EE 221 Practice Problems for the Final Exam

1. The network function of a circuit is

$$\mathbf{H}(\omega) = \frac{-12.5}{1 + j\frac{\omega}{500}}.$$

This table records frequency response data for this circuit. Fill in the blanks in the table:

ω, rad/s	A, V	θ, °
0	12.5	180
100	12.26	
200		158.2
500	8.84	135
1000	5.59	116.6

2. The network function of a circuit is

$$\mathbf{H}(\omega) = \frac{-k}{1+j\frac{\omega}{p}}.$$

This table records frequency response data for this circuit. Determine the values of p and k:

$$p =$$
_____vad/s and $k =$ _____V/V

ω, rad/s	A, V	θ, °
0	12.5	180
100	12.26	168.7
200	11.61	158.2
500	8.84	135
1000	5 . 59	116.6

3. Here's a network function and corresponding magnitude Bode plot:

$$\mathbf{H}(\omega) = \frac{\mathbf{V}_{o}(\omega)}{\mathbf{V}_{s}(\omega)} = \frac{50 + \frac{1600}{j\omega}}{640 + j4\omega}$$

$$20 \log_{10}(k)$$

Determine the values of the constants k, z and p used to label the Bode plot:

$$k =$$
_____, $z =$ ____rad/s and $p =$ ____rad/s.

4. Here's a circuit and corresponding Bode plot. The network function of this circuit is $\mathbf{H}(\omega) = \frac{\mathbf{V}_o(\omega)}{\mathbf{V}_s(\omega)}$.

Determine the values of the resistance, R and capacitance, C:

$$R = k\Omega$$
 and $C = \mu F$

5. Here's a magnitude Bode plot and corresponding network function:

$$\mathbf{H}(\omega) = \frac{j\frac{\omega}{4}\left(100 + j\frac{\omega}{4}\right)}{\left(1 + j\frac{\omega}{4}\right)\left(5 + j\frac{\omega}{8}\right)}$$

Determine the values of the constants a, b, p_1 , p_2 and z used to label the Bode plot:

 $a = \underline{\hspace{1cm}} dB$, $b = \underline{\hspace{1cm}} dB$, $p_1 = \underline{\hspace{1cm}} rad/s$, $p_2 = \underline{\hspace{1cm}} rad/s$ and $z = \underline{\hspace{1cm}} rad/s$.

- **6.** The input to the circuit is the voltage of the voltage source, $v_i(t)$. The output is the voltage $v_0(t)$.
- $\mathbf{H}(\omega) = \frac{\mathbf{V_o}(\omega)}{\mathbf{V_i}(\omega)}$ is the network function. The magnitude bode plot that represents this circuit is

The values of the corner frequencies are z =____rad/sec and p =____rad/sec.

The value of the low frequency gain is k =_____V/V.

7. Here is the same circuit represented in the time domain and also in the complex frequency domain.

Here's a plot of the inductor current. Determine the values of D and E used to represent the circuit in the complex frequency domain:

$$D =$$
_____V and $E =$ ____V

Determine the values of the resistance R_2 and the inductance L:

$$R_2 = \underline{\hspace{1cm}} \Omega$$
 and $L = \underline{\hspace{1cm}} H$

8. Here is the same circuit represented in the time domain and also in the complex frequency domain.

Determine the values of a, b and d used to represent the circuit in the complex frequency domain:

$$a =$$
_____ and $d =$ _____

9. Given that $\mathcal{L}[v(t)] = \frac{a s + b}{2 s^2 + 40 s}$ where v(t) is the voltage shown to the right, determine the values of a and b.

$$a = \underline{\hspace{1cm}} V$$
 and $b = \underline{\hspace{1cm}} V$

10. The Laplace transform of a voltage $v(t) = \left[be^{-at}\sin(ct)\right]u(t)$ is $V(s) = \frac{80}{s^2 + 8s + 25}$. Determine the values of the constant coefficients a, b, and c:

$$a = 1/s$$
, $b = V$, and $c = V$.

