EE221 - Practice for the $1^{\text {st }}$ Midterm Exam

1. Consider this circuit and corresponding plot of the inductor current:

Determine the values of L, R_{1} and $R_{2}: L=__{4} .8 _\mathrm{H}, R_{1}=_200 _\Omega$ and $R_{2}=$ \qquad 300 Ω.

Hint: Use the plot to determine values of D, E, F and a such that the inductor current can be represented as

$$
i(t)=\left\{\begin{array}{l}
D \text { for } t \leq 0 \\
E+F e^{-a t} \text { for } t \geq 0
\end{array}\right.
$$

Solution:
From the plot $D=i(t)$ for $t<0=120 \mathrm{~mA}=0.12 \mathrm{~A}, E+F=i(0+)=120 \mathrm{~mA}=0.12 \mathrm{~A}$ and $E=\lim _{t \rightarrow \infty} i(t)=200 \mathrm{~mA}=0.2 \mathrm{~A}$. The point labeled on the plot indicates that $i(t)=160 \mathrm{~mA}$ when $t=$ $27.725 \mathrm{~ms}=0.027725$ s. Consequently

$$
160=200-80 e^{-a(0.027725)} \Rightarrow a=\frac{\ln \left(\frac{160-200}{80}\right)}{-0.027725}=25 \frac{1}{\mathrm{~s}}
$$

Then

$$
i(t)=\left\{\begin{array}{l}
120 \mathrm{~mA} \text { for } t \leq 0 \\
200-80 e^{-25 t} \mathrm{~mA} \text { for } t \geq 0
\end{array}\right.
$$

When $t<0$, the circuit is at steady state so the inductor acts like a short circuit.

$$
R_{1}=\frac{24}{0.12}=200 \Omega
$$

As $t \rightarrow \infty$, the circuit is again at steady state so the inductor acts like a short circuit.

$$
\begin{gathered}
R_{1} \| R_{2}=\frac{24}{0.2}=120 \Omega \\
120=200 \| R_{2} \Rightarrow R_{2}=300 \Omega
\end{gathered}
$$

Next, the inductance can be determined using the time
 constant:

$$
25=a=\frac{1}{\tau}=\frac{R_{1} \| R_{2}}{L}=\frac{120}{L} \Rightarrow L=\frac{120}{25}=4.8 \mathrm{H}
$$

2.

(a)

$t, \mathrm{~s}$
(b)

Design the circuit in (a) to have the response in (b) by specifying the values of C, R_{1} and R_{2}

$$
C=
$$

\qquad 0.125 \qquad F, $R_{1}=$ \qquad 100 \qquad Ω and $R_{2}=$ \qquad 20 \qquad Ω.

Solution:

The voltage $v(t)$ is represented by an equation of the form $v(t)=\left\{\begin{array}{cl}D & \text { for } t<0 \\ E+F e^{-a t} & \text { for } t>0\end{array}\right.$ where D, E, F and a are unknown constants. The constants D, E and F are described by

$$
D=v(t) \text { when } t<0, \quad E=\lim _{t \rightarrow \infty} v(t), \quad E+F=\lim _{t \rightarrow 0+} v(t)
$$

From the plot, we see that $D=10, E=20$, and $E+F=10 \mathrm{~V}$

Consequently,

$$
v(t)=\left\{\begin{array}{cc}
10 & \text { for } t<0 \\
20-10 e^{-a t} & \text { for } t>0
\end{array}\right.
$$

To determine the value of a, we pick a time when the circuit is not at steady state. One such point is labeled on the plot. We see $v(3.22)=18 \mathrm{~V}$, that is, the value of the voltage is 18 volts at time 3.22 seconds. Substituting these into the equation for $v(t)$ gives

Consequently

$$
\begin{gathered}
18=20-10 e^{-a(3.22)} \Rightarrow a=\frac{\ln (0.2)}{-3.22}=0.5 \\
v(t)=\left\{\begin{array}{cc}
10 & \text { for } t<0 \\
20-10 e^{-0.5 t} & \text { for } t>0
\end{array}\right.
\end{gathered}
$$

Now let's turn our attention to the circuit. When the circuit is at steady state, the capacitor acts like an open circuit.

After $t=0$, the switch is closed and the steady state voltage is determined from the plot to be $v(t)=E=20 \mathrm{~V}$. On the right we see the circuit that results from replacing the capacitor by an open circuit and the switch by a short circuit. Using voltage division gives

$$
20=\frac{80}{80+R_{2}}(25) \Rightarrow R_{2}=20 \Omega
$$

Before $t=0$, the switch is open and the steady state voltage is determined from the plot to be $v(t)=E+F=10 \mathrm{~V}$. On the right we see the circuit that results from replacing the capacitor by an open circuit and the switch by an open circuit. Using voltage division gives

$$
10=\frac{80}{80+R_{1}+R_{2}}(25)=\frac{80}{100+R_{1}}(25) \Rightarrow R_{1}=100 \Omega
$$

Recalling that $a=0.5$ from the plot, consider the time constant $2=\frac{1}{a}=\tau=C R_{\mathrm{t}}$. After $t=0$, the Thevenin resistance of the part of the circuit connected to the capacitor is
$R_{\mathrm{t}}=80\left\|R_{2}=80\right\| 20=16 \Omega$.
Then $C=\frac{2}{R_{\mathrm{t}}}=\frac{2}{16}=0.125 \mathrm{~F}$.
3.

(a)

(b)

(c)

Here are three ac circuits, each represented in the frequency domain. The input to each of these circuits is the phasor voltage $\mathbf{V}_{\mathrm{s}}=2.5 \angle-75^{\circ} \mathrm{V}$. Let $P_{\mathrm{a}}, P_{\mathrm{b}}$ and P_{c} denote the average power supplied by the source in circuit (a), (b) and (c) respectively. Determine the values of $P_{\mathrm{a}}, P_{\mathrm{b}}$ and P_{c} :

$$
\begin{gathered}
\mathbf{I}_{\mathrm{a}}=\frac{2.5 \angle-75^{\circ}}{10-j 50}=\frac{2.5 \angle-75^{\circ}}{51 \angle-78.7^{\circ}}=0.0490 \angle 3.7^{\circ} \mathrm{mA} \Rightarrow \mathbf{P}_{\mathrm{a}}=\frac{2.5(0.0490)}{2} \cos (-75-3.7)=0.0120 \mathrm{~mW} \\
\mathbf{I}_{\mathrm{b}}=\frac{2.5 \angle-75}{15}=0.1667 \angle-75^{\circ} \mathrm{mA} \Rightarrow \mathbf{P}_{\mathrm{b}}=\frac{2.5(0.1667)}{2} \cos (-75-(-75))=0.208375 \mathrm{~mW}
\end{gathered}
$$

and

$$
\mathbf{I}_{\mathrm{c}}=0 \Rightarrow \mathbf{P}_{\mathrm{c}}=0
$$

4. Given that

$$
v_{\mathrm{i}}(t)=24 \cos \left(3 t+75^{\circ}\right) \quad \mathrm{V}
$$

answer the following questions:

a) Suppose $R=9 \Omega$ and $L=5 \mathrm{H}$. What are the average, complex and reactive powers delivered by the source to the load?

$$
P=_8.47 _\mathrm{W}, \mathbf{S}=_8.47+j 14.1 _\mathrm{VA} \text { and } Q=_14.1 _\mathrm{VAR}
$$

b) Suppose the source delivers $8.47+j 14.12$ VA to the load. What are the values of the resistance, R, and the inductance, L ?

$$
R=_9 _\Omega \text { and } L=_5 _\mathrm{H}
$$

c) Suppose the source delivers 14.12 W to the load at a power factor of 0.857 lagging. What are the values of the resistance, R, and the inductance, L ?

$$
R=_15 _\Omega \text { and } L=_3 _\mathrm{H}
$$

Solution:

Represent the circuit in the frequency domain as

a)

$$
\begin{gathered}
\mathbf{I}=\frac{24 \angle 75^{\circ}}{9+j 15}=\frac{24 \angle 75^{\circ}}{17.5 \angle 59^{\circ}}=1.37 \angle 16^{\circ} \mathrm{A} \\
\mathbf{S}=\frac{1}{2}\left(24 \angle 75^{\circ}\right)\left(1.37 \angle 16^{\circ}\right)^{*}=\frac{24(1.37)}{2} \angle(75-16)^{\circ}=16.44 \angle 59^{\circ}=8.47+j 14.1 \mathrm{VA}
\end{gathered}
$$

b)

$$
\mathbf{I}=\left(\frac{2(8.47+j 14.12)}{24 \angle 75^{\circ}}\right)^{*}=\left(\frac{2\left(16.44 \angle 59^{\circ}\right)}{24 \angle 75^{\circ}}\right)^{*}=\left(1.37 \angle-16^{\circ}\right)^{*}=1.37 \angle 16^{\circ} \mathrm{A}
$$

$$
R+j 3 L=\frac{24 \angle 75^{\circ}}{1.37 \angle 16^{\circ}}=17.5 \angle 59^{\circ}=9+j 15 \Omega \text { so } R=9 \Omega \text { and } L=\frac{15}{3}=5 \mathrm{H}
$$

$$
p f=0.857 \text { lagging } \Rightarrow\left\{\begin{array}{c}
0.857=\cos (\theta) \\
\text { and } \\
\theta>0
\end{array} \quad \text { so } \quad \theta=31^{\circ}\right.
$$

Next

$$
14.12=P=|\mathbf{S}| \cos \theta=|\mathbf{S}|(0.857) \text { so }|\mathbf{S}|=\frac{14.12}{0.857}=16.48 \mathrm{VA}
$$

Then $\quad \mathbf{S}=16.48 \angle 31^{\circ}=14.12+j 8.49$ and $\mathbf{I}=\left(\frac{2 \mathbf{S}}{\mathbf{V}}\right)^{*}=\left[\frac{2\left(16.48 \angle 31^{\circ}\right)}{24 \angle 75^{\circ}}\right]^{*}=1.37 \angle 44^{\circ}$

$$
R+j 3 L=\frac{24 \angle 75^{\circ}}{1.37 \angle 44^{\circ}}=17.5 \angle 31^{\circ}=15+j 9 \Omega \text { so } R=15 \Omega \text { and } L=3 \mathrm{H}
$$

5. Given that

$$
v_{\mathrm{i}}(t)=24 \cos \left(3 t+75^{\circ}\right) \quad \mathrm{V}
$$

Determine the impedance of the load and the complex power delivered by the source to the load under each of the following conditions:

a) The source delivers $14.12+j 8.47$ VA to load A and $8.47+j 14.12$ VA to load B.

