Example 1: Figure 8-N1a shows a plot of the voltage across the inductor in Figure 8-N1b.
a) Determine the equation that represents the inductor voltage as a function of time.
b) Determine the value of the resistance R.
c) Determine the equation that represents the inductor current as a function of time.

Figure 8-N1

Solution:

Part a)

The inductor voltage is represented by an equation of the form $v(t)=\left\{\begin{array}{cl}D & \text { for } t<0 \\ E+F e^{-a t} & \text { for } t \geq 0\end{array}\right.$
where D, E, F and a are unknown constants. The constants D, E and F are described by

$$
D=v(t) \text { when } t<0, \quad E=\lim _{t \rightarrow \infty} v(t), \quad E+F=\lim _{t \rightarrow 0+} v(t)
$$

From the plot, we see that

$$
D=0, E=0, \text { and } E+F=4 \mathrm{~V}
$$

Consequently,

$$
v(t)=\left\{\begin{array}{cc}
0 & \text { for } t<0 \\
4 e^{-a t} & \text { for } t \geq 0
\end{array}\right.
$$

To determine the value of a, we pick a time when the circuit is not at steady state. One such point is labeled on the plot in Figure $8-\mathrm{N} 1$. We see $v(0.14)=2 \mathrm{~V}$, that is, the value of the voltage is 2 volts at time 0.14 seconds. Substituting these into the equation for $v(t)$ gives

$$
2=4 e^{-a(0.14)} \Rightarrow a=\frac{\ln (0.5)}{-0.14}=5
$$

Consequently

$$
v(t)=\left\{\begin{array}{cc}
0 & \text { for } t<0 \\
4 e^{-5 t} & \text { for } t \geq 0
\end{array}\right.
$$

Part b)

Figure 8-N2a shows the circuit immediately after the switch opens. In Figure 8-N2b, the part of the circuit connected to the inductor has been replaced by its Thevenin equivalent circuit. The time constant of the circuit is given by

$$
\tau=\frac{L}{R_{t}}=\frac{4}{R+5}
$$

Also, the time constant is related to the exponent in $v(t)$ by $-5 t=-\frac{t}{\tau}$. Consequently

$$
5=\frac{1}{\tau}=\frac{R+5}{4} \Rightarrow R=15 \Omega
$$

Figure 8-N2

Part c)

The inductor current is related to the inductor voltage by

$$
i(t)=\frac{1}{L} \int_{0}^{t} v(\tau) d \tau+i(0)
$$

Figure 8-N3

Figure 8-N3 show the circuit before the switch opens. The closed switch is represented by a short circuit. The circuit is at steady state and the voltage sources have constant voltages so the inductor acts like a short circuit. The inductor current is given by

$$
i(t)=\frac{6}{15}=0.4 \mathrm{~A}
$$

In particular, $i(0-)=0.4 \mathrm{~A