EE221 - Practice for the Midterm Exam

1. Consider this circuit and corresponding plot of the inductor current:

Determine the values of L, R_{1} and $R_{2}: \quad L=$ \qquad $\mathrm{H}, R_{1}=$ \qquad Ω and $R_{2}=$ \qquad Ω.

Hint: Use the plot to determine values of D, E, F and a such that the inductor current can be represented as

$$
i(t)=\left\{\begin{array}{l}
D \text { for } t \leq 0 \\
E+F e^{-a t} \text { for } t \geq 0
\end{array}\right.
$$

2.

(a)

(b)

Design the circuit in (a) to have the response in (b) by specifying the values of C, R_{1} and R_{2}.

$$
C=
$$

\qquad F, $\quad R_{1}=$ \qquad Ω and $R_{2}=$ \qquad Ω.
3.

(a)

(b)

(c)

Here are three ac circuits, each represented in the frequency domain. The input to each of these circuits is the phasor voltage $\mathbf{V}_{\mathrm{s}}=2.5 \angle-75^{\circ} \mathrm{V}$. Let $P_{\mathrm{a}}, P_{\mathrm{b}}$ and P_{c} denote the average power supplied by the source in circuit (a), (b) and (c) respectively. Determine the values of $P_{\mathrm{a}}, P_{\mathrm{b}}$ and P_{c} :

$$
P_{\mathrm{a}}=\ldots \mathrm{mW}, P_{\mathrm{b}}=\ldots \mathrm{mW} \text { and } P_{\mathrm{c}}=\ldots \quad \mathrm{mW}
$$

4. Given that

$$
v_{\mathrm{i}}(t)=24 \cos \left(3 t+75^{\circ}\right) \quad \mathrm{V}
$$

answer the following questions:

a) Suppose $R=9 \Omega$ and $L=5 \mathrm{H}$. What are the average, complex and reactive powers delivered by the source to the load?

$$
P=\ldots \quad \mathrm{W}, \mathbf{S}=\ldots \quad \mathrm{VA} \text { and } Q=\ldots \mathrm{VAR}
$$

b) Suppose the source delivers $8.47+j 14.12$ VA to the load. What are the values of the resistance, R, and the inductance, L ?

$$
R=_\quad \Omega \text { and } L=\ldots \quad \mathrm{H}
$$

c) Suppose the source delivers 14.12 W to the load at a power factor of 0.857 lagging. What are the values of the resistance, R, and the inductance, L ?

$$
R=\quad \Omega \text { and } L=\ldots \quad \mathrm{H}
$$

5. Given that

$$
v_{\mathrm{i}}(t)=24 \cos \left(3 t+75^{\circ}\right) \quad \mathrm{V}
$$

Determine the impedance of the load and the complex power delivered by the source to the load under each of the following conditions:

a) The source delivers $14.12+j 8.47 \mathrm{VA}$ to $\operatorname{load} A$ and $8.47+j 14.12 \mathrm{VA}$ to load B.

$$
\mathbf{Z}=\ldots \quad \Omega, \mathbf{S}=\ldots \mathrm{VA}
$$

b) The source delivers $8.47+j 14.12 \mathrm{VA}$ to load A and the impedance of load B is $15+j 9 \Omega$.

$$
\mathbf{Z}=
$$

\qquad $\Omega, \mathbf{S}=$ \qquad VA
c) The source delivers 14.12 W to load A at a power factor of 0.857 lagging and the impedance of $\operatorname{load} B$ is $9+j 15 \Omega$.

$$
\mathbf{Z}=\ldots \Omega, \mathbf{S}=\ldots \mathrm{VA}
$$

d) The impedance of load A is $15+j 9 \Omega$ and the impedance of load B is $9+j 15 \Omega$.

$$
\mathbf{Z}=
$$

\qquad $\Omega, \mathbf{S}=$ \qquad VA
6. In this circuit an ac source is connected to a load by the line. The load voltage is $\mathbf{V}_{\mathrm{L}}=120 \angle 0^{\circ} \mathrm{Vrms}$ and the load receives 50 W at a power factor of 0.8 lagging. The line current is

$$
\mathbf{I}=1.042 \angle-36.87^{\circ} \mathrm{Arms}
$$

Determine the RMS value of required source voltage, $v_{\mathrm{s}}(t)$, and the average power supplied by the source, P_{s}.