$$
\mathbf{Z}=_9.016 \angle 45^{\circ} _\Omega, \mathbf{S}=_22.59+j 22.59 _\mathrm{VA}
$$

b) The source delivers $8.47+j 14.12 \mathrm{VA}$ to load A and the impedance of load B is $15+j 9 \Omega$.

$$
\mathbf{Z}=_9.016 \angle 45^{\circ} _\Omega, \mathbf{S}=_22.59+j 22.59 _\mathrm{VA}
$$

c) The source delivers 14.12 W to load A at a power factor of 0.857 lagging and the impedance of load B is $9+j 15 \Omega$.

$$
\mathbf{Z}=_9.016 \angle 45^{\circ} _\Omega, \mathbf{S}=_22.59+j 22.59 _\mathrm{VA}
$$

d) The impedance of load A is $15+j 9 \Omega$ and the impedance of load B is $9+j 15 \Omega$.

$$
\mathbf{Z}=_9.016 \angle 45^{\circ} _\Omega, \mathbf{S}=_22.59+j 22.59 _\mathrm{VA}
$$

Solution:

Represent the circuit in the frequency domain as

(a) $\mathbf{I}_{\mathrm{A}}=\left(\frac{2(14.12+j 8.47)}{24 \angle 75^{\circ}}\right)^{*}=1.37 \angle 44^{\circ} \mathrm{A}$ and $\mathbf{I}_{\mathrm{B}}=\left(\frac{2(8.47+j 14.12)}{24 \angle 75^{\circ}}\right)^{*}=1.37 \angle 16^{\circ} \mathrm{A}$

$$
\begin{aligned}
\mathbf{I}=\mathbf{I}_{\mathrm{A}}+\mathbf{I}_{\mathrm{B}}=\left(1.37 \angle 44^{\circ}\right)+\left(1.37 \angle 16^{\circ}\right)= & (0.986+j 0.954)+(1.319+j 0.377) \\
& =2.305+j 1.331=2.662 \angle 30^{\circ} \mathrm{A}
\end{aligned}
$$

$$
\mathbf{Z}=\frac{24 \angle 75^{\circ}}{2.662 \angle 30^{\circ}}=9.016 \angle 45^{\circ}
$$

$$
\mathbf{S}=\frac{1}{2}\left(24 \angle 75^{\circ}\right)\left(2.662 \angle 30^{\circ}\right)^{*}=31.9 \angle 45^{\circ}=22.59+j 22.59 \mathrm{VA}
$$

(b) $\quad \mathbf{I}_{\mathrm{A}}=\left(\frac{2(8.47+j 14.12)}{24 \angle 75^{\circ}}\right)^{*}=1.37 \angle 16^{\circ} \mathrm{A} \quad$ and $\quad \mathbf{I}_{\mathrm{B}}=\frac{24 \angle 75^{\circ}}{15+j 9}=1.37 \angle 44^{\circ} \mathrm{A}$

$$
\mathbf{I}=\mathbf{I}_{\mathrm{A}}+\mathbf{I}_{\mathrm{B}}=2.662 \angle 30^{\circ} \mathrm{A}
$$

$$
\mathbf{Z}=\frac{24 \angle 75^{\circ}}{2.662 \angle 30^{\circ}}=9.016 \angle 45^{\circ} \Omega \text { and } \mathbf{S}=22.59+j 22.59 \mathrm{VA}
$$

(c)

$$
\begin{gathered}
\mathbf{P}=14.12 \mathrm{~W}=\frac{24\left|\mathbf{I}_{\mathrm{A}}\right|}{2} \cos \left(75-\theta_{\mathrm{A}}\right) \\
\left.\begin{array}{c}
0.857=\cos \left(75-\theta_{\mathrm{A}}\right) \\
75-\theta_{\mathrm{A}}>0
\end{array}\right\} \Rightarrow \theta_{\mathrm{A}}=75^{\circ}-31^{\circ}=44^{\circ}
\end{gathered}
$$

Then

$$
\left|\mathbf{I}_{\mathrm{A}}\right|=\frac{2(14.12)}{24 \cos \left(31^{\circ}\right)}=1.37 \quad \text { so } \quad \mathbf{I}_{\mathrm{A}}=1.37 \angle 44^{\circ} \mathrm{A}
$$

Also

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{B}}=\frac{24 \angle 75^{\circ}}{9+j 15}=137 \angle 16^{\circ} \mathrm{A} \text { so } \mathbf{I}=\mathbf{I}_{\mathrm{A}}+\mathbf{I}_{\mathrm{B}}=2.662 \angle 30^{\circ} \mathrm{A} \\
& \mathbf{Z}=\frac{24 \angle 75^{\circ}}{2.662 \angle 30^{\circ}}=9.016 \angle 45^{\circ} \Omega \quad \text { and } \quad \mathbf{S}=22.59+j 22.59 \mathrm{VA}
\end{aligned}
$$

(d)

$$
\begin{gathered}
\mathbf{I}_{\mathrm{A}}=\frac{24 \angle 75^{\circ}}{15+j 9}=1.37 \angle 44^{\circ} \text { and } \mathbf{I}_{\mathrm{B}}=\frac{24 \angle 75^{\circ}}{9+j 15}=1.37 \angle 16^{\circ} \text { then } \mathbf{I}=\mathbf{I}_{\mathrm{A}}+\mathbf{I}_{\mathrm{B}}=2.662 \angle 30^{\circ} \mathrm{A} \\
\mathbf{Z}=\frac{24 \angle 75^{\circ}}{2.662 \angle 30^{\circ}}=9.016 \angle 45^{\circ} \Omega \text { and } \mathbf{S}=22.59+j 22.59 \mathrm{VA}
\end{gathered}
$$

