Example:

The input to this circuit is the voltage of the voltage source, v_{s}. The output of the circuit is the capacitor voltage, v_{0}.

Determine the values of the resistances R_{1}, R_{2}, R_{3} and R_{4} required to cause the network function of the circuit to be

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}=\frac{21}{\left(1+j \frac{\omega}{5}\right)\left(1+j \frac{\omega}{200}\right)}
$$

Solution:

Represent the circuit in the frequency domain.

Apply KCL at the top node of the left capacitor, C_{1}, to get

$$
\frac{\mathbf{V}_{\mathrm{a}}-\mathbf{V}_{\mathrm{s}}}{R_{1}}+j \omega C_{1} \mathbf{V}_{\mathrm{a}}=0 \Rightarrow \mathbf{V}_{\mathrm{a}}=\frac{1}{1+j \omega C_{1} R_{1}} \mathbf{V}_{\mathrm{s}}
$$

The op amp, together with resistors R_{2} and R_{3}, comprise a noninverting amplifier so

$$
\mathbf{V}_{\mathrm{b}}=\left(1+\frac{R_{3}}{R_{2}}\right) \mathbf{V}_{\mathrm{a}}
$$

(Alternately, this equation can be obtained by applying KCL at the inverting input node of the op amp.) Apply KCL at the top node of the right capacitor, C_{2}, to get

$$
\frac{\mathbf{V}_{\mathrm{o}}-\mathbf{V}_{\mathrm{b}}}{R_{4}}+j \omega C_{2} \mathbf{V}_{\mathrm{o}}=0 \Rightarrow \mathbf{V}_{\mathrm{o}}=\frac{1}{1+j \omega C_{2} R_{4}} \mathbf{V}_{\mathrm{b}}
$$

Combining these equations gives

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}=\frac{1+\frac{R_{3}}{R_{2}}}{\left(1+j \omega C_{1} R_{1}\right)\left(1+j \omega C_{2} R_{4}\right)}
$$

Comparing to the specified network function gives

$$
\frac{1+\frac{R_{3}}{R_{2}}}{\left(1+j \omega C_{1} R_{1}\right)\left(1+j \omega C_{2} R_{4}\right)}=\frac{21}{\left(1+j \frac{\omega}{5}\right)\left(1+j \frac{\omega}{200}\right)}
$$

The solution is not unique. For example, we can require

$$
1+\frac{R_{3}}{R_{2}}=21, C_{1} R_{1}=\frac{1}{5}=0.2, C_{2} R_{4}=\frac{1}{200}=0.005
$$

With the given values of capacitance, and choosing $R_{2}=10 \mathrm{k} \Omega$, we have

$$
R_{1}=200 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{3}=200 \mathrm{k} \Omega \text { and } R_{4}=50 \mathrm{k} \Omega
$$

Example:

The input to this circuit is the voltage of the voltage source, v_{s}. The output of the circuit is the resistor voltage, v_{0}.

Specify values for R and C that cause the network function of the circuit to be

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}=\frac{-8}{1+j \frac{\omega}{250}}
$$

Solution:

Represent the circuit in the frequency domain.

The node equations are

$$
\frac{\mathbf{V}_{\mathrm{a}}-\mathbf{V}_{\mathrm{s}}}{R_{1}}+\frac{\mathbf{V}_{\mathrm{a}}}{\frac{1}{j \omega C}}+\frac{\mathbf{V}_{\mathrm{a}}}{R_{2}}=0 \Rightarrow \mathbf{V}_{\mathrm{a}}=\frac{R_{2}}{R_{1}+R_{2}+j \omega C R_{1} R_{2}} \mathbf{V}_{s}
$$

and

$$
\frac{\mathbf{V}_{\mathrm{a}}}{R_{2}}+\frac{\mathbf{V}_{\mathrm{o}}}{R_{3}}=0 \Rightarrow \mathbf{V}_{\mathrm{o}}=-\frac{R_{3}}{R_{2}} \mathbf{V}_{\mathrm{a}}
$$

The network function is

$$
\mathbf{H}=\frac{\mathbf{V}_{\mathrm{o}}}{\mathbf{V}_{s}}=\frac{-\frac{R_{3}}{R_{2}} R_{2}}{R_{1}+R_{2}+j \omega C R_{1} R_{2}}=\frac{-\frac{R_{3}}{R_{1}+R_{2}}}{1+j \omega C \frac{R_{1} R_{2}}{R_{1}+R_{2}}}
$$

Using the given values for R_{1} and R_{2} and letting $R_{3}=R$ gives

$$
\mathbf{H}=\frac{\mathbf{V}_{\mathrm{o}}}{\mathbf{V}_{s}}=\frac{-\frac{R}{4 \times 10^{4}}}{1+j \omega C\left(10^{4}\right)}
$$

Comparing this network function to the specified network function gives

$$
C\left(10^{4}\right)=\frac{1}{250} \Rightarrow C=0.4 \mu \mathrm{~F} \text { and } \frac{R}{4 \times 10^{4}}=8 \Rightarrow R=320 \mathrm{k} \Omega
$$

Example

Consider this circuit and its frequency response, shown below.