$$
|\mathbf{V} \mathbf{s}|=
$$

\qquad Vrms and $P_{\mathrm{s}}=$ \qquad W
7. In this circuit an ac source is connected to a load by the line. The load voltage is $\mathbf{V}_{\mathrm{L}}=120 \angle 0^{\circ} \mathrm{Vrms}$ and the load receives 50 W at a power factor of 0.8 lagging. The line current is

$$
\mathbf{I}=B \angle \phi \mathrm{Arms}
$$

Determine the values of B and ϕ.

$$
B=\ldots \quad \text { Arms and } \phi=\ldots
$$

8. The input to this circuit shown is

$$
v_{\mathrm{s}}(t)=12 \cos (5 t) \mathrm{V}
$$

The impedance of the load is $20+j 15 \Omega$.
Noticing that $i_{1}(t)$ and $i_{2}(t)$ are mesh currents, we can represent this circuit by the mesh
 equations

$$
\left[\begin{array}{cc}
20+j a & j b \\
j c & 20+j d
\end{array}\right]\left[\begin{array}{l}
\mathbf{I}_{1} \\
\mathbf{I}_{2}
\end{array}\right]=\left[\begin{array}{c}
12 \angle 0^{\circ} \\
0
\end{array}\right]
$$

where a, b, c, and d are real constants. Determine the values of a, b, c, and d.

$$
\begin{aligned}
& a=_\Omega, \quad b= \\
& \text { t consists of a source conn } \\
& \text { ils. The input is } \\
& \qquad v_{\mathrm{s}}(t)=12 \cos (5 t) \mathrm{V}
\end{aligned}
$$

\qquad $\Omega, \quad c=$ \qquad Ω, and $d=$ \qquad Ω
9. This circuit consists of a source connected to a load by coupled coils. The input is

The impedance of the load is $20+j 15 \Omega$.
The mesh currents $i_{1}(t)$ and $i_{2}(t)$ are

Source Coupled Inductors Load

$$
i_{1}(t)=0.4676 \cos \left(5 t-22.8^{\circ}\right) \mathrm{A} \text { and } i_{2}(t)=0.1998 \cos \left(5 t-2.86^{\circ}\right) \mathrm{A}
$$

Determine the values of \mathbf{S}, the complex power supplied by the source, \mathbf{S}_{c}, the complex power received by the coupled inductors and \mathbf{S}_{L}, the complex power received by the load.
$\mathbf{S}=$ \qquad $+j$ \qquad $\mathrm{VA}, \mathbf{S}_{\mathrm{c}}=$ \qquad $+j$ \qquad VA and $\mathbf{S}_{\mathrm{L}}=$ \qquad $+j$ \qquad VA
10. Here is a circuit containing coupled coils, represented in the frequency domain. The currents \mathbf{I}_{1} and \mathbf{I}_{2} are mesh currents. The mesh equations representing this circuit can be expressed as

$$
\begin{gathered}
(a+j b) \mathbf{I}_{1}+(c+j d) \mathbf{I}_{2}=15 \angle 30^{\circ} \\
(c+j d) \mathbf{I}_{1}+(80+j f) \mathbf{I}_{2}=0
\end{gathered}
$$

where $a+j b, c+j d$, and $40+j f$ represent complex numbers in rectangular form. Determine the following:
$a=$ \qquad , $b=$ \qquad , $c=$ \qquad , $d=$ \qquad , $f=$ \qquad
11. The current $i(t)$ and voltage $v(t)$ labeled on the circuit drawing are

$$
i(t)=\quad \cos \left(3 t+68.4^{\circ}\right) \mathrm{A}
$$ and

$$
v(t)=\ldots \cos \left(3 t+\ldots{ }^{\circ}\right) \mathrm{V}
$$

12. The current $i(t)$ and voltage $v(t)$ labeled on the circuit drawing are
$i(t)=$ \qquad $\cos \left(4 t-51.3^{\circ}\right) \mathrm{A}$ and
$v(t)=$ \qquad $\cos (4 t-$ \qquad ${ }^{\circ}$) V

13.