6. In this circuit an ac source is connected to a load by the line. The load voltage is $\mathbf{V}_{\mathrm{L}}=120 \angle 0^{\circ} \mathrm{Vrms}$ and the load receives 50 W at a power factor of 0.8 lagging. The line current is

$$
\mathbf{I}=0.5208 \angle-36.87^{\circ} \mathrm{Arms}
$$

Determine the RMS value of required source voltage, $v_{\mathrm{s}}(t)$, and the average power supplied by the source, P_{s}.

$$
|\mathbf{V s}|=_124.2 _\mathrm{Vrms} \text { and } P_{\mathrm{s}}=_52.71 _\mathrm{W}
$$

Using KVL

$$
\mathbf{V}_{\mathrm{S}}=10\left(0.5208 \angle-36.87^{\circ}\right)+120 \angle 0^{\circ}=124.2-j 3.125=124.2 \angle-1.45^{\circ} \mathrm{Vrms}
$$

The complex power delivered by the source is

$$
\mathbf{S}=\left(124.2 \angle-1.45^{\circ}\right)\left(0.5208 \angle-36.87^{\circ}\right)^{*}=64.68 \angle 35.42^{\circ}=52.71+j 37.49 \mathrm{VA}
$$

7. In this circuit an ac source is connected to a load by the line. The load voltage is $\mathbf{V}_{\mathrm{L}}=120 \angle 0^{\circ} \mathrm{Vrms}$ and the load receives 50 W at a power factor of 0.8 lagging. The line current is

$$
\mathbf{I}=B \angle \phi \mathrm{Arms}
$$

Determine the values of B and ϕ.

$$
B=_0.5208 _ \text {Arms and } \phi=_-36.87 _{ }^{\circ}
$$

The complex power delivered to the load is

The line current is

$$
\mathbf{S}_{\mathrm{L}}=50+j \frac{50}{0.8} \sin \left(\cos ^{-1}(0.8)\right)=50+j 37.5=62.5 \angle 36.87^{\circ} \mathrm{VA}
$$

$$
\mathbf{I}=\left(\frac{62.5 \angle 36.87^{\circ}}{120 \angle 0^{\circ}}\right)^{*}=0.5208 \angle-36.87^{\circ} \underline{\text { Arms }}
$$

8. The input to this circuit shown is

$$
v_{\mathrm{s}}(t)=12 \cos (5 t) \mathrm{V}
$$

The impedance of the load is $20+j 15 \Omega$.
Noticing that $i_{1}(t)$ and $i_{2}(t)$ are mesh currents, we can represent this circuit by the mesh
 equations

$$
\left[\begin{array}{cc}
20+j a & j b \\
j c & 20+j d
\end{array}\right]\left[\begin{array}{l}
\mathbf{I}_{1} \\
\mathbf{I}_{2}
\end{array}\right]=\left[\begin{array}{c}
12 \angle 0^{\circ} \\
0
\end{array}\right]
$$

where a, b, c, and d are real constants. Determine the values of a, b, c, and d.

$$
a=\ldots \quad 20 _\Omega, \quad b=\ldots 25 _\Omega, \quad c=_25 _\Omega, \text { and } d=\ldots 55 _\Omega
$$

Represent the circuit in the frequency domain as

The coil voltages are given by

$$
\mathbf{V}_{1}=j 20 \mathbf{I}_{1}+j 25 \mathbf{I}_{2} \text { and } \mathbf{V}_{2}=j 40 \mathbf{I}_{2}+j 25 \mathbf{I}_{1}
$$

Using KVL

$$
20 \mathbf{I}_{1}+\mathbf{V}_{1}-12 \angle 45^{\circ}=0 \quad \text { and } \quad 20 \mathbf{I}_{2}+j 15 \mathbf{I}_{2}+\mathbf{V}_{2}=0
$$

Substituting the coil voltages:

$$
\begin{gathered}
20 \mathbf{I}_{1}+j 20 \mathbf{I}_{1}+j 25 \mathbf{I}_{2}=12 \angle 0^{\circ} \\
20 \mathbf{I}_{2}+j 15 \mathbf{I}_{2}+j 40 \mathbf{I}_{2}+j 25 \mathbf{I}_{1}=0
\end{gathered}
$$

Solving gives

$$
\mathbf{I}_{1}=0.4676 \angle-22.8^{\circ} \mathrm{A} \text { and } \mathbf{I}_{2}=0.1998 \angle 177.1^{\circ} \mathrm{A}
$$

9. This circuit consists of a source connected to a load by coupled coils. The input is

$$
v_{\mathrm{s}}(t)=12 \cos (5 t) \mathrm{V}
$$

The impedance of the load is $20+j 15 \Omega$.
The mesh currents $i_{1}(t)$ and $i_{2}(t)$ are

Source Coupled Inductors Load

$$
i_{1}(t)=0.4676 \cos \left(5 t-22.8^{\circ}\right) \mathrm{A} \text { and } i_{2}(t)=0.1998 \cos \left(5 t+177.1^{\circ}\right) \mathrm{A}
$$

