EE221 1 $^{\text {st }}$ Midterm Exam - Spring 2014

Name \qquad Student \# \qquad
1.

Determine the values of R_{1} and R_{2}.

$$
R_{1}=
$$

\qquad 225 \qquad Ω and $R_{2}=$ \qquad 375 \qquad Ω.
b. Determine the value of the time constant, τ, of the this circuit after the switch closes: $\tau=$ \qquad 5 ms.
2.

(Recall that $\sin (\omega t)=\cos \left(\omega t-90^{\circ}\right)$.) The coil voltages in this circuit are $v_{1}(t)=A \cos \left(10 t+32.74^{\circ}\right) \mathrm{V}$ and $v_{2}(t)=B \cos \left(10 t+43.03^{\circ}\right) \mathrm{V}$. Determine the values of A and B :

$$
A=_\quad 6.657 _\quad \mathrm{V} \text { and } B=\ldots \quad 12.311 __\mathrm{V}
$$

3. An AC source is connected to a load:
a) Suppose that the voltage source supplies

$$
\mathbf{S}=10.186 \angle 25.11^{\circ}=9.2234+j 4.3225 \mathrm{VA}
$$

Determine values of the resistance and inductance.

$$
R=_640 _\Omega \text { and } L=_750 _\mathrm{mH}
$$

Source Load
b) Suppose instead that $i(t)=191 \cos \left(400 t-37.2^{\circ}\right) \mathrm{mA}$. Determine the values of the real and reactive powers supplied by the source to the load.

$$
P=_\quad 9.13 _\mathrm{W} \text { and } Q=_6.93 _\mathrm{VAR}
$$

c) Suppose instead that $R=500 \Omega$ and $L=600 \mathrm{mH}$. Determine the power factor of the load:

$$
p f=\ldots \quad 0.9015 _
$$

d) Suppose instead that the voltage source supplies 7.067 W at a power factor of 0.817 lagging. Determine the values of the apparent and reactive powers supplied by the source to the load.

$$
|\mathbf{S}|=_ \text {8.65__ VA and } Q=_ \text {4.99__ } \mathrm{VAR}
$$

4.

The network function of this circuit is:

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}(\omega)}{\mathbf{I}(\omega)}=\frac{800}{1+j \frac{\omega}{500}}
$$

a) The value of the resistance is $R=$ \qquad 250 \qquad Ω.
b) The value of the gain of the VCVS is $A=$ \qquad 32 \qquad V/A.
c) When $\omega=400 \mathrm{rad} / \mathrm{sec}$, the value of the gain of the circuit is \qquad 624.7 \qquad V/A.
d) When $\omega=400 \mathrm{rad} / \mathrm{sec}$, the value of the phase shift of the circuit is \qquad $-38.7 \ldots{ }^{\circ}$.
e) When $\omega=$ \qquad $\mathrm{rad} / \mathrm{sec}$, the value of the gain of the circuit is $400 \mathrm{~V} / \mathrm{V}$.
f) When $\omega=$ \qquad $\mathrm{rad} / \mathrm{sec}$, the value of the phase shift of the circuit is -30°.
g) At low frequencies the value of the gain of the circuit is \qquad 800 \qquad V/A.
h) At high frequencies the value of the phase shift of the circuit is \qquad -90 \qquad ${ }^{\circ}$.
i) When the input is $i(t)=180 \cos \left(300 t+15^{\circ}\right) \mathbf{m A}$ the amplitude of $v(t)$ is \qquad 123.5 \qquad V.
j) When the input is $i(t)=180 \cos \left(300 t+15^{\circ}\right) \mathbf{m A}$ the phase angle of $v(t)$ is \qquad -16 \qquad ${ }^{\circ}$.
5. The current $i(t)$ and voltage $v(t)$ labeled on the circuit drawing are

$$
i(t)=A \cos \left(10 t-41.19^{\circ}\right) \mathrm{Amps}
$$

and

$$
v(t)=B \cos \left(10 t-41.19^{\circ}\right) \mathrm{V}
$$

Determine the values of A and B :

$$
A=
$$

\qquad 2.822 \qquad Amps and $B=$ \qquad 45.15 \qquad V
6.

The input current is

$$
i(t)=1.3 \cos (6 t) \mathrm{A}
$$

The coil voltages are

$$
v_{1}(t)=E \cos \left(6 t-90^{\circ}\right) \mathrm{V} \text { and } v_{2}(t)=F \cos \left(6 t-90^{\circ}\right) \mathrm{V}
$$

Determine the values of E and F.

$$
E=_\quad 7.8 _\quad \mathrm{V} \text { and } F=_23.4 _\mathrm{V}
$$

7.

