

b. Determine the value of the time constant, τ , of the this circuit after the switch closes: $\tau = 5$ ms.

2.

(Recall that $\sin(\omega t) = \cos(\omega t - 90^\circ)$.) The coil voltages in this circuit are $v_1(t) = A\cos(10t + 15.95^\circ)$ V and $v_2(t) = B\cos(10t + 22.53^\circ)$ V. Determine the values of A and B:

 $A = __8.736$ _____V and $B = __14.615$ _____V

EE221 1st Midterm Exam - Spring 2014

3. An AC source is connected to a load:

a) Suppose that the voltage source supplies

$$S = 9.1 \angle 24.49^\circ = 8.2814 + j 3.7723$$
 VA

Determine values of the resistance and inductance.

$$R = _720_\Omega$$
 and $L = _820_mH$

b) Suppose **instead** that $R = 420 \Omega$ and L = 800 mH. Determine the power factor of the load:

$$pf = __0.7954_$$

c) Suppose **instead** that the voltage source supplies 9.1278 W at a power factor of 0.7962 lagging. Determine the values of the apparent and reactive powers supplied by the source to the load.

$$|S| = ___11.464$$
 VA and $Q = ___6.936$ VAR

d) Suppose instead that $i(t) = 176.47 \cos(400t - 28.1^{\circ})$ mA. Determine the values of the real and reactive powers supplied by the source to the load.

$$P = ___9.34$$
 W and $Q = __4.98$ VAR

The network function of this circuit is:

$$\mathbf{H}(\omega) = \frac{\mathbf{V}(\omega)}{\mathbf{I}(\omega)} = \frac{450}{1+j\frac{\omega}{250}}$$

- a) The value of the resistance is $R = 500 \Omega$.
- b) The value of the gain of the VCVS is $A = __18__V/V$.
- c) When $\omega = 433$ rad/sec, the value of the gain of the circuit is 225 V/A.
- d) When $\omega = __144$ rad/sec, the value of the phase shift of the circuit is -30° .
- e) When $\omega = 200$ rad/sec, the value of the gain of the circuit is _____351____ V/A.
- f) When $\omega = 200$ rad/sec, the value of the phase shift of the circuit is _____-38.7____°.
- g) At low frequencies the value of the gain of the circuit is $__450$ V/A.
- h) At high frequencies the value of the phase shift of the circuit is $_-90_^\circ$.
- i) When the input is $i(t) = 180\cos(300t + 30^\circ)$ mA the phase angle of v(t) is ______0.202_____°.
- j) When the input is $i(t) = 180\cos(300t + 30^\circ)$ mA the amplitude of v(t) is _____51.85____V.

6.

+ $v_1(t)$ – The input current is i(t) f f H 20Ω s H 20Ω $+ v_2(t)$ – The input current is $i(t) = 1.3 \cos(5t) \text{ A}$ The coil voltages are $v_1(t) = E \cos(5t - 90^\circ) \text{ V}$ and $v_2(t) = F \cos(5t - 90^\circ) \text{ V}$ Determine the values of E and F.

$$E = __6.5 __V$$
 and $F = __19.5 __V$

7.

 $(t) \quad R \quad C$ $(t) \quad V \quad (t) \quad -$

This voltage and current are given by

$$v(t) = 20\cos(25t+15^\circ)$$
 V and $i(t) = 3.05\cos(25t+39^\circ)$ A

Determine the values of the resistance, R, and capacitance, C.

 $R = ______ \Omega$ and $C = ______ 15 _____ m F$

QUANTITY	RELATIONSHIP USING PEAK VALUES	RELATIONSHIP USING rms VALUES	UNITS
Element voltage, $v(t)$	$v(t) = V_{\rm m} \cos \left(\omega t + \theta_{\rm v}\right)$	$v(t) = V_{\rm rms} \sqrt{2} \cos(\omega t + \theta_{\rm v})$	V
Element current, $i(t)$	$i(t) = I_{\rm m \ cos}(\omega t + \theta_{\rm I})$	$i(t) = V_{\rm rms} \sqrt{2} \cos(\omega t + \theta_{\rm I})$	А
Complex power, \mathbf{S}	$\mathbf{S} = \frac{V_{\rm m}I_{\rm m}}{2}\cos(\theta_{\rm v} - \theta_{\rm I})$	$\mathbf{S} = V_{\rm rms} I_{\rm rms} \cos\left(\theta_{\rm V} - \theta_{\rm I}\right)$	VA
	$+j\frac{V_{\rm m}I_{\rm m}}{2}\sin(\theta_{\rm v}-\theta_{\rm I})$	$+ j V_{\rm rms} I_{\rm rms} \sin \left(\theta_{\rm V} - \theta_{\rm I} \right)$	
Apparent power, S	$\left \mathbf{S}\right = \frac{V_{\rm m}I_{\rm m}}{2}$	$ \mathbf{S} = V_{\mathrm{rms}} I_{\mathrm{rms}}$	VA
Average power, P	$P = \frac{V_{\rm m}I_{\rm m}}{2}\cos(\theta_{\rm v} - \theta_{\rm I})$	$P = V_{\rm rms} I_{\rm rms} \cos \left(\theta_{\rm V} - \theta_{\rm I}\right)$	W
Reactive power, Q	$Q = \frac{V_{\rm m}I_{\rm m}}{2}\sin(\theta_{\rm v} - \theta_{\rm I})$	$Q = V_{\rm rms} I_{\rm rms} \sin \left(\theta_{\rm V} - \theta_{\rm I} \right)$	VAR
$ \begin{array}{c} \stackrel{i_{1}(t)}{\overset{\bullet}{+}} & \stackrel{M}{\overset{\bullet}{-}} \\ \stackrel{i_{1}(t)}{\overset{\bullet}{-}} & \stackrel{M}{\overset{\bullet}{-}} \\ \stackrel{i_{1}(t)}{\overset{i_{1}(t)}{\overset{\bullet}{-}}} & \stackrel{M}{\overset{\bullet}{-}} \\ \end{array} $	$i_2(t)$	+ $M \frac{di_1}{dt}$ $\mathbf{V}_2 = j\omega L_2 \mathbf{I}_2 + j\omega L_2 \mathbf{I}_2$	
$ \begin{array}{c} $	$v_1 = L_1 \frac{di_1}{dt} - v_2(t)$ $v_2 = L_2 \frac{di_2}{dt} - \frac{di_2}{dt} -$	ui	-
↔ v ₁ (~	$\underbrace{i_{1}(t)}_{t} N_{1} : N_{2} \underbrace{i_{2}(t)}_{v_{2}(t)}$	$\mathbf{V}_1 = \frac{N_1}{N_2} \mathbf{V}_2$ $\mathbf{I}_1 = -\frac{N_2}{N_1} \mathbf{I}_2$	
+ v ₁ ($\underbrace{\overset{i_1(t)}{}}_{t)} \overset{N_1 : N_2}{} \underbrace{\overset{i_2(t)}{}}_{t} \overset{V_2(t)}{} \overset{V_2(t)}{} \overset{V_2(t)}{} \overset{Ideal}{} \overset{I}{} \overset{I}$	$\mathbf{V}_1 = -\frac{N_1}{N_2} \mathbf{V}_2$ $\mathbf{I}_1 = \frac{N_2}{N_1} \mathbf{I}_2$	