Determine the values of \mathbf{S}, the complex power supplied by the source, \mathbf{S}_{c}, the complex power received by the coupled inductors and \mathbf{S}_{L}, the complex power received by the load.
$\mathbf{S}=$ \qquad $+j$ \qquad $\mathrm{VA}, \mathbf{S}_{\mathrm{c}}=$ \qquad $+j$ \qquad VA and $\mathbf{S}_{\mathrm{L}}=$ \qquad $+j$ \qquad VA

The complex power delivered by the source is

$$
\mathbf{S}=\frac{\left(12 \angle 0^{\circ}\right) \mathbf{I}_{1}{ }^{*}}{2}=\frac{\left(12 \angle 0^{\circ}\right)\left(0.4676 \angle-22.8^{\circ}\right)^{*}}{2}=2.5855+j 1.0893 \mathrm{VA}
$$

The complex power received by the 20Ω resistor is

$$
\mathbf{S}=\frac{\left|\mathbf{I}_{1}\right|^{2}}{2}(20)=\frac{(0.4676)^{2}}{2}(20)=2.1865+j 0 \mathrm{VA}
$$

The complex power received by the coupled inductors is

$$
\mathbf{S}=\frac{\mathbf{V}_{1} \mathbf{I}_{1}{ }^{*}}{2}+\frac{\mathbf{V}_{2} \mathbf{I}_{2}{ }^{*}}{2}=0+j 0.79 \mathrm{VA}
$$

The complex power received by the load is

$$
\mathbf{S}=\frac{\left|\mathbf{I}_{2}\right|^{2}}{2}(20+j 15)=\frac{(0.1998)^{2}}{2}(20+j 15)=0.399+j 0.299 \mathrm{VA}
$$

10. Here is a circuit containing coupled coils, represented in the frequency domain. The currents \mathbf{I}_{1} and \mathbf{I}_{2} are mesh currents. The mesh equations representing this circuit can be expressed as

$$
\begin{aligned}
& (a+j b) \mathbf{I}_{1}+(c+j d) \mathbf{I}_{2}=15 \angle 30^{\circ} \\
& \quad(c+j d) \mathbf{I}_{1}+(80+j f) \mathbf{I}_{2}=0
\end{aligned}
$$

where $a+j b, c+j d$, and $40+j f$ represent complex numbers in rectangular form. Determine the following:

$$
a=
$$

\qquad , \qquad , $c=$ \qquad ,
$d=$ \qquad -100 \qquad , $f=$ \qquad 175 \qquad

Apply KVL to the left mesh to get

$$
\begin{gathered}
(-j 200) \mathbf{I}_{1}+\left[(j 225)\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right)+(j 125) \mathbf{I}_{2}\right]-15 \angle 30^{\circ}+60 \mathbf{I}_{1}=0 \\
(60+j 25) \mathbf{I}_{1}-(j 100) \mathbf{I}_{2}=15 \angle 30^{\circ}
\end{gathered}
$$

Apply KVL to the right mesh to get

$$
\begin{gathered}
{\left[(j 200) \mathbf{I}_{2}+(j 125)\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right)\right]+80 \mathbf{I}_{2}-\left[(j 225)\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right)+(j 125) \mathbf{I}_{2}\right]=0} \\
(-j 100) \mathbf{I}_{1}+(80+j 175) \mathbf{I}_{2}=0
\end{gathered}
$$

11. The current $i(t)$ and voltage $v(t)$ labeled on the circuit drawing are

$$
i(t)=_0.376 _\cos \left(3 t+68.4^{\circ}\right) \mathrm{A}
$$

and

$$
v(t)=_^{3} 38 __\cos \left(3 t+\ldots 158.4 _^{\circ}\right) \mathrm{V}
$$

Solution: The first step is to represent the circuit in the frequency domain, using phasors and impedances.

This circuit consists of a single mesh. Notice that the mesh current, $\mathbf{I}(\omega)$, enters the dotted end of the lefthand coil and the undotted end of the right-hand coil. Apply KVL to the mesh to get

$$
\begin{gathered}
5 \mathbf{I}(\omega)+(j 12 \mathbf{I}(\omega)-j 6 \mathbf{I}(\omega))+(-j 6 \mathbf{I}(\omega)+j 15 \mathbf{I}(\omega))-5.94 \angle 140^{\circ}=0 \\
5 \mathbf{I}(\omega)+(j 12-j 6-j 6+j 15) \mathbf{I}(\omega)-5.94 \angle 140^{\circ}=0 \\
\mathbf{I}(\omega)=\frac{5.94 \angle 140^{\circ}}{5+j(12-6-6+15)}=\frac{5.94 \angle 140^{\circ}}{5+j 15}=\frac{5.94 \angle 140^{\circ}}{15.8 \angle 71.6}=0.376 \angle 68.4^{\circ} \mathrm{A}
\end{gathered}
$$

Notice that the voltage, $\mathbf{V}_{\mathbf{0}}(\omega)$, across the right-hand coil and the mesh current, $\mathbf{I}(\omega)$, adhere to the passive convention. The voltage across the right-hand coil is given by is given by

$$
\begin{aligned}
\mathbf{V}_{\mathbf{o}}(\omega)=j 15 \mathbf{I}(\omega)-j 6 \mathbf{I}(\omega)=j 9 \mathbf{I}(\omega) & =j 9\left(0.376 \angle 68.4^{\circ}\right) \\
& =\left(9 \angle 90^{\circ}\right)\left(0.376 \angle 68.4^{\circ}\right)=3.38 \angle 158.4^{\circ} \mathrm{V}
\end{aligned}
$$

