j 2.211)+(24+j 0)=17.722-j 2.211=17.859 \angle-7.2^{\circ}
$$

Next, $v_{2}(t)$ is the sinusoidal voltage corresponding to $17.859 \angle-7.2^{\circ}$, that is

$$
v_{2}(t)=17.859 \cos \left(5 t-7.2^{\circ}\right) \mathrm{V}
$$

From KVL

$$
\begin{aligned}
v_{5}(t)+v_{6}(t)-v_{4}(t)=0 \Rightarrow \quad v_{5}(t) & =-2.977 \cos \left(5 t+82.9^{\circ}\right)+6.656 \cos \left(5 t+19.4^{\circ}\right) \\
& =-(0.3680 \cos (5 t)+2.954 \sin (5 t))+(6.278 \cos (5 t)+2.211 \sin (5 t)) \\
& =5.910 \cos (5 t)-0.743 \sin (5 t) \\
& =5.957 \cos \left(5 t-7.2^{\circ}\right) \mathrm{V}
\end{aligned}
$$

Using Ohm's law we can determine the resistor currents:

$$
\begin{aligned}
& i_{4}(t)=\frac{v_{4}(t)}{10}=\frac{6.656 \cos \left(5 t+19.4^{\circ}\right)}{10}=0.6656 \cos \left(5 t+19.4^{\circ}\right) \mathrm{A} \\
& i_{6}(t)=\frac{v_{6}(t)}{10}=\frac{2.977 \cos \left(5 t+82.9^{\circ}\right)}{10}=0.2977 \cos \left(5 t+82.9^{\circ}\right) \mathrm{A}
\end{aligned}
$$

$$
i_{2}(t)=\frac{v_{2}(t)}{20}=\frac{17.859 \cos \left(5 t-7.2^{\circ}\right)}{20}=0.8930 \cos \left(5 t-7.2^{\circ}\right) \mathrm{A}
$$

(Notice that the current and voltage of each resistor adhere to the passive convention.)

From KCL

$$
i_{2}(t)=i_{3}(t)+i_{4}(t)+i_{6}(t) \Rightarrow i_{3}(t)=i_{2}(t)-\left(i_{4}(t)+i_{6}(t)\right)
$$

so

$$
i_{3}(t)=0.8930 \cos \left(5 t+172.8^{\circ}\right)-\left(0.6656 \cos \left(5 t+19.4^{\circ}\right)+0.2977 \cos \left(5 t+82.9^{\circ}\right)\right)
$$

Adding the complex numbers gives

$$
\begin{aligned}
0.8930 \angle 7.2^{\circ} & -\left(0.6656 \angle 19.4^{\circ}+0.2977 \angle 82.9^{\circ}\right) \\
& =0.8861+j 0.1105-(0.6278+j 0.2211+0.0368+j 0.2954) \\
& =0.2215-j 0.6270=0.6650 \angle-70.5^{\circ}
\end{aligned}
$$

Finally, $i_{3}(t)$ is the sinusoidal voltage corresponding to $0.6650 \angle-70.5^{\circ}$, that is

$$
i_{3}(t)=0.6650 \cos \left(5 t-70.5^{\circ}\right) \mathrm{V}
$$

In summary, the required voltages and current are

$$
v_{2}(t)=17.859 \cos \left(5 t-7.2^{\circ}\right) \mathrm{V}, \quad v_{5}(t)=5.957 \cos \left(5 t-7.2^{\circ}\right) \mathrm{V}
$$

and

$$
i_{3}(t)=0.6650 \cos \left(5 t-70.5^{\circ}\right) \mathrm{V}
$$

3. Consider this circuit.

The voltages across the 40Ω and 15Ω resistors are given to be

$$
v_{3}(t)=10 \mathrm{~V} \text { and } v_{6}(t)=7.5 \mathrm{~V}
$$

Determine the voltages $v_{2}(t)$ and $v_{5}(t)$ and the current $i_{4}(t)$.

Solution:

From KVL

$$
-v_{5}(t)+v_{6}(t)-v_{3}(t)=0 \Rightarrow v_{5}(t)=v_{6}(t)-v_{3}(t)=7.5-10=-2.5 \mathrm{~V}
$$

and

$$
-v_{2}(t)+v_{3}(t)-15=0 \Rightarrow v_{2}(t)=v_{3}(t)-15=10-15=-5 \mathrm{~V}
$$

From Ohm's law

$$
i_{3}(t)=\frac{v_{3}(t)}{40}=\frac{10}{40}=0.25 \mathrm{~A} \quad \text { and } \quad i_{5}(t)=\frac{v_{5}(t)}{5}=\frac{-2.5}{5}=-0.5 \mathrm{~A}
$$

(Notice that the current and voltage of the 40Ω and 5Ω resistors adhere to the passive convention.) Also,

$$
i_{2}(t)=-\frac{v_{2}(t)}{4}=-\frac{-5}{4}=1.25 \mathrm{~A}
$$

(Notice that the current and voltage of the 4Ω resistor does not adhere to the passive convention.)

Finally, from KCL
$i_{2}(t)+i_{4}(t)+i_{5}(t)=i_{3}(t) \Rightarrow i_{4}(t)=i_{3}(t)-\left(i_{2}(t)+i_{5}(t)\right)=0.25-(1.25+(-0.5))=-0.5 \mathrm{~A}$

