Exercises

Exercise 1. This circuit that consists of 4 circuit elements, numbered from 1 to 4. These circuit elements are connected together at the nodes, labeled a thru d. Determine the power absorbed by each circuit element.

Exercise 2. This circuit that consists of nine circuit elements, numbered from 1 to 9. These circuit elements are connected together at six nodes, labeled a thru f.

a. Determine the values of the currents i_3 , i_4 , i_5 , i_7 and i_8 and of the voltages v_1 , v_2 , v_6 and v_9 .

b. Determine the power absorbed each element.

Solutions

Solution 1:

We will need to calculate the current and voltage of each circuit element. How should we label the remaining element currents and voltages? Let's try a couple of different ways and see what happens.

First try:

Apply KCL at nodes a and b to get:

$$i_1 = 2 \implies i_1 = 2$$
 A and $2 = i_3 + 5 \implies i_3 = -3$ A

Apply KVL to the meshes to get:

$$-v_2 + 6 - 2 = 0 \implies v_2 = 4 \text{ V} \text{ and } -v_4 - 6 = 0 \implies v_4 = -6 \text{ V}$$

Then

$$p_1 = -(2)(2) = -4$$
 W, $p_2 = -(2)(4) = -8$ W, $p_3 = (-3)(6) = -18$ W and $p_4 = -(5)(-6) = 30$ W.

Second try: (The reference directions of the currents i_1 and i_3 and of the voltages v_2 and v_4 are all different from what they were in the first try.)

Apply KCL at nodes a and b to get:

$$0 = i_1 + 2 \implies i_1 = -2 \text{ A} \text{ and } 2 + i_3 = 5 \implies i_3 = 3 \text{ A}$$

Apply KVL to the meshes to get:

$$v_2 + 6 - 2 = 0 \implies v_2 = -4 \text{ V} \text{ and } v_4 - 6 = 0 \implies v_4 = 6 \text{ V}$$

Then

$$p_1 = (-2)(2) = -4$$
 W, $p_2 = (2)(-4) = -8$ W, $p_3 = -(3)(6) = -18$ W and $p_4 = (5)(6) = 30$ W.

Observations:

- 1. The values of the currents i_1 and i_3 and of the voltages v_2 and v_4 in the second try are all -1 times the corresponding value in the first try. That is to be expected because the reference directions of the currents i_1 and i_3 and of the voltages v_2 and v_4 have all changed. For example, i_1 in the first try and i_1 in the second try refer to different currents.
- 2. The values of the power absorbed by the circuit element did not depend on the choice of reference direction.

Solution 2. Apply KCL at nodes a, b, c, d and e to get:

$$2 = 3 + i_4 \implies i_4 = -1 \text{ A}$$

$$0 = 2 + i_5 + i_3$$

$$i_3 + 3 = 5 \implies i_3 = 2 \text{ A}$$

$$\Rightarrow 0 = 2 + i_5 + 2 \implies i_5 = -4 \text{ A}$$

$$i_4 + i_7 + 4 = 0 \implies -1 + i_7 + 4 = 0 \implies i_7 = -3 \text{ A}$$

$$i_5 + i_8 = i_7 \implies -4 + i_8 = -3 \implies i_8 = 1 \text{ A}$$

Apply KVL to the meshes to get:

$$\begin{array}{c} v_1 + 2 - v_2 = 0 \\ v_2 + 3 - 6 - 3 = 0 \implies v_2 = 6 \text{ V} \end{array} \Rightarrow v_1 + 2 - 6 = 0 \implies v_1 = 4 \text{ V} \\ -2 + v_6 + 3 - 3 = 0 \implies v_6 = 2 \text{ V} \\ 6 - 3 + v_9 = 0 \implies v_9 = -3 \text{ V} \end{array}$$

element	1	2	3	4	5	6	7	8	9
current	3	2	2	-1	-4	5	-3	1	4
voltage	4	6	2	3	3	2	6	3	-3
power	12	-12	-4	-3	-12	10	18	3	-12
absorbed									