EE 221 Practice Problems for the Final Exam

1. The network function of a circuit is

$$
\mathbf{H}(\omega)=\frac{-12.5}{1+j \frac{\omega}{500}}
$$

This table records frequency response data for this circuit. Fill in the blanks in the table:

$\omega, \mathrm{rad} / \mathrm{s}$	$A, \mathrm{~V}$	$\theta,{ }^{\circ}$
0	12.5	180
100	12.26	-
200		158.2
500	8.84	135
1000	5.59	116.6

2. The network function of a circuit is

$$
\mathbf{H}(\omega)=\frac{-k}{1+j \frac{\omega}{p}} .
$$

This table records frequency response data for this circuit.
Determine the values of p and k :
\qquad $\mathrm{rad} / \mathrm{s}$ and $k=$ \qquad V/V

$\omega, \mathrm{rad} / \mathrm{s}$	$A, \mathrm{~V}$	$\theta,{ }^{\circ}$
0	12.5	180
100	12.26	168.7
200	11.61	158.2
500	8.84	135
1000	5.59	116.6

3. Here's a network function and corresponding magnitude Bode plot:

$$
\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}=\frac{50+\frac{1600}{j \omega}}{640+j 4 \omega}
$$

Determine the values of the constants k, z and p used to label the Bode plot:

$$
k=
$$

\qquad ,
$z=$ \qquad $\mathrm{rad} / \mathrm{s}$ and $p=$ \qquad rad/s.
4. Here's a circuit and corresponding Bode plot. The network function of this circuit is $\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{s}}(\omega)}$.

Determine the values of the resistance, R and capacitance, C :

$$
R=\ldots \mathrm{k} \Omega \quad \text { and } \quad C=\ldots \mathrm{F}
$$

5. Here's a magnitude Bode plot and corresponding network function:

Determine the values of the constants a, b, p_{1}, p_{2} and z used to label the Bode plot:
$a=$ \qquad $\mathrm{dB}, \quad b=$ \qquad $\mathrm{dB}, \quad p_{1}=$ \qquad $\mathrm{rad} / \mathrm{s}, \quad p_{2}=$ \qquad $\mathrm{rad} / \mathrm{s}$ and $z=$ \qquad $\mathrm{rad} / \mathrm{s}$.
6. The input to the circuit is the voltage of the voltage source, $v_{i}(t)$. The output is the voltage $v_{0}(t)$. $\mathbf{H}(\omega)=\frac{\mathbf{V}_{\mathbf{0}}(\omega)}{\mathbf{V}_{\mathbf{i}}(\omega)}$ is the network function. The magnitude bode plot that represents this circuit is

The values of the corner frequencies are $z=$ \qquad $\mathrm{rad} / \mathrm{sec}$ and $p=$ \qquad $\mathrm{rad} / \mathrm{sec}$.

The value of the low frequency gain is $k=$ \qquad V/V.
7. Here is the same circuit represented in the time domain and also in the complex frequency domain.

Here's a plot of the inductor current. Determine the values of D and E used to represent the circuit in the complex frequency domain:

$$
D=\ldots \quad \mathrm{V} \text { and } E=\ldots \mathrm{V}
$$

Determine the values of the resistance R_{2} and the inductance L :

$$
R_{2}=\ldots \quad \Omega \text { and } L=\ldots \mathrm{H}
$$

8. Here is the same circuit represented in the time domain and also in the complex frequency domain.

Determine the values of a, b and d used to represent the circuit in the complex frequency domain:

$$
a=
$$

$b=$ \qquad and $d=$ \qquad
9. Given that $\mathcal{L}[v(t)]=\frac{a s+b}{2 s^{2}+40 s}$ where $v(t)$ is the voltage shown to the right, determine the values of a and b.

$$
a=\quad \mathrm{V} \text { and } b=\square \mathrm{V}
$$

10. The Laplace transform of a voltage $v(t)=\left[b e^{-a t} \sin (c t)\right] u(t)$ is $V(s)=\frac{80}{s^{2}+8 s+25}$. Determine the values of the constant coefficients a, b, and c :

$$
a=\quad 1 / \mathrm{s}, \quad b=
$$

\qquad V, and $c=$ \qquad V.
11. The Laplace transform of a voltage $v(t)=\left[b-e^{-a t}(c+d t)\right] u(t)$ is $V(s)=\frac{12}{s\left(s^{2}+8 s+16\right)}$. Determine the values of the constant coefficients a, b, c and d :

$$
a=\ldots \quad 1 / \mathrm{s}, \quad b=\ldots \mathrm{V}, \quad c=\ldots \mathrm{V} \text { and } d=\ldots \mathrm{V} .
$$

12. The input to the circuit is the voltage of the voltage source, $v_{i}(t)$. The output is the voltage $v_{0}(t)$. The step response is $v_{\mathrm{o}}(t)=6 e^{-4 t} \sin (5 t) u(t)$.

