EE221 - Practice for the Midterm Exam

1. Consider this circuit and corresponding plot of the inductor current:

Determine the values of L, R_1 and R_2 : L =_____ H, $R_1 =$ ____ Ω and $R_2 =$ ____ Ω .

Hint: Use the plot to determine values of D, E, F and a such that the inductor current can be represented as

$$i(t) = \begin{cases} D & \text{for } t \le 0 \\ E + F e^{-at} & \text{for } t \ge 0 \end{cases}$$

2.

Design the circuit in (a) to have the response in (b) by specifying the values of C, R_1 and R_2 .

$$C = \underline{\hspace{1cm}} F$$
, $R_1 = \underline{\hspace{1cm}} \Omega$ and $R_2 = \underline{\hspace{1cm}} \Omega$.

Here are three ac circuits, each represented in the frequency domain. The input to each of these circuits is the phasor voltage $V_s = 2.5 \angle -75^{\circ} \text{ V}$. Let P_a , P_b and P_c denote the average power supplied by the source in circuit (a), (b) and (c) respectively. Determine the values of P_a , P_b and P_c :

$$P_{\rm a} = \underline{\hspace{1cm}} {\rm mW}, \quad P_{\rm b} = \underline{\hspace{1cm}} {\rm mW} \quad {\rm and} \quad P_{\rm c} = \underline{\hspace{1cm}} {\rm mW}$$

4. Given that

$$v_i(t) = 24\cos(3t + 75^\circ)$$
 V

answer the following questions:

a) Suppose $R = 9 \Omega$ and L = 5 H. What are the average, complex and reactive powers delivered by the source to the load?

$$P = W, S = VA \text{ and } Q = VAR$$

b) Suppose the source delivers 8.47 + j 14.12 VA to the load. What are the values of the resistance, R, and the inductance, L?

$$R =$$
_____ Ω and $L =$ _____ H

c) Suppose the source delivers 14.12 W to the load at a power factor of 0.857 lagging. What are the values of the resistance, *R*, and the inductance, *L*?

$$R = \Omega$$
 and $L = H$

5. Given that

$$v_i(t) = 24\cos(3t + 75^\circ)$$
 V

Determine the impedance of the load and the complex power delivered by the source to the load under each of the following conditions:

a) The source delivers 14.12 + j 8.47 VA to load A and 8.47 + j 14.12 VA to load B.

$$\mathbf{Z} = \underline{\hspace{1cm}} \Omega, \ \mathbf{S} = \underline{\hspace{1cm}} VA$$

b) The source delivers $8.47 + j \cdot 14.12 \text{ VA}$ to load A and the impedance of load B is $15 + j \cdot 9 \cdot \Omega$.

$$Z =$$
_____ Ω , $S =$ _____ VA

c) The source delivers 14.12 W to load A at a power factor of 0.857 lagging and the impedance of load B is $9 + j15 \Omega$.

$$Z =$$
_____VA

d) The impedance of load A is $15 + j9\Omega$ and the impedance of load B is $9 + j15\Omega$.

$$\mathbf{Z} = \underline{\hspace{1cm}} \Omega, \mathbf{S} = \underline{\hspace{1cm}} VA$$

6. In this circuit an ac source is connected to a load by the line. The load voltage is $V_L = 120 \angle 0^\circ$ Vrms and the load receives 50 W at a power factor of 0.8 lagging. The line current is

$$I = 1.042 \angle -36.87^{\circ}$$
 Arms

Determine the RMS value of required source voltage, $v_s(t)$, and the average power supplied by the source, P_s .

$$|\mathbf{V}\mathbf{s}| =$$
_____ Vrms and $P_{\mathbf{s}} =$ ____ W

$$\mathbf{I} = B \angle \phi$$
 Arms

Determine the values of B and ϕ .

$$B =$$
____ Arms and $\phi =$ ___ $^{\circ}$

8. The input to this circuit shown is

$$v_{\rm s}(t) = 12\cos(5t)$$
 V

The impedance of the load is $20 + j \cdot 15 \Omega$.

Noticing that $i_1(t)$ and $i_2(t)$ are mesh currents, we can represent this circuit by the mesh equations

$$\begin{bmatrix} 20 + ja & jb \\ jc & 20 + jd \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} 12 \angle 0^{\circ} \\ 0 \end{bmatrix}$$

where a, b, c, and d are real constants. Determine the values of a, b, c, and d.

$$a = \underline{\hspace{1cm}} \Omega$$
, $b = \underline{\hspace{1cm}} \Omega$, $c = \underline{\hspace{1cm}} \Omega$, and $d = \underline{\hspace{1cm}} \Omega$

9. This circuit consists of a source connected to a load by coupled coils. The input is

$$v_{\rm s}(t) = 12\cos(5t)$$
 V

The impedance of the load is $20 + j \cdot 15 \Omega$.