11. The Laplace transform of a voltage $v(t) = [b - e^{-at}(c + dt)]u(t)$ is $V(s) = \frac{12}{s(s^2 + 8s + 16)}$. Determine the values of the constant coefficients a, b, c and d:

12. The input to the circuit is the voltage of the voltage source, $v_i(t)$. The output is the voltage $v_0(t)$. The step response is $v_0(t) = 6e^{-4t} \sin(5t)u(t)$.

$$v_{i}(t) \stackrel{+}{\stackrel{+}{\longrightarrow}} 10 \Omega \stackrel{+}{\stackrel{\times}{\longrightarrow}} v_{a}(t) \stackrel{+}{\stackrel{\times}{\longrightarrow}} A v_{a}(t) \stackrel{R}{\stackrel{\times}{\longrightarrow}} v_{o}(t)$$

Determine the values of the gain, A, of the VCVS, the resistance, R, and the inductance, L.

$$A = \underline{\hspace{1cm}} V/V, R = \underline{\hspace{1cm}} \Omega$$
 and $L = \underline{\hspace{1cm}} H$.

13. The input to this circuit is the voltage source voltage, $v_i(t)$. The output is the voltage, $v_o(t)$. The transfer function of this circuit is

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{15 \times 10^6}{(s + 2000)(s + 5000)}$$

Determine the values of *R*, *L* and *C*:

or
$$R = \underline{\hspace{1cm}} k\Omega, \ L = \underline{\hspace{1cm}} H \ \text{and} \ C = \underline{\hspace{1cm}} \mu F.$$

$$R = \underline{\hspace{1cm}} k\Omega, \ L = \underline{\hspace{1cm}} H \ \text{and} \ C = \underline{\hspace{1cm}} \mu F.$$

14. The transfer function of a circuit is $H(s) = \frac{12}{s^2 + 8s + 16}$. The step response of this circuit is: step $response = \left[b - e^{-at}(c + dt)\right]u(t)$. Determine the values of the constant coefficients a, b, c and d:

15. The transfer function of a circuit is $H(s) = \frac{80 \, s}{s^2 + 8 \, s + 25}$. The step response of this circuit is: step $response = \left[b \, e^{-at} \sin(c \, t)\right] u(t)$. Determine the values of the constant coefficients a, b, c and d:

$$a =$$
______1/s, $b =$ ______V, and $c =$ _____V.

16. The input to a linear circuit is the voltage, v_i . The output is the voltage, v_o . The transfer function of the circuit is

$$H(s) = \frac{V_{o}(s)}{V_{i}(s)}$$

The poles and zeros of H(s) are shown on this pole-zero diagram. (There are no zeros.) The dc gain of the circuit is

$$\mathbf{H}(0) = 5$$

The step response of the circuit is $v_o(t) = (a + be^{-5t} - ce^{-2t})u(t)$ V. Determine the values of the constants a, b and c.

$$a =$$
_____V, $b =$ _____V and $c =$ _____V.

17. The input to a circuit is the voltage source voltage, v_i . The step response of the circuit is

$$v_{o}(t) = \frac{3}{4} (1 - e^{-100t}) u(t) \text{ V}$$

Determine the value of the inductance, L, and of the resistance, R

$$R = \underline{\hspace{1cm}} \Omega \quad \text{and} \quad L = \underline{\hspace{1cm}} H.$$

18. The input to a circuit is the voltage source voltage, v_i . The step response of the circuit is

$$v_{o}(t) = 5(1-(1+2t)e^{-2t})u(t)$$
 V

When the input is

$$v_{i}(t) = 5\cos(2t + 45^{\circ})$$
 V

the steady-state response is

$$v_{i}(t) = A\cos(2t + \theta)$$
 V

Determine the values of A and θ .

$$A = ____V$$
 and $\theta = ____$ °.

19. The input to a circuit is the voltage $v_i(t)$. The output is the voltage $v_0(t)$.

When the input is:

$$v_i(t) = 2 + 4\cos(100t) + 5\cos(200t + 45^\circ)$$
 V

the corresponding output is:

$$v_o(t) = -5 + 7.071\cos(100t + 135^\circ) + c_2\cos(200t + \theta_2)$$
 V

Determine the value of R, C, c_2 , and θ_2 :

$$R = k\Omega$$
, $C = \mu F$, $c_2 = V$ and $\theta_2 = \circ$

20. The transfer function of a circuit is $H(s) = \frac{20}{s+8}$. When the input to this circuit is sinusoidal, the output is also sinusoidal. Let ω_1 be the frequency at which the output sinusoid is twice as large as the input sinusoid and let ω_2 be the frequency at which output sinusoid is delayed by one tenth period with respect to the input sinusoid. Determine the values of ω_1 and ω_2 .

$$\omega_1 = \underline{\hspace{1cm}} rad/s \quad and \quad \omega_2 = \underline{\hspace{1cm}} rad/s$$