The frequency response plots were made using PSpice and Probe. $\mathrm{V}(\mathrm{R} 3: 2)$ and $\mathrm{Vp}(\mathrm{R} 3: 2)$ denote the magnitude and angle of the phasor corresponding to $v_{\mathrm{o}}(t) . \mathrm{V}(\mathrm{V} 1:+)$ and $\mathrm{Vp}(\mathrm{V} 1:+)$ denote the magnitude and angle of the phasor corresponding to $v_{i}(t)$. Hence $\mathrm{V}(\mathrm{R} 3: 2) / \mathrm{V}(\mathrm{V} 1:+)$ is the gain of the circuit and $\mathrm{Vp}(\mathrm{R} 3: 2)-\mathrm{Vp}(\mathrm{V} 1:+)$ is the phase shift of the circuit.

Determine values for R and C required to make the circuit correspond to the frequency response.

Hint: PSpice and Probe use m for milli or 10^{-3}. Hence, the label ($159.513,892.827 \mathrm{~m}$) indicates that the gain of the circuit is $892.827 * 10^{-3}=0.892827$ at a frequency of $159.513 \mathrm{Hertz} \approx 1000$ rad/sec.

Solution:

$$
\mathbf{H}(\omega)=-\frac{\frac{10^{4}}{R}}{1+j \omega C 10^{4}}=\frac{\frac{10^{4}}{R}}{\sqrt{1+\left(\omega C 10^{4}\right)^{2}}} \angle-\tan ^{-1}\left(\omega C 10^{4}\right)
$$

When $\omega=200 \mathrm{rad} / \mathrm{sec}=31.83$ Hertz

$$
1.8565 \angle 158^{\circ}=\frac{\frac{10^{4}}{R}}{\sqrt{1+\left(\omega C 10^{4}\right)^{2}}} \angle-\tan ^{-1}\left(\omega C 10^{4}\right)
$$

Equating phase shifts gives

$$
\omega C 10^{4}=10^{3} \frac{C R 10^{4}}{R+10^{4}}=\tan \left(22^{\circ}\right)=0.404 \Rightarrow C=0.2 \mu \mathrm{~F}
$$

Equating gains gives

$$
1.8565=\frac{\frac{10^{4}}{R}}{\sqrt{1+\left(\omega C 10^{4}\right)^{2}}}=\frac{\frac{10^{4}}{R}}{\sqrt{1+(0.404)^{2}}} \Rightarrow R=5 \mathrm{k} \Omega
$$

Example:

The input to this circuit is the voltage of the voltage source, v_{s}. The output of the circuit is the voltage, v_{0}. Determine the network function,

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}
$$

of the circuit.

Solution:

Represent the circuit in the frequency domain. Apply KCL at the inverting input node of the op amp to get

$$
\frac{\mathbf{V}_{\mathrm{o}}-\mathbf{V}_{\mathrm{s}}}{R_{1}}+j \omega C_{1}\left(\mathbf{V}_{\mathrm{o}}-\mathbf{V}_{\mathrm{s}}\right)+\frac{\mathbf{V}_{\mathrm{s}}}{R_{2}}=0
$$

or

$$
\left(R_{1}+R_{2}+j \omega C_{1} R_{1} R_{2}\right) \mathbf{V}_{\mathrm{s}}=\left(R_{2}+j \omega C_{1} R_{1} R_{2}\right) \mathbf{V}_{\mathrm{o}}
$$

so

$$
\mathbf{H}=\frac{\mathbf{V}_{\mathrm{o}}}{\mathbf{V}_{\mathrm{s}}}=\frac{R_{1}+R_{2}+j \omega C_{1} R_{1} R_{2}}{R_{2}+j \omega C_{1} R_{1} R_{2}}=\frac{R_{1}+R_{2}}{R_{2}} \times \frac{1+j \omega C_{1} \frac{R_{1} R_{2}}{R_{1}+R_{2}}}{1+j \omega C_{1} R_{1}}
$$

With the given values

$$
\mathbf{H}=\frac{\mathbf{V}_{\mathrm{o}}}{\mathbf{V}_{\mathrm{s}}}=\frac{25+j \omega}{5+j \omega}=5 \frac{1+j \frac{\omega}{25}}{1+j \frac{\omega}{5}}
$$