In the time domain, the output voltage is given by $\quad v_{o}(t)=3.38 \cos \left(3 t+158.4^{\circ}\right) \mathrm{V}$
12. The current $i(t)$ and voltage $v(t)$ labeled on the circuit drawing are

$$
i(t)=_1.87 _\cos \left(4 t-51.3^{\circ}\right) \mathrm{A}
$$

and
$v(t)=$ \qquad 45 \qquad $\cos (4 t-$ \qquad 51.3 $ـ^{\circ}$) V

Represent the circuit in the frequency domain. Then

$$
\mathbf{I}=\frac{48 \angle 0^{\circ}}{j 20+\left(\frac{2}{3}\right)^{2}(36)}=\frac{48 \angle 0^{\circ}}{j 20+16}=1.874 \angle-51.3^{\circ} \mathrm{A}
$$

and

$$
\mathbf{V}=-\left(\frac{2}{3}\right)\left(1.874 \angle-51.3^{\circ}\right)(36)=44.978 \angle-51.3^{\circ} \mathrm{V}
$$

13.

$$
250 \cos \left(6 t+24.8^{\circ}\right) \mathrm{mA}
$$

$$
i(t)
$$

Determine the values of R and $L: R=$ \qquad 18 \qquad Ω and $L=$ \qquad H

$$
\begin{gathered}
\frac{18 \angle 75^{\circ}}{0.250 \angle 24.8^{\circ}}=\left(\frac{5}{2}\right)^{2}(R \| j 6 L) \Rightarrow \frac{1}{R}+\frac{1}{j 6 L}=\frac{1}{\frac{18 \angle 75^{\circ}}{0.250 \angle 24.8^{\circ}}\left(\frac{2}{5}\right)^{2}}=\left(\frac{5}{2}\right)^{2}\left(\frac{0.250 \angle 24.8^{\circ}}{18 \angle 75^{\circ}}\right) \\
\frac{1}{R}-\frac{1}{j 6 L}=\left(\frac{5}{2}\right)^{2}\left(\frac{0.250 \angle 24.8^{\circ}}{18 \angle 75^{\circ}}\right)=0.0868 \angle 50.2^{\circ}=0.05556-j 0.066687 \\
R=\frac{1}{0.05556}=18 \Omega \quad \text { and } \quad 6 L=\frac{1}{0.066687}=15
\end{gathered}
$$

14. This circuit consists of a load connected to a source through an ideal transformer. The input to the circuit is

$$
v_{\mathrm{s}}(t)=12 \cos (20 t) \mathrm{V}
$$

Determine the values of the turns ration, n, and load inductance, L, required for maximum power transfer to the load.
$n=$ \qquad 4 \qquad and $L=$ \qquad 4 \qquad H

For maximum power transfer: $\frac{1}{n^{2}}(288+j 20 L)=\left(18-j \frac{1}{20 \times 0.01}\right)^{*}=18+j 5$
Equating real parts gives $n=\sqrt{\frac{288}{18}}=4$. Equating imaginary parts gives $L=\frac{5\left(4^{2}\right)}{20}=4 \mathrm{H}$
15. This circuit consists of a load connected to a source through an ideal transformer. The input to the circuit is

$$
v_{\mathrm{s}}(t)=12 \cos (20 t) \mathrm{V}
$$

The coil voltages and currents are

$$
\begin{aligned}
& v_{1}(t)=A \cos \left(20 t+15.5^{\circ}\right) \mathrm{V} \\
& v_{2}(t)=B \cos \left(20 t+15.5^{\circ}\right) \mathrm{V}
\end{aligned}
$$

$$
i_{1}(t)=C \cos (20 t) \quad \mathrm{A} \text { and } i_{2}(t)=D \cos (20 t+180) \mathrm{A}
$$

Determine the values of A, B, C and D.

$$
A=_6.227 __\mathrm{V}, B=_24.91 _\mathrm{V}, C=_0.33 __\mathrm{A} \text { and } D=_0.0833 _\mathrm{A}
$$

Represent the circuit in the frequency domain as

Replace the transformer and load by an equivalent impedance

$$
\mathbf{Z}_{\text {equiv }}=\frac{1}{4^{2}}(288+j 80)=18+j 5 \Omega
$$

$$
\mathbf{I}_{1}=\frac{12 \angle 0^{\circ}}{(18-j 5)+(18+j 5)}=\frac{12 \angle 0^{\circ}}{36}=\frac{1}{3} \angle 0^{\circ} \mathrm{A}
$$

and

$$
\mathbf{V}_{1}=(18+j 5) \mathbf{I}_{1}=(18+j 5)\left(\frac{1}{3} \angle 0^{\circ}\right)=6.227 \angle 15.5^{\circ} \mathrm{V}
$$

The secondary coil current and voltages
and

$$
\mathbf{I}_{2}=-\frac{1}{4} \mathbf{I}_{1}=-\frac{1}{4}\left(\frac{1}{3} \angle 0^{\circ}\right)=-\frac{1}{12} \angle 0^{\circ}=-0.0833 \angle 0^{\circ} \mathrm{A}
$$

$$
\mathbf{V}_{2}=\frac{4}{1} \mathbf{V}_{1}=24.91 \angle 15.5^{\circ} \mathrm{V}
$$