Determine the values of the gain, A, of the VCVS, the resistance, R, and the inductance, L.

$$
A=\ldots \quad \Omega \text { and } L=_\quad \mathrm{H} . \mathrm{V}, R=\ldots
$$

13. The input to this circuit is the voltage source voltage, $v_{\mathrm{i}}(t)$. The output is the voltage, $v_{0}(t)$. The transfer function of this circuit is

$$
H(s)=\frac{V_{\mathrm{o}}(s)}{V_{\mathrm{i}}(s)}=\frac{15 \times 10^{6}}{(s+2000)(s+5000)}
$$

Determine the values of R, L and C :

\qquad $\mathrm{k} \Omega, L=$ \qquad H and $C=$ \qquad $\mu \mathrm{F}$.
or

$$
R=\ldots \mathrm{k} \Omega, L=\ldots \mathrm{H} \text { and } C=\ldots \mathrm{F}
$$

14. The transfer function of a circuit is $H(s)=\frac{12}{s^{2}+8 s+16}$. The step response of this circuit is: step response $=\left[b-e^{-a t}(c+d t)\right] u(t)$. Determine the values of the constant coefficients a, b, c and d :

$$
a=\ldots \quad 1 / \mathrm{s}, \quad b=\ldots \mathrm{V}, \quad c=\ldots \text { and } d=\ldots \mathrm{V}
$$

15. The transfer function of a circuit is $H(s)=\frac{80 s}{s^{2}+8 s+25}$. The step response of this circuit is:
step response $=\left[b e^{-a t} \sin (c t)\right] u(t)$. Determine the values of the constant coefficients a, b, c and d :

$$
a=\ldots 1 / \mathrm{s}, \quad b=\ldots \mathrm{V}, \quad \text { and } \quad c=\ldots \mathrm{V}
$$

16. The input to a linear circuit is the voltage, v_{i}. The output is the voltage, v_{o}. The transfer function of the circuit is

$$
H(s)=\frac{V_{\mathrm{o}}(s)}{V_{\mathrm{i}}(s)}
$$

The poles and zeros of $H(s)$ are shown on this pole-zero diagram. (There are no zeros.) The dc gain of the circuit is

$$
\mathbf{H}(0)=5
$$

The step response of the circuit is $v_{\mathrm{o}}(t)=\left(a+b e^{-5 t}-c e^{-2 t}\right) u(t) \mathrm{V}$. Determine the values of the constants a, b and c.

$$
a=\ldots \quad \mathrm{V}, \quad b=\ldots \mathrm{V} \text { and } c=\ldots \mathrm{V} .
$$

17. The input to a circuit is the voltage source voltage, v_{i}. The step response of the circuit is

$$
v_{\mathrm{o}}(t)=\frac{3}{4}\left(1-e^{-100 t}\right) u(t) \mathrm{V}
$$

Determine the value of the inductance, L, and of the resistance, R

$$
R=\quad \Omega \text { and } L=\ldots \mathrm{H} .
$$

18. The input to a circuit is the voltage source voltage, v_{i}. The step response of the circuit is

$$
v_{\mathrm{o}}(t)=5\left(1-(1+2 t) e^{-2 t}\right) u(t) \mathrm{V}
$$

When the input is

$$
\begin{gathered}
v_{\mathrm{i}}(t)=5 \cos \left(2 t+45^{\circ}\right) \mathrm{V} \\
v_{\mathrm{i}}(t)=A \cos (2 t+\theta) \mathrm{V}
\end{gathered}
$$

Determine the values of A and θ.

$$
A=\quad \mathrm{V} \text { and } \theta=\ldots .
$$

19. The input to a circuit is the voltage $v_{i}(t)$. The output is the voltage $v_{o}(t)$.

When the input is:

$$
v_{i}(t)=2+4 \cos (100 t)+5 \cos \left(200 t+45^{\circ}\right) \quad \mathrm{V}
$$

the corresponding output is:
$v_{o}(t)=-5+7.071 \cos \left(100 t+135^{\circ}\right)+c_{2} \cos \left(200 t+\theta_{2}\right) \quad \mathrm{V}$

Determine the value of R, C, c_{2}, and θ_{2} :

$$
R=\ldots \quad \mu \mathrm{F}, c_{2}=\ldots \quad \mathrm{V} \Omega \text { and } \theta_{2}=\ldots
$$

20. The transfer function of a circuit is $H(s)=\frac{20}{s+8}$. When the input to this circuit is sinusoidal, the output is also sinusoidal. Let ω_{1} be the frequency at which the output sinusoid is twice as large as the input sinusoid and let ω_{2} be the frequency at which output sinusoid is delayed by one tenth period with respect to the input sinusoid. Determine the values of ω_{1} and ω_{2}.

$$
\omega_{1}=\ldots \mathrm{rad} / \mathrm{s} \text { and } \omega_{2}=\ldots \mathrm{rad} / \mathrm{s}
$$

