Magnitude Bode Plots

Consider

$$
H(\omega)=k(j \omega)^{n} \frac{\prod_{i}\left(1+j \frac{\omega}{z_{i}}\right)}{\prod_{i}\left(1+j \frac{\omega}{p_{i}}\right)}
$$

- For convenience, assume that k, all z_{i} and all p_{i} are positive real numbers.
- The exponent n is an integer which indicates the number of poles or zeros at the origin according to

$$
\begin{aligned}
& n \geq 1 \Rightarrow n \text { zeros at } 0 \mathrm{rad} / \mathrm{s} \\
& n \leq-1 \Rightarrow|n| \text { poles at } 0 \mathrm{rad} / \mathrm{s} \\
& n=0 \Rightarrow \text { no poles or zeros at } 0 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

- The z_{i} are zeros, the p_{i} are poles and the z_{i} together with the p_{i} are corner frequencies. All have units of rad/s.
- $\left|1+j \frac{\omega}{c}\right|=\sqrt{1+\left(\frac{\omega}{c}\right)^{2}} \simeq\left\{\left.\begin{array}{cc}1 & \text { when } \omega<c \\ \frac{\omega}{c} & \text { when } \omega>c\end{array}\right|_{c} ^{\left|1+j \frac{\omega}{c}\right|, \mathrm{dB}}\right.$
- Let N be the number of corner frequencies. Arrange the corner frequencies in ascending order: $c_{1}, c_{2}, c_{3}, \ldots, c_{N}$. Doing so identifies $N+1$ frequency intervals:

$$
\omega \leq c_{1}, \quad c_{1} \leq \omega \leq c_{2}, \quad c_{2} \leq \omega \leq c_{3}, \quad \ldots, \quad c_{\mathrm{N}-1} \leq \omega \leq c_{\mathrm{N}}
$$

- The magnitude Bode plot of $H(\omega)$ is an approximate gain frequency response that consists of $N+1$ straight line segments - corresponding to the $N+1$ frequency intervals.
- For example, the 3rd line segment corresponds to $c_{2} \leq \omega \leq c_{3}$. Pick a frequency ω_{3} between c_{2} and c_{3}. That is $c_{2}<\omega_{3}<c_{3}$ To obtain the equation of this straight line segment, replace each $\left|1+j \frac{\omega}{c_{\mathrm{i}}}\right|$ in $|H(\omega)|$ with 1 if $1>\frac{\omega_{3}}{c_{\mathrm{i}}}$ and with $\frac{\omega}{c_{\mathrm{i}}}$ if $\frac{\omega_{3}}{c_{\mathrm{i}}}>1$.
Represent the result as $g \omega^{m}$. That is

$$
|H(\omega)| \simeq g \omega^{m} \quad \text { when } c_{2} \leq \omega \leq c_{3}
$$

Then

$$
20 \log _{10}|H(\omega)| \simeq 20 \log _{10} g+m \times 20 \log _{10} \omega \quad \text { when } c_{2} \leq \omega \leq c_{3}
$$

- Notice that the expression $g \omega^{m}$ gives the values of the end points of this line segment and that the exponent m gives the slope of the line segment.

Example:

$$
H(\omega)=\frac{5(j \omega)\left(1+j \frac{\omega}{400}\right)}{\left(1+j \frac{\omega}{4}\right)\left(1+j \frac{\omega}{40}\right)} \Rightarrow|H(\omega)| \simeq\left\{\begin{array}{cc}
5 \omega^{1} & \text { when } \omega \leq 4 \\
20 \omega^{0} & \text { when } 4 \leq \omega \leq 40 \\
800 \omega^{-1} & \text { when } 40 \leq \omega \leq 400 \\
2 \omega^{0} & \text { when } 400 \leq \omega
\end{array}\right.
$$

Notice that

- The expression representing each segment does indeed have the form $g \omega^{m}$
- $\left.5 \omega\right|_{\omega=4}=20=\left.\frac{800}{\omega}\right|_{\omega=40}$ and $\left.\frac{800}{\omega}\right|_{\omega=400}=2$.
- The slopes of the 4 line segments are $1,0,-1$ and 0 multiplied by $20 \mathrm{~dB} /$ decade.

The magnitude Bode plot is:

