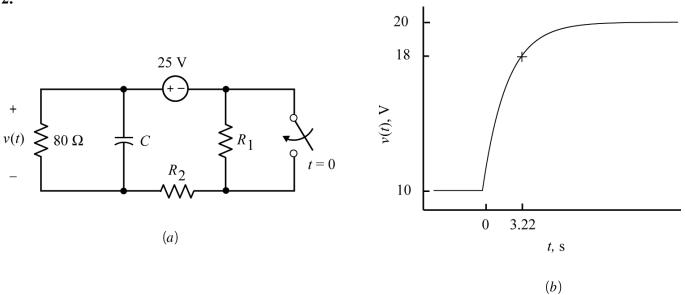
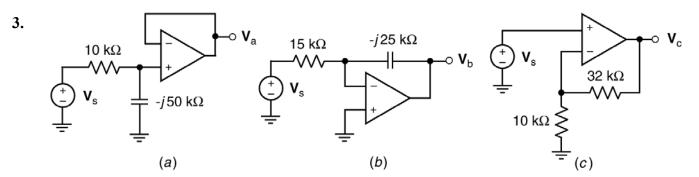

EE221 - Practice for the 1st Midterm Exam



1. Consider this circuit and corresponding plot of the inductor current:

Determine the values of L, R_1 and R_2 : L = 4.8 H, $R_1 = 200 \Omega$ and $R_2 = 300 \Omega$.


Hint: Use the plot to determine values of D, E, F and a such that the inductor current can be represented as

$$i(t) = \begin{cases} D & \text{for } t \le 0\\ E + F e^{-at} & \text{for } t \ge 0 \end{cases}$$

Design the circuit in (a) to have the response in (b) by specifying the values of C, R_1 and R_2 .

 $C = _0.125$ F, $R_1 = _100$ Ω and $R_2 = _20$ Ω .

Here are three ac circuits, each represented in the frequency domain. The input to each of these circuits is the phasor voltage $V_s = 2.5 \angle -75^\circ$ V. Let P_a , P_b and P_c denote the average power supplied by the source in circuit (*a*), (*b*) and (*c*) respectively. Determine the values of P_a , P_b and P_c :

 $P_{\rm a} = __0.0120$ mW, $P_{\rm b} = __0.2084$ mW and $P_{\rm c} = __0$ mW

4. Given that

$$v_i(t) = 24\cos(3t + 75^\circ) \quad V$$

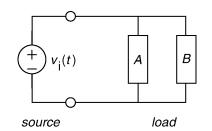
answer the following questions:

a) Suppose $R = 9 \Omega$ and L = 5 H. What are the average, complex and reactive powers delivered by the source to the load?

$$P = 8.47$$
 W, $S = 8.47 + j14.1$ VA and $Q = 14.1$ VAR

b) Suppose the source delivers 8.47 + j 14.12 VA to the load. What are the values of the resistance, *R*, and the inductance, *L*?

$$R=_9_\Omega$$
 and $L=_5_H$


c) Suppose the source delivers 14.12 W to the load at a power factor of 0.857 lagging. What are the values of the resistance, R, and the inductance, L?

$$R=$$
 15 Ω and $L=$ 3 H

5. Given that

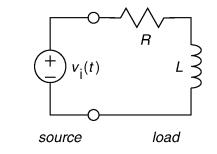
$$v_{i}(t) = 24 \cos(3t + 75^{\circ})$$
 V

Determine the impedance of the load and the complex power delivered by the source to the load under each of the following conditions:

a) The source delivers 14.12 + j 8.47 VA to load A and 8.47 + j 14.12 VA to load B.

$$\mathbf{Z} =$$
____9.016 $\angle 45^{\circ}$ ___ Ω , $\mathbf{S} =$ ____22.59 + *j*22.59 ___VA

b) The source delivers $8.47 + j \, 14.12$ VA to load A and the impedance of load B is $15 + j \, 9 \, \Omega$.


$$Z = 9.016 \angle 45^{\circ}$$
 Ω , $S = 22.59 + j22.59$ VA

c) The source delivers 14.12 W to load A at a power factor of 0.857 lagging and the impedance of load B is $9 + j15 \Omega$.

$$\mathbf{Z} = 9.016 \angle 45^{\circ} \Omega$$
, $\mathbf{S} = 22.59 + j22.59 VA$

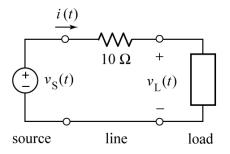
d) The impedance of load A is $15 + j9\Omega$ and the impedance of load B is $9 + j15\Omega$.

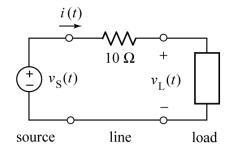
$$\mathbf{Z} =$$
____9.016 $\angle 45^{\circ}$ ___ Ω , $\mathbf{S} =$ ____22.59 + *j*22.59 ___VA

6. In this circuit an ac source is connected to a load by the line. The load voltage is $V_L = 120 \angle 0^\circ \text{Vrms}$ and the load receives 50 W at a power factor of 0.8 lagging. The line current is

$$I = 0.5208 \angle -36.87^{\circ}$$
 Arms

Determine the RMS value of required source voltage, $v_s(t)$, and the average power supplied by the source, P_s .


$$|Vs| = __124.2$$
 Vrms and $P_s = __52.71$ W


7. In this circuit an ac source is connected to a load by the line. The load voltage is $V_L = 120 \angle 0^\circ$ Vrms and the load receives 50 W at a power factor of 0.8 lagging. The line current is

$$\mathbf{I} = B \angle \phi$$
 Arms

Determine the values of *B* and ϕ .

$$B = 0.5208$$
 Arms and $\phi = -36.87$ °

8. The input to this circuit shown is

$$v_{\rm s}(t) = 12\cos(5t)$$
 V

The impedance of the load is $20 + j 15 \Omega$.

Noticing that $i_1(t)$ and $i_2(t)$ are mesh currents, we can represent this circuit by the mesh equations

$$\begin{bmatrix} 20+ja & jb \\ jc & 20+jd \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} 12\angle 0^\circ \\ 0 \end{bmatrix}$$

where a, b, c, and d are real constants. Determine the values of a, b, c, and d.

$$a = _20_\Omega, b = _25_\Omega, c = _25_\Omega, and d = _55_\Omega$$

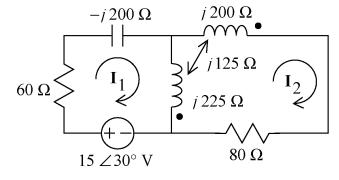
9. This circuit consists of a source connected to a load by coupled coils. The input is

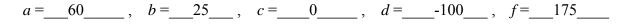
$$v_{\rm s}(t) = 12\cos(5t)$$
 V

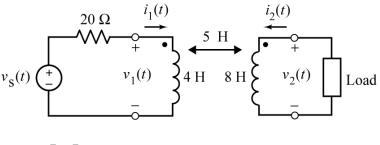
The impedance of the load is $20 + j 15 \Omega$.

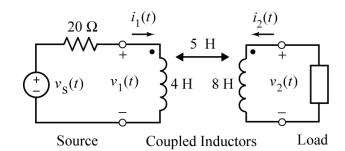
The mesh currents $i_1(t)$ and $i_2(t)$ are

$$i_1(t) = 0.4676\cos(5t - 22.8^\circ)$$
 A and $i_2(t) = 0.1998\cos(5t - 2.86^\circ)$ A

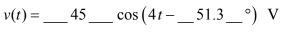

Determine the values of S, the complex power supplied by the source, S_c , the complex power received by the coupled inductors and S_L , the complex power received by the load.

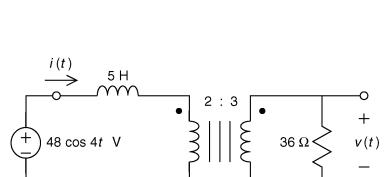

S = 2.5855 + j = 1.0893 VA, $S_c = 0 + j = 0.79$ VA and $S_L = 0.399 + j = 0.299$ VA

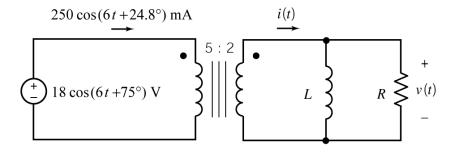

10. Here is a circuit containing coupled coils, represented in the frequency domain. The currents I_1 and I_2 are mesh currents. The mesh equations representing this circuit can be expressed as


$$(a+jb)\mathbf{I}_1 + (c+jd)\mathbf{I}_2 = 15\angle 30^\circ$$
$$(c+jd)\mathbf{I}_1 + (80+jf)\mathbf{I}_2 = 0$$

where a + jb, c + jd, and 40 + jf represent complex numbers in rectangular form. Determine the following:

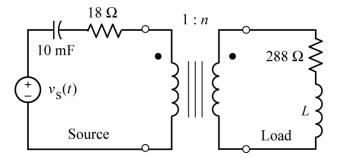


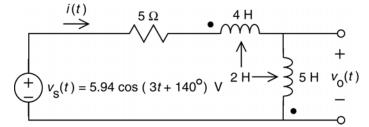

11. The current i(t) and voltage v(t) labeled on the circuit drawing are


 $i(t) = 0.376 cos (3t + 68.4^{\circ})$ A and $v(t) = 3.38 cos (3t + 158.4^{\circ})$ V

12. The current i(t) and voltage v(t) labeled on the circuit drawing are

$$i(t) = 1.87 \ \cos(4t - 51.3^{\circ})$$
 A and


Determine the values of *R* and *L*: $R = __18__\Omega$ and $L = __2.5__H$


14. This circuit consists of a load connected to a source through an ideal transformer. The input to the circuit is

$$v_{\rm s}(t) = 12\cos(20t)$$
 V

Determine the values of the turns ration, n, and load inductance, L, required for maximum power transfer to the load.

