Exercises

Exercise 1. This circuit that consists of 4 circuit elements, numbered from 1 to 4 . These circuit elements are connected together at the nodes, labeled a thru d. Determine the power absorbed by each circuit element.

Exercise 2. This circuit that consists of nine circuit elements, numbered from 1 to 9 . These circuit elements are connected together at six nodes, labeled a thru f.

a. Determine the values of the currents $i_{3}, i_{4}, i_{5}, i_{7}$ and i_{8} and of the voltages v_{1}, v_{2}, v_{6} and v_{9}.
b. Determine the power absorbed each element.

Solutions

Solution 1:

We will need to calculate the current and voltage of each circuit element. How should we label the remaining element currents and voltages? Let's try a couple of different ways and see what happens.

First try:

Apply KCL at nodes a and b to get:

$$
i_{1}=2 \Rightarrow i_{1}=2 \mathrm{~A} \text { and } 2=i_{3}+5 \Rightarrow i_{3}=-3 \mathrm{~A}
$$

Apply KVL to the meshes to get:

$$
-v_{2}+6-2=0 \Rightarrow v_{2}=4 \mathrm{~V} \text { and }-v_{4}-6=0 \Rightarrow v_{4}=-6 \mathrm{~V}
$$

Then
$p_{1}=-(2)(2)=-4 \mathrm{~W}, \quad p_{2}=-(2)(4)=-8 \mathrm{~W}, \quad p_{3}=(-3)(6)=-18 \mathrm{~W} \quad$ and $\quad p_{4}=-(5)(-6)=30 \mathrm{~W}$.

Second try: (The reference directions of the currents i_{1} and i_{3} and of the voltages v_{2} and v_{4} are all different from what they were in the first try.)

Apply KCL at nodes a and b to get:

$$
0=i_{1}+2 \Rightarrow i_{1}=-2 \mathrm{~A} \text { and } 2+i_{3}=5 \Rightarrow i_{3}=3 \mathrm{~A}
$$

Apply KVL to the meshes to get:

$$
v_{2}+6-2=0 \Rightarrow v_{2}=-4 \mathrm{~V} \text { and } v_{4}-6=0 \Rightarrow v_{4}=6 \mathrm{~V}
$$

Then

$$
p_{1}=(-2)(2)=-4 \mathrm{~W}, \quad p_{2}=(2)(-4)=-8 \mathrm{~W}, \quad p_{3}=-(3)(6)=-18 \mathrm{~W} \quad \text { and } \quad p_{4}=(5)(6)=30 \mathrm{~W} .
$$

Observations:

1. The values of the currents i_{1} and i_{3} and of the voltages v_{2} and v_{4} in the second try are all -1 times the corresponding value in the first try. That is to be expected because the reference directions of the currents i_{1} and i_{3} and of the voltages v_{2} and v_{4} have all changed. For example, i_{1} in the first try and i_{1} in the second try refer to different currents.
2. The values of the power absorbed by the circuit element did not depend on the choice of reference direction.

Solution 2. Apply KCL at nodes a, b, c, d and e to get:

$$
\left.\begin{array}{l}
2=3+i_{4} \Rightarrow i_{4}=-1 \mathrm{~A} \\
0=2+i_{5}+i_{3} \\
i_{3}+3=5 \Rightarrow i_{3}=2 \mathrm{~A}
\end{array}\right\} \Rightarrow 0=2+i_{5}+2 \Rightarrow i_{5}=-4 \mathrm{~A}
$$

Apply KVL to the meshes to get:

$$
\begin{aligned}
& \left.\begin{array}{l}
v_{1}+2-v_{2}=0 \\
v_{2}+3-6-3=0 \Rightarrow v_{2}=6 \mathrm{~V}
\end{array}\right\} \Rightarrow v_{1}+2-6=0 \Rightarrow v_{1}=4 \mathrm{~V} \\
& -2+v_{6}+3-3=0 \Rightarrow v_{6}=2 \mathrm{~V} \\
& 6-3+v_{9}=0 \Rightarrow v_{9}=-3 \mathrm{~V}
\end{aligned}
$$

element	1	2	3	4	5	6	7	8	9
current	3	2	2	-1	-4	5	-3	1	4
voltage	4	6	2	3	3	2	6	3	-3
power absorbed	12	-12	-4	-3	-12	10	18	3	-12

