Design Exercise

The input to each of these four circuit is the voltage of the voltage source, $v_{s}(t)$. The output is the voltage $v_{0}(t)$.

Design these four circuits to have these four network functions:

$$
\mathbf{H}(\omega)=\frac{10(j \omega)}{\left(1+j \frac{\omega}{2}\right)\left(1+j \frac{\omega}{20}\right)}, \quad \mathbf{H}(\omega)=\frac{10(j \omega)}{1+j \frac{\omega}{20}}, \mathbf{H}(\omega)=\frac{5}{j \omega\left(1+j \frac{\omega}{10}\right)}
$$

and

$$
\mathbf{H}(\omega)=\frac{10}{\left(1+j \frac{\omega}{2}\right)\left(1+j \frac{\omega}{50}\right)}
$$

Solution

Consider:

The transfer function of this circuit is

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}=L_{2} A \frac{j \omega}{1+j \omega \frac{L_{1}}{R_{1}}}
$$

Compare to

$$
\mathbf{H}(\omega)=\frac{10(j \omega)}{1+j \frac{\omega}{20}}
$$

To get

$$
\frac{L_{1}}{R_{1}}=\frac{1}{20} \quad \text { and } \quad L_{2} A=10
$$

For example

$$
L_{1}=L_{2}=2 \mathrm{H}, \quad R_{1}=40 \Omega, \quad R_{2}=10 \Omega \quad \text { and } A=5 \mathrm{~A} / \mathrm{V}
$$

Next, consider:

The transfer function of this circuit is

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}=\frac{A}{\left(1+j \omega \frac{L}{R_{1}}\right)\left(1+j \omega C R_{2}\right)}
$$

Compare to

$$
\mathbf{H}(\omega)=\frac{10}{\left(1+j \frac{\omega}{2}\right)\left(1+j \frac{\omega}{50}\right)}
$$

To get

$$
A=10, \quad \frac{L}{R_{1}}=\frac{1}{2} \quad \text { and } \quad C R_{2}=\frac{1}{50}
$$

For example

$$
L=2 \mathrm{H}, \quad R_{1}=R_{2}=4 \Omega, \quad C=5 \mathrm{mF} \quad \text { and } \quad A=10 \mathrm{~V} / \mathrm{V}
$$

Next, consider:

The transfer function of this circuit is

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}=\frac{L_{2} A}{R_{1} R_{2}} \frac{j \omega}{\left(1+j \omega \frac{L_{1}}{R_{1}}\right)\left(1+j \omega \frac{L_{2}}{R_{2}}\right)}
$$

Compare to

$$
\mathbf{H}(\omega)=\frac{10(j \omega)}{\left(1+j \frac{\omega}{2}\right)\left(1+j \frac{\omega}{20}\right)}
$$

To get

$$
\frac{L_{1}}{R_{1}}=\frac{1}{2}, \quad \frac{L_{2}}{R_{2}}=\frac{1}{20} \quad \text { and } \quad \frac{L_{2} A}{R_{1} R_{2}}=10
$$

For example

$$
L_{1}=L_{2}=2 \mathrm{H}, \quad R_{1}=4 \Omega, \quad R_{2}=40 \Omega \quad \text { and } A=800 \mathrm{~V} / \mathrm{A}
$$

Finally, consider:

The transfer function of this circuit is

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}=\frac{\frac{A}{C R}}{j \omega\left(1+j \omega \frac{L}{R}\right)}
$$

Compare to

$$
\mathbf{H}(\omega)=\frac{5}{j \omega\left(1+j \frac{\omega}{10}\right)}
$$

To get

$$
\frac{L}{R}=\frac{1}{10} \quad \text { and } \quad \frac{A}{C R}=5
$$

For example

$$
L=2 \mathrm{H}, \quad R=20 \Omega, \quad C=100 \mathrm{mF} \text { and } A=10 \mathrm{~A} / \mathrm{A}
$$