 $n = __4_$ and $L = __4_$ H

O

13.

15. This circuit consists of a load connected to a source through an ideal transformer. The input to the circuit is

$$v_{\rm s}(t) = 12\cos(20t) \quad \rm V$$

The coil voltages and currents are

$$v_1(t) = A\cos(20t + 15.5^\circ)$$
 V
 $v_2(t) = B\cos(20t + 15.5^\circ)$ V

 $i_1(t) = C\cos(20t)$ A and $i_2(t) = D\cos(20t+180)$ A

Determine the values of A, B, C and D.

 $A = __{6.227}$ V, $B = __{24.91}$ V, $C = __{0.33}$ A and $D = __{0.0833}$ A

16. This circuit consists of a load connected to a source through an ideal transformer. The input to the circuit is

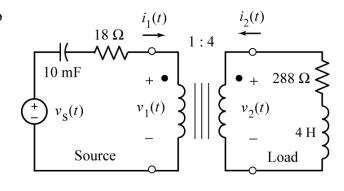
$$v_{s}(t) = 12\cos(20t)$$

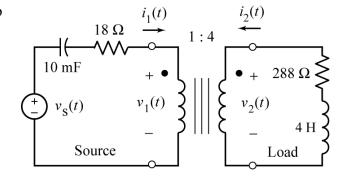
The coil voltages and currents are

$$v_1(t) = 6.227 \cos(20t + 15.5^\circ) V,$$

 $v_2(t) = 24.91 \cos(20t + 15.5^\circ) V$

 $i_1(t) = 0.333\cos(20t)$ A and $i_2(t) = 0.0833\cos(20t+180)$ A


Determine the values of S_p , the complex power received by the primary (left) coil of the transformer and S_L , the complex power received by the load.


$$S_p = _1_+j_0.277_VA \text{ and } S_L = _1_+j_0.277_VA$$

17. The network function of a circuit is $\mathbf{H}(\omega) = -10 \frac{j\omega}{1+j\frac{\omega}{20}}$. The table below tabulates frequency

response data for this circuit. Fill in the blanks in the table:

<i>w</i> , rad/s	Gain, V/V	Phase Shift, °
10	89.44	116.6
40	178.9	-153.4

18. The network function of a circuit is $\mathbf{H}(\omega) = \frac{k}{1+j\frac{\omega}{p}}$. The table below tabulates frequency response

data for this circuit.

<i>w</i> , rad/s	Gain, V/V	Phase Shift, °
10	17.18	-17.4
40	11.25	-51.3

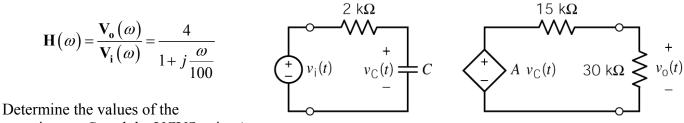
Determine the values of p and k: p = 32 rad/s and k = 18 V/V

19. The input to the circuit is the voltage of the voltage source, $v_i(t)$. The output is the voltage $v_0(t)$. The network function of this circuit is

$$\mathbf{H}(\omega) = \frac{\mathbf{V}_{\mathbf{o}}(\omega)}{\mathbf{V}_{\mathbf{i}}(\omega)} = \frac{(-0.1)j\omega}{\left(1+j\frac{\omega}{p}\right)\left(1+j\frac{\omega}{125}\right)}$$

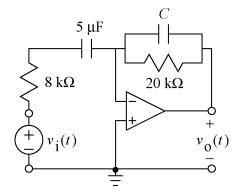
Determine the values of the capacitance, *C*, and the pole, *p*.

C = 0.4 µF and p = 25 rad/s.


20. The network function of this circuit is:

$$\mathbf{H}(\omega) = \frac{\mathbf{V}_{o}(\omega)}{\mathbf{V}_{s}(\omega)} = (k)\frac{j\omega}{1+j\frac{\omega}{p}}$$

Determine the values of *k* and *p*:

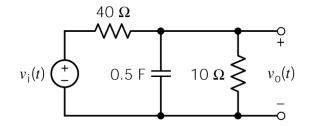

$$k = _0.08$$
, and $p = _10$ _rad/s.

21. The input to the circuit is the voltage of the voltage source, $v_i(t)$. The output is the voltage $v_0(t)$. The network function of this circuit is

capacitance, *C*, and the VCVS gain, *A*.

 $C = __5 __\mu F$ and $A = __6 __V/V$.

 \sim


 10Ω

2 mF

40 Ω

22. The network function of this circuit is:

$$\mathbf{H}(\omega) = \frac{\mathbf{V}_{o}(\omega)}{\mathbf{V}_{i}(\omega)} = \frac{k}{1+j\frac{\omega}{p}}$$

Determine the values of *k* and *p*:

$$k = _0.2$$
, and $p = _0.25$ __rad/s.