This voltage and current are given by

$$
v(t)=15 \cos \left(20 t+40^{\circ}\right) \mathrm{V} \text { and } i(t)=1.59 \cos \left(20 t+72^{\circ}\right) \mathrm{A}
$$

Determine the values of the resistance, R, and capacitance, C.

$$
R=\ldots 8 _\Omega \text { and } C=\quad 10 _\mathrm{mF}
$$

QUANTITY	RELATIONSHIP USING PEAK VALUES	RELATIONSHIP USING rms VALUES	UNITS	
Element voltage, $v(t)$	$v(t)=V_{\mathrm{m}} \cos \left(\omega t+\theta_{\mathrm{v}}\right)$	$v(t)=V_{\text {rms }} \sqrt{2} \cos \left(\omega t+\theta_{\mathrm{V}}\right)$	V	
Element current, $i(t)$	$i(t)=I_{\mathrm{m} \cos \left(\omega t+\theta_{\mathrm{I}}\right)}$	$i(t)=V_{\mathrm{rms}} \sqrt{2} \cos \left(\omega t+\theta_{\mathrm{I}}\right)$	A	
Complex power, S	$\mathbf{S}=\frac{V_{\mathrm{m}} I_{\mathrm{m}}}{2} \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{I}}\right)$	$\mathbf{S}=V_{\text {rms }} I_{\text {rms }} \cos \left(\theta_{\mathrm{V}}-\theta_{\mathrm{I}}\right)$	VA	
	$+j \frac{V_{\mathrm{m}} I_{\mathrm{m}}}{2} \sin \left(\theta_{\mathrm{v}}-\theta_{\mathrm{I}}\right)$	$+j V_{\mathrm{rms}} I_{\mathrm{rms}} \sin \left(\theta_{\mathrm{V}}-\theta_{\mathrm{I}}\right)$		
Apparent power, \|S		$\|\mathbf{S}\|=\frac{V_{\mathrm{m}} I_{\mathrm{m}}}{2}$	$\|\mathbf{S}\|=V_{\text {rms }} I_{\text {rms }}$	VA
Average power, P	$P=\frac{V_{\mathrm{m}} I_{\mathrm{m}}}{2} \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{I}}\right)$	$P=V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \left(\theta_{\mathrm{V}}-\theta_{\mathrm{I}}\right)$	W	
Reactive power, Q	$Q=\frac{V_{\mathrm{m}} I_{\mathrm{m}}}{2} \sin \left(\theta_{\mathrm{v}}-\theta_{\mathrm{I}}\right)$	$Q=V_{\mathrm{rms}} I_{\mathrm{rms}} \sin \left(\theta_{\mathrm{V}}-\theta_{\mathrm{I}}\right)$	VAR	
	$i_{2}(t)$			
	$\longleftarrow_{+}^{\infty} \quad v_{1}=L_{1} \frac{d i_{1}}{d t}$	$M \frac{d i_{2}}{d t} \quad \mathbf{V}_{1}=j \omega L_{1} \mathbf{l}_{1}+$		
	$\mathrm{c}_{-}^{v_{2}(t)} \quad v_{2}=L_{2} \frac{d i_{2}}{d t}$	$M \frac{d i_{1}}{d t} \quad \mathbf{V}_{2}=j \omega L_{2} \mathbf{I}_{2}+$		
	$\stackrel{i_{2}(t)}{\overbrace{+}} \quad v_{1}=L_{1} \frac{d i_{1}}{d t}$		$M \mathbf{I}_{2}$	
	$\begin{gathered} v_{2}(t) \\ - \\ v_{2}=L_{2} \frac{d i_{2}}{d t} \end{gathered}$	$M \frac{d i_{1}}{d t} \quad \mathbf{V}_{2}=j \omega L_{2} \mathbf{I}_{2}-$	$M \mathbf{I}_{1}$	
		$\begin{aligned} & \mathbf{v}_{1}=\frac{N_{1}}{N_{2}} \mathbf{v}_{2} \\ & \mathbf{I}_{1}=-\frac{N_{2}}{N_{1}} \mathbf{I}_{2} \end{aligned}$		
		$\begin{aligned} \mathbf{v}_{1} & =-\frac{N_{1}}{N_{2}} \mathbf{v}_{2} \\ \mathbf{l}_{1} & =\frac{N_{2}}{N_{1}} \mathbf{l}_{2} \end{aligned}$		

