

Fill in the blanks in the following statements:
a. When $R=9 \Omega$ then $v_{\mathrm{R}}=$ \qquad V.
b. When $R=$ \qquad Ω then $v_{\mathrm{R}}=2.52 \mathrm{~V}$.
c. When $R=$ \qquad Ω then $i_{R}=300 \mathrm{~mA}$.
d. $R_{1}=$ \qquad Ω and $v_{\mathrm{s}}=$ \qquad V.

Solution

Recognize that the ammeter measures the short circuit current and the voltmeter measures the open circuit voltages. Consequently

$$
i_{\mathrm{sc}}=500 \mathrm{~mA}, \quad v_{\mathrm{oc}}=9 \mathrm{~V} \text { and } R_{\mathrm{t}}=\frac{v_{\mathrm{oc}}}{i_{\mathrm{sc}}}=\frac{9}{0.5}=18 \Omega
$$

Replace the part of the circuit to the left of the terminals by its Thevenin equivalent circuit to get

Using $v_{\mathrm{oc}}=9 \mathrm{~V}$ and $R_{\mathrm{t}}=18 \Omega$ we have $v_{\mathrm{R}}=\frac{9 R}{18+R}$ and $i_{\mathrm{R}}=\frac{9}{18+R}$.
a. When $R=9 \Omega$ then $v_{\mathrm{R}}=$ \qquad 3 \qquad V.
b. When $R=$ \qquad
\qquad Ω then $v_{\mathrm{R}}=2.52 \mathrm{~V}$.
c. When $R=$ \qquad $9 _\Omega$ then $i_{\mathrm{R}}=300 \mathrm{~mA}$.
d.

Using $v_{\text {oc }}=9 \mathrm{~V}$ and $R_{\mathrm{t}}=18 \Omega$ we have

$$
\begin{gathered}
18=6+\frac{30 R_{1}}{30+R_{1}} \Rightarrow R_{1}=20 \Omega \\
9=\left(\frac{30}{30+R_{1}}\right) v_{\mathrm{s}}+\left(\frac{30 R_{1}}{30+R_{1}}\right) 0.3=\left(\frac{30}{30+20}\right) v_{\mathrm{s}}+\left(\frac{30 \cdot 20}{30+20}\right) 0.3=0.6 v_{\mathrm{s}}+3.6 \Rightarrow v_{\mathrm{s}}=9 \mathrm{~V}
\end{gathered}
$$