16. This circuit consists of a load connected to a source through an ideal transformer. The input to the circuit is

$$
v_{\mathrm{s}}(t)=12 \cos (20 t) \mathrm{V}
$$

The coil voltages and currents are

$$
\begin{aligned}
& v_{1}(t)=6.227 \cos \left(20 t+15.5^{\circ}\right) \mathrm{V} \\
& v_{2}(t)=24.91 \cos \left(20 t+15.5^{\circ}\right) \mathrm{V}
\end{aligned}
$$

$$
i_{1}(t)=0.333 \cos (20 t) \mathrm{A} \text { and } i_{2}(t)=0.0833 \cos (20 t+180) \mathrm{A}
$$

Determine the values of \mathbf{S}_{p}, the complex power received by the primary (left) coil of the transformer and \mathbf{S}_{L}, the complex power received by the load.

$$
\mathbf{S}_{\mathrm{p}}=__1 _{ }^{+}+j _0.277 _\mathrm{VA} \text { and } \mathbf{S}_{\mathrm{L}}=__1 _+j _0.277 _\mathrm{VA}
$$

The complex power received by the primary (left) coil of the transformer is

$$
\frac{\mathbf{V}_{1} \mathbf{I}_{1} *}{2}=1+j 0.277 \mathrm{VA}=\frac{\left|\mathbf{I}_{1}\right|^{2}}{2}(18+j 5)
$$

The complex power received by the load is

$$
-\frac{\mathbf{V}_{2} \mathbf{I}_{2} *}{2}=1+j 0.277 \mathrm{VA}=\frac{\left|\mathbf{I}_{2}\right|^{2}}{2}(288+j 80)
$$

17. The network function of a circuit is $\mathbf{H}(\omega)=-10 \frac{j \omega}{1+j \frac{\omega}{20}}$. The table below tabulates frequency response data for this circuit. Fill in the blanks in the table:

$$
\begin{array}{c|c|c}
\omega, \mathrm{rad} / \mathrm{s} & \text { Gain, V/V } & \text { Phase Shift, }{ }^{\circ} \\
\hline 10 & 89.44 & -116.6-153.9 \\
40 & -15.4 \\
\mathbf{H}(10)=-10 \frac{j(10)}{1+j \frac{10}{20}}=-10 \frac{j(10)}{1+j 0.5}=\frac{100}{\sqrt{1.25}} \angle\left(-180+90-\tan ^{-1}(0.5)\right)=89.44 \angle-116.6^{\circ} \\
\mathbf{H}(40)=-10 \frac{j(40)}{1+j \frac{40}{20}}=-10 \frac{j(40)}{1+j 2}=\frac{400}{\sqrt{5}} \angle\left(-180+90-\tan ^{-1}(2)\right)=178.9 \angle-153.4^{\circ}
\end{array}
$$

18. The network function of a circuit is $\mathbf{H}(\omega)=\frac{k}{1+j \frac{\omega}{p}}$. The table below tabulates frequency response data for this circuit.

$\omega, \mathrm{rad} / \mathrm{s}$	Gain, V/V	${\text { Phase Shift, }{ }^{\circ}}^{20}$
40	17.18	-17.4
10.25	-51.3	

Determine the values of p and $k: p=$ \qquad 32 \qquad $\mathrm{rad} / \mathrm{s}$ and $k=$ \qquad 18 \qquad V/V

$$
\frac{k}{1+j \frac{10}{p}}=\frac{k}{\sqrt{1+\left(\frac{10}{p}\right)^{2}}} \angle-\tan ^{-1}\left(\frac{10}{p}\right)=17.18 \angle-17.4^{\circ}
$$

so

$$
-\tan ^{-1}\left(\frac{10}{p}\right)=-17.4^{\circ} \Rightarrow \frac{10}{p}=\tan \left(17.4^{\circ}\right)=0.3134 \Rightarrow p=\frac{10}{0.3134}=31.9 \mathrm{rad} / \mathrm{s}
$$

and

$$
\frac{k}{\sqrt{1+\left(\frac{10}{p}\right)^{2}}}=\frac{k}{\sqrt{1+(0.3134)^{2}}}=\frac{k}{1.048}=17.18 \Rightarrow k=18
$$

19. The input to the circuit is the voltage of the voltage source, $v_{i}(t)$. The output is the voltage $v_{0}(t)$. The network function of this circuit is

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathbf{0}}(\omega)}{\mathbf{V}_{\mathbf{i}}(\omega)}=\frac{(-0.1) j \omega}{\left(1+j \frac{\omega}{p}\right)\left(1+j \frac{\omega}{125}\right)}
$$

Determine the values of the capacitance, C, and the pole, p.

$$
C=
$$

\qquad 0.4 \qquad $\mu \mathrm{F}$ and $p=$ \qquad 25 \qquad rad/s .

$$
\begin{aligned}
\mathbf{H}(\omega)=-\frac{R_{2} \| \frac{1}{j \omega C_{2}}}{R_{1}+\frac{1}{j \omega C_{1}}} & =-\frac{\frac{R_{2}}{1+j \omega C_{2} R_{2}}}{\frac{j \omega C_{1} R_{1}+1}{j \omega C_{1}}} \\
& =\frac{\left(-C_{1} R_{2}\right) j \omega}{\left(1+j \omega C_{1} R_{1}\right)\left(1+j \omega C_{2} R_{2}\right)}
\end{aligned}
$$

$$
\frac{\left(-C_{1} R_{2}\right) j \omega}{\left(1+j \omega C_{1} R_{1}\right)\left(1+j \omega C_{2} R_{2}\right)}=\frac{(-0.1) j \omega}{\left(1+j \frac{\omega}{p}\right)\left(1+j \frac{\omega}{125}\right)} \Rightarrow\left\{\begin{array}{c}
-C_{1} R_{2}=-0.1 \\
C_{1} R_{1}=\frac{1}{p} \text { or } \frac{1}{125} \\
C_{2} R_{2}=\frac{1}{125} \text { or } \frac{1}{p}
\end{array}\right.
$$

