EE221 1st Midterm Exam - Spring 2014

Name ____

Student #_____

1.

Determine the values of R_1 and R_2 .

$$R_1 = _{225} \Omega$$
 and $R_2 = _{375} \Omega$.

b. Determine the value of the time constant, τ , of the this circuit after the switch closes: $\tau = __5$ ms.

(Recall that $\sin(\omega t) = \cos(\omega t - 90^\circ)$.) The coil voltages in this circuit are $v_1(t) = A\cos(10t + 32.74^\circ)$ V and $v_2(t) = B\cos(10t + 43.03^\circ)$ V. Determine the values of A and B:

$$A =$$
____6.657_____ V and $B =$ ____12.311____ V

- **3.** An AC source is connected to a load:
- a) Suppose that the voltage source supplies

$$S = 10.186 \angle 25.11^{\circ} = 9.2234 + j \cdot 4.3225 \text{ VA}$$

Determine values of the resistance and inductance.

$$R = _{640} \Omega$$
 and $L = _{750} mH$

b) Suppose **instead** that $i(t) = 191\cos(400t - 37.2^{\circ})$ mA. Determine the values of the real and reactive powers supplied by the source to the load.

$$P = ___9.13_$$
 W and $Q = __6.93_$ VAR

c) Suppose instead that $R = 500 \Omega$ and L = 600 mH. Determine the power factor of the load:

d) Suppose **instead** that the voltage source supplies 7.067 W at a power factor of 0.817 lagging. Determine the values of the apparent and reactive powers supplied by the source to the load.

$$|S| = ___8.65_$$
 VA and $Q = __4.99_$ VAR

4.

The network function of this circuit is:

$$\mathbf{H}(\omega) = \frac{\mathbf{V}(\omega)}{\mathbf{I}(\omega)} = \frac{800}{1 + j\frac{\omega}{500}}$$

- a) The value of the resistance is $R = _{250}$ Ω .
- b) The value of the gain of the VCVS is $A = ____32___V/A$.
- c) When $\omega = 400$ rad/sec, the value of the gain of the circuit is _____624.7____ V/A.
- d) When $\omega = 400$ rad/sec, the value of the phase shift of the circuit is __-38.7___°.
- e) When $\omega = \underline{\hspace{0.2cm}}$ 866 $\underline{\hspace{0.2cm}}$ rad/sec, the value of the gain of the circuit is 400 V/V.
- f) When $\omega = __287__$ rad/sec, the value of the phase shift of the circuit is -30° .
- g) At low frequencies the value of the gain of the circuit is _____800____ V/A.
- h) At high frequencies the value of the phase shift of the circuit is ______o.
- i) When the input is $i(t) = 180\cos(300t + 15^\circ)$ mA the amplitude of v(t) is ____123.5___V.
- j) When the input is $i(t) = 180\cos(300t + 15^\circ)$ mA the phase angle of v(t) is ______16______.

5. The current i(t) and voltage v(t) labeled on the circuit drawing are

$$i(t) = A\cos(10t - 41.19^{\circ})$$
 Amps
and $v(t) = B\cos(10t - 41.19^{\circ})$ V
Determine the values of A and B :

$$A = ____2.822_$$
 Amps and $B = ____45.15_$ V

The input current is

$$i(t) = 1.3\cos(6t)$$
 A

The coil voltages are

$$v_1(t) = E \cos(6t - 90^\circ) \text{ V}$$
 and $v_2(t) = F \cos(6t - 90^\circ) \text{ V}$

Determine the values of E and F.

$$E = ____7.8 ____ V$$
 and $F = ___23.4 ____ V$

7.

This voltage and current are given by

$$v(t) = 15\cos(20t + 40^\circ)$$
 V and $i(t) = 1.59\cos(20t + 72^\circ)$ A

Determine the values of the resistance, R, and capacitance, C.

$$R = \underline{\hspace{1cm}} 8 \underline{\hspace{1cm}} \Omega$$
 and $C = \underline{\hspace{1cm}} 10 \underline{\hspace{1cm}} mF$

QUANTITY	RELATIONSHIP USING PEAK VALUES	RELATIONSHIP USING rms VALUES	UNITS
Element voltage, $v(t)$	$v(t) = V_{\rm m} \cos \left(\omega t + \theta_{\rm v}\right)$	$v(t) = V_{\rm rms} \sqrt{2} \cos(\omega t + \theta_{\rm V})$	V
Element current, $i(t)$	$i(t) = I_{\rm m cos}(\omega t + \theta_{\rm I})$	$i(t) = V_{\rm rms} \sqrt{2} \cos(\omega t + \theta_{\rm I})$	A
Complex power, S	$\mathbf{S} = \frac{V_{\rm m} I_{\rm m}}{2} \cos(\theta_{\rm v} - \theta_{\rm I})$	$\mathbf{S} = V_{\rm rms} I_{\rm rms} \cos \left(\theta_{\rm V} - \theta_{\rm I} \right)$	VA
	$+j\frac{V_{\mathrm{m}}I_{\mathrm{m}}}{2}\sin(\theta_{\mathrm{V}}-\theta_{\mathrm{I}})$	$+jV_{\rm rms} I_{\rm rms} \sin \left(\theta_{\rm V} - \theta_{\rm I}\right)$	
Apparent power, $ S $	$ \mathbf{S} = \frac{V_{\rm m}I_{\rm m}}{2}$	$ \mathbf{S} = V_{ m rms} I_{ m rms}$	VA
Average power, P	$P = \frac{V_{\rm m}I_{\rm m}}{2}\cos(\theta_{\rm V} - \theta_{\rm I})$	$P = V_{\rm rms}I_{\rm rms}\cos\left(\theta_{\rm V} - \theta_{\rm I}\right)$	W
Reactive power, Q	$Q = \frac{V_{\rm m}I_{\rm m}}{2}\sin(\theta_{\rm V} - \theta_{\rm I})$	$Q = V_{\rm rms}I_{\rm rms}\sin\left(\theta_{\rm V} - \theta_{\rm I}\right)$	VAR
$ \begin{array}{c} i_1(t) \\ \downarrow \\ v_1(t) \end{array} $ $ \begin{array}{c} L_1 L_2 \\ \end{array} $	$v_{1} = L_{1} \frac{di_{1}}{dt}$ $v_{2}(t)$ $v_{2} = L_{2} \frac{di_{2}}{dt}$	ui	
$ \begin{array}{c} i_1(t) \\ \downarrow \\ v_1(t) \end{array} $ $ \begin{array}{c} L_1 L_2 \\ \downarrow \\ \end{array} $	$v_{1} = L_{1} \frac{di_{1}}{dt}$ $v_{2}(t)$ $v_{2} = L_{2} \frac{di_{2}}{dt}$	ai	_
$v_1(t)$	$ \begin{array}{c} i_1(t) \\ \downarrow \\ \downarrow$	$\mathbf{V}_1 = \frac{N_1}{N_2} \mathbf{V}_2$ $\mathbf{I}_1 = -\frac{N_2}{N_1} \mathbf{I}_2$	
v ₁ (t	$ \begin{array}{c} i_1(t) \\ N_1 : N_2 \\ \downarrow \\ $	$\mathbf{V}_1 = -\frac{N_1}{N_2} \mathbf{V}_2$ $\mathbf{I}_1 = \frac{N_2}{N_1} \mathbf{I}_2$	