The mesh currents $i_1(t)$ and $i_2(t)$ are

$$i_1(t) = 0.4676\cos(5t - 22.8^{\circ})$$
 A and $i_2(t) = 0.1998\cos(5t - 2.86^{\circ})$ A

Determine the values of S, the complex power supplied by the source, S_c , the complex power received by the coupled inductors and S_L , the complex power received by the load.

$$S =$$
_____+ j _____VA, $S_c =$ ____+ j _____VA and $S_L =$ ____+ j _____VA

10. Here is a circuit containing coupled coils, represented in the frequency domain. The currents I_1 and I_2 are mesh currents. The mesh equations representing this circuit can be expressed as

$$(a+jb)\mathbf{I}_1 + (c+jd)\mathbf{I}_2 = 15\angle 30^{\circ}$$
$$(c+jd)\mathbf{I}_1 + (80+jf)\mathbf{I}_2 = 0$$

where a + jb, c + jd, and 40 + jf represent complex numbers in rectangular form. Determine the following:

11. The current i(t) and voltage v(t) labeled on the circuit drawing are

$$i(t) = \underline{\qquad} \cos(3t + 68.4^{\circ}) \text{ A}$$
and
$$v(t) = \underline{\qquad} \cos(3t + \underline{\qquad}^{\circ}) \text{ V}$$

12. The current i(t) and voltage v(t) labeled on the circuit drawing are

$$i(t) = \underline{\qquad} \cos(4t - 51.3^{\circ}) \text{ A}$$
and
$$v(t) = \cos(4t - 51.3^{\circ}) \text{ A}$$

13. $\begin{array}{c}
250 \cos(6t + 24.8^{\circ}) \text{ mA} & i(t) \\
 & \downarrow \\
 &$

Determine the values of R and L: $R = \underline{\Omega}$ and $L = \underline{H}$

14. This circuit consists of a load connected to a source through an ideal transformer. The input to the circuit is

$$v_{s}(t) = 12\cos(20t)$$
 V

Determine the values of the turns ration, n, and load inductance, L, required for maximum power transfer to the load.

$$n = \underline{\hspace{1cm}}$$
 and $L = \underline{\hspace{1cm}}$ H

15. This circuit consists of a load connected to a source through an ideal transformer. The input to the circuit is

$$v_{s}(t) = 12\cos(20t)$$
 V

The coil voltages and currents are

$$v_1(t) = A\cos(20t + 15.5^{\circ}) \text{ V},$$

$$v_2(t) = B\cos(20t + 15.5^\circ) \text{ V}$$

$$i_1(t) = C\cos(20t)$$
 A and $i_2(t) = D\cos(20t + 180)$ A

Determine the values of A, B, C and D.

$$A =$$
______ V, $B =$ _____ V, $C =$ _____ A and $D =$ _____ A

16. This circuit consists of a load connected to a source through an ideal transformer. The input to the circuit is

$$v_{\rm s}(t) = 12\cos(20t) \text{ V}$$

The coil voltages and currents are

$$v_1(t) = 6.227\cos(20t + 15.5^{\circ})$$
 V,

$$v_2(t) = 24.91\cos(20t + 15.5^\circ)$$
 V

$$i_1(t) = 0.333\cos(20t)$$
 A and $i_2(t) = 0.0833\cos(20t + 180)$ A

Determine the values of S_p , the complex power received by the primary (left) coil of the transformer and S_L , the complex power received by the load.

$$\mathbf{S}_{p}$$
 = _____ + j ____ VA and \mathbf{S}_{L} = _____ + j ____ VA

17. The network function of a circuit is $\mathbf{H}(\omega) = -10 \frac{j \omega}{1 + j \frac{\omega}{20}}$. The table below tabulates frequency

response data for this circuit. Fill in the blanks in the table:

ω, rad/s	Gain, V/V	Phase Shift, °
10	89.44	
40		-153.4

18. The network function of a circuit is $\mathbf{H}(\omega) = \frac{k}{1+j\frac{\omega}{p}}$. The table below tabulates frequency response

data for this circuit.

ω, rad/s	Gain, V/V	Phase Shift, °
10	17.18	-17.4
40	11.25	-51.3

Determine the values of p and k: $p = \underline{\hspace{1cm}} rad/s$ and $k = \underline{\hspace{1cm}} V/V$

19. The input to the circuit is the voltage of the voltage source, $v_i(t)$. The output is the voltage $v_0(t)$. The network function of this circuit is

$$\mathbf{H}(\omega) = \frac{\mathbf{V_o}(\omega)}{\mathbf{V_i}(\omega)} = \frac{(-0.1)j\omega}{\left(1 + j\frac{\omega}{p}\right)\left(1 + j\frac{\omega}{125}\right)}$$

Determine the values of the capacitance, C, and the pole, p.

$$C =$$
_____ μF and $p =$ ____ rad/s.

20. The network function of this circuit is:

$$\mathbf{H}(\omega) = \frac{\mathbf{V}_{o}(\omega)}{\mathbf{V}_{s}(\omega)} = (k) \frac{j\omega}{1 + j\frac{\omega}{n}}$$

Determine the values of k and p:

$$k = \underline{\hspace{1cm}}$$
, and $p = \underline{\hspace{1cm}}$ rad/s.

21. The input to the circuit is the voltage of the voltage source, $v_i(t)$. The output is the voltage $v_0(t)$. The network function of this circuit is

$$\mathbf{H}(\omega) = \frac{\mathbf{V_o}(\omega)}{\mathbf{V_i}(\omega)} = \frac{4}{1+j\frac{\omega}{100}}$$

Determine the values of the capacitance, C, and the VCVS gain, A.

$$C =$$
_____ μF and $A =$ _____ V/V .

22. The network function of this circuit is:

$$\mathbf{H}(\omega) = \frac{\mathbf{V}_{o}(\omega)}{\mathbf{V}_{i}(\omega)} = \frac{k}{1+j\frac{\omega}{p}}$$

Determine the values of k and p:

$$k = \underline{\hspace{1cm}}$$
, and $p = \underline{\hspace{1cm}}$ rad/s.