Since $C_{1}=5 \mu \mathrm{~F}, R_{1}=8 \mathrm{k} \Omega$ and $R_{2}=20 \mathrm{k} \Omega$

$$
\begin{aligned}
& C_{1} R_{1}=\left(5 \times 10^{-6}\right)\left(8 \times 10^{3}\right)=\frac{40}{1000}=\frac{1}{25} \neq \frac{1}{125} \Rightarrow p=25 \mathrm{rad} / \mathrm{s} \\
& \frac{1}{125}=C_{2} R_{2} \Rightarrow C_{2}=\frac{1}{125 R_{2}}=\frac{1}{125\left(20 \times 10^{3}\right)}=0.4 \times 10^{-6}=0.4 \mu \mathrm{~F}
\end{aligned}
$$

20. The network function of this circuit is:

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}=(k) \frac{j \omega}{1+j \frac{\omega}{p}}
$$

Determine the values of k and p :

$$
\begin{gathered}
k=\ldots 0.08 _ \text {, and } p=\ldots \ldots _\mathrm{rad} / \mathrm{s} . \\
\mathbf{V}_{\mathrm{o}}(\omega)=\left(\frac{R_{2}}{R_{1}+R_{2}+\frac{1}{j \omega C}}\right) \mathbf{V}_{\mathrm{s}}(\omega) \Rightarrow \mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}=\frac{R_{2}}{R_{1}+R_{2}+\frac{1}{j \omega C}}=\frac{j \omega C R_{2}}{1+j \omega C\left(R_{1}+R_{2}\right)}=(\mathrm{k})-
\end{gathered}
$$

Consequently

$$
k=C R_{2}=(0.002)(40)=0.08 \mathrm{~s} \text { and } p=\frac{1}{C\left(R_{1}+R_{2}\right)}=\frac{1}{(0.002)(10+40)}=10 \mathrm{rad} / \mathrm{s}
$$

21. The input to the circuit is the voltage of the voltage source, $v_{i}(t)$. The output is the voltage $v_{0}(t)$. The network function of this circuit is

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathbf{0}}(\omega)}{\mathbf{V}_{\mathbf{i}}(\omega)}=\frac{4}{1+j \frac{\omega}{100}}
$$

Determine the values of the
 capacitance, C, and the VCVS gain, A.

$$
C=
$$

\qquad 5 \qquad $\mu \mathrm{F}$ and $A=$ \qquad V/V.

In the frequency domain, use voltage division on the left side of the circuit to get:

$$
\mathbf{V}_{\mathrm{C}}(\omega)=\frac{\frac{1}{j \omega C}}{R_{1}+\frac{1}{j \omega C}} \mathbf{V}_{\mathrm{i}}(\omega)=\frac{1}{1+j \omega C R_{1}} \mathbf{V}_{\mathrm{i}}(\omega)
$$

Next, use voltage division on the right side of the circuit to get:

$$
\mathbf{V}_{\mathrm{o}}(\omega)=\frac{R_{3}}{R_{2}+R_{3}} A \mathbf{V}_{\mathrm{C}}(\omega)=\frac{2}{3} A \mathbf{V}_{\mathrm{C}}(\omega)=\frac{\frac{2}{3} A}{1+j \omega C R_{1}} \mathbf{V}_{\mathrm{i}}(\omega)
$$

Compare the specified network function to the calculated network function:

$$
\frac{4}{1+j \frac{\omega}{100}}=\frac{\frac{2}{3} A}{1+j \omega C R_{1}}=\frac{\frac{2}{3} A}{1+j \omega C 2000} \Rightarrow 4=\frac{2}{3} A \text { and } \frac{1}{100}=2000 C
$$

Thus, $C=5 \mu \mathrm{~F}$ and $A=6 \mathrm{~V} / \mathrm{V}$.
22. The network function of this circuit is:

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{i}}(\omega)}=\frac{k}{1+j \frac{\omega}{p}}
$$

Determine the values of k and p :

$$
k=\ldots 0.2 _ \text {, and } p=\ldots 0.25 _\mathrm{rad} / \mathrm{s} .
$$

Represent the circuit in the frequency domain. It's convenient to calculate:

$$
R_{2} \| \frac{1}{j \omega C}=\frac{R_{2}}{1+j \omega C R_{2}}
$$

Then, using voltage division

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{i}}(\omega)}=\frac{\frac{R_{2}}{1+j \omega C R_{2}}}{R_{1}+\frac{R_{2}}{1+j \omega C R_{2}}}=\frac{\frac{R_{2}}{R_{1}+R_{2}}}{1+j \omega C R_{p}}
$$

where $R_{\mathrm{p}}=R_{1} \| R_{2}$. When $R_{1}=40 \Omega, R_{2}=10 \Omega$ and $C=0.5 \mathrm{~F}$

$$
\mathbf{H}(\omega)=\frac{0.2}{1+j 4 \omega}
$$