Determine the values of R and $L: R=$ \qquad Ω and $L=$ \qquad H
14. This circuit consists of a load connected to a source through an ideal transformer. The input to the circuit is

$$
v_{\mathrm{s}}(t)=12 \cos (20 t) \mathrm{V}
$$

Determine the values of the turns ration, n, and load inductance, L, required for maximum power transfer to the load.

$$
n=
$$

\qquad and $L=$ \qquad H
15. This circuit consists of a load connected to a source through an ideal transformer. The input to the circuit is

$$
v_{\mathrm{s}}(t)=12 \cos (20 t) \mathrm{V}
$$

The coil voltages and currents are

$$
\begin{aligned}
& v_{1}(t)=A \cos \left(20 t+15.5^{\circ}\right) \mathrm{V} \\
& v_{2}(t)=B \cos \left(20 t+15.5^{\circ}\right) \mathrm{V}
\end{aligned}
$$

$$
i_{1}(t)=C \cos (20 t) \quad \mathrm{A} \text { and } i_{2}(t)=D \cos (20 t+180) \mathrm{A}
$$

Determine the values of A, B, C and D.

$$
A=\ldots \mathrm{V}, \quad B=\ldots \mathrm{V}, C=\ldots \mathrm{A} \text { and } D=\ldots \mathrm{A}
$$

16. This circuit consists of a load connected to a source through an ideal transformer. The input to the circuit is

$$
v_{\mathrm{s}}(t)=12 \cos (20 t) \mathrm{V}
$$

The coil voltages and currents are

$$
\begin{aligned}
& v_{1}(t)=6.227 \cos \left(20 t+15.5^{\circ}\right) \mathrm{V} \\
& v_{2}(t)=24.91 \cos \left(20 t+15.5^{\circ}\right) \mathrm{V}
\end{aligned}
$$

$$
i_{1}(t)=0.333 \cos (20 t) \mathrm{A} \text { and } i_{2}(t)=0.0833 \cos (20 t+180) \mathrm{A}
$$

Determine the values of \mathbf{S}_{p}, the complex power received by the primary (left) coil of the transformer and \mathbf{S}_{L}, the complex power received by the load.

$$
\mathbf{S}_{\mathrm{p}}=\ldots \quad \mathrm{VA} \text { and } \mathbf{S}_{\mathrm{L}}=\ldots \quad+j \ldots \quad \mathrm{VA}
$$

17. The network function of a circuit is $\mathbf{H}(\omega)=-10 \frac{j \omega}{1+j \frac{\omega}{20}}$. The table below tabulates frequency response data for this circuit. Fill in the blanks in the table:

$\omega, \mathrm{rad} / \mathrm{s}$	Gain, V/V	Phase Shift, ${ }^{\circ}$
10	89.44	-
40	-	-153.4

18. The network function of a circuit is $\mathbf{H}(\omega)=\frac{k}{1+j \frac{\omega}{p}}$. The table below tabulates frequency response data for this circuit.

$\omega, \mathrm{rad} / \mathrm{s}$	Gain, V/V	Phase Shift, $^{\circ}$
10	17.18	-17.4
40	11.25	-51.3

Determine the values of p and $k: p=$ \qquad $\mathrm{rad} / \mathrm{s}$ and $k=$ \qquad V/V
19. The input to the circuit is the voltage of the voltage source, $v_{i}(t)$. The output is the voltage $v_{\mathrm{o}}(t)$. The network function of this circuit is

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathbf{0}}(\omega)}{\mathbf{V}_{\mathbf{i}}(\omega)}=\frac{(-0.1) j \omega}{\left(1+j \frac{\omega}{p}\right)\left(1+j \frac{\omega}{125}\right)}
$$

Determine the values of the capacitance, C, and the pole, p.

$$
C=
$$

\qquad $\mu \mathrm{F}$ and $p=$ \qquad $\mathrm{rad} / \mathrm{s}$.
20. The network function of this circuit is:

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}=(k) \frac{j \omega}{1+j \frac{\omega}{p}}
$$

Determine the values of k and p :

$$
k=
$$

\qquad , and $p=$ \qquad rad/s .
21. The input to the circuit is the voltage of the voltage source, $v_{i}(t)$. The output is the voltage $v_{\mathrm{o}}(t)$. The network function of this circuit is

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathbf{0}}(\omega)}{\mathbf{V}_{\mathbf{i}}(\omega)}=\frac{4}{1+j \frac{\omega}{100}}
$$ capacitance, C, and the VCVS gain, A.

$$
C=
$$

\qquad $\mu \mathrm{F}$ and $A=$ \qquad V/V.
22. The network function of this circuit is:

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{i}}(\omega)}=\frac{k}{1+j \frac{\omega}{p}}
$$

Determine the values of k and p :

$k=$ \qquad , and $p=$ \qquad $\mathrm{rad} / \mathrm{s}$.

