Magnitude Bode Plots

Consider

$$H(\omega) = k(j\omega)^{n} \frac{\prod_{i} \left(1 + j\frac{\omega}{z_{i}}\right)}{\prod_{i} \left(1 + j\frac{\omega}{p_{i}}\right)}$$

- For convenience, assume that k, all z_i and all p_i are positive real numbers.
- The exponent n is an integer which indicates the number of poles or zeros at the origin according to

$$n \ge 1 \implies n \text{ zeros at 0 rad/s}$$

 $n \le -1 \implies |n| \text{ poles at 0 rad/s}$
 $n = 0 \implies \text{ no poles or zeros at 0 rad/s}$

• The z_i are zeros, the p_i are poles and the z_i together with the p_i are corner frequencies. All have units of rad/s.

•
$$\left|1+j\frac{\omega}{c}\right| = \sqrt{1+\left(\frac{\omega}{c}\right)^2} \simeq \begin{cases} 1 & \text{when } \omega < c \\ \frac{\omega}{c} & \text{when } \omega > c \end{cases}$$
 $\left|1+j\frac{\omega}{c}\right|, \text{ dB}$ $20 \quad \frac{\text{dB}}{\text{decade}}$ $c \quad \frac{\omega, \text{ rad/s}}{(\log \text{ scale})}$

• Let *N* be the number of corner frequencies. Arrange the corner frequencies in ascending order: *c*₁, *c*₂, *c*₃, ...,*c*_N. Doing so identifies *N*+1 frequency intervals:

$$\omega \leq c_1, \quad c_1 \leq \omega \leq c_2, \quad c_2 \leq \omega \leq c_3, \quad ..., \quad c_{N-1} \leq \omega \leq c_N$$

- The magnitude Bode plot of $H(\omega)$ is an approximate gain frequency response that consists of N+1 straight line segments corresponding to the N+1 frequency intervals.
- For example, the 3rd line segment corresponds to $c_2 \le \omega \le c_3$. Pick a frequency ω_3 between c_2 and c_3 . That is $c_2 < \omega_3 < c_3$ To obtain the equation of this straight line segment, replace each $\left|1 + j\frac{\omega}{c_i}\right|$ in $|H(\omega)|$ with 1 if $1 > \frac{\omega_3}{c_i}$ and with $\frac{\omega}{c_i}$ if $\frac{\omega_3}{c_i} > 1$. Represent the result as $g\omega^m$. That is

$$|H(\omega)| \simeq g \,\omega^m \quad \text{when } c_2 \le \omega \le c_3$$

Then

 $20\log_{10} |H(\omega)| \simeq 20\log_{10} g + m \times 20\log_{10} \omega$ when $c_2 \le \omega \le c_3$

• Notice that the expression $g \omega^m$ gives the values of the end points of this line segment and that the exponent *m* gives the slope of the line segment.

Example:

$$H(\omega) = \frac{5(j\omega)\left(1+j\frac{\omega}{400}\right)}{\left(1+j\frac{\omega}{40}\right)\left(1+j\frac{\omega}{40}\right)} \implies |H(\omega)| \approx \begin{cases} 5\omega^{1} & \text{when } \omega \le 4\\ 20\omega^{0} & \text{when } 4 \le \omega \le 40\\ 800\omega^{-1} & \text{when } 40 \le \omega \le 400\\ 2\omega^{0} & \text{when } 400 \le \omega \end{cases}$$

Notice that

• The expression representing each segment does indeed have the form $g \omega^m$

•
$$5\omega\Big|_{\omega=4} = 20 = \frac{800}{\omega}\Big|_{\omega=40}$$
 and $\frac{800}{\omega}\Big|_{\omega=400} = 2$.

• The slopes of the 4 line segments are 1, 0, -1 and 0 multiplied by 20 dB/decade.

The magnitude Bode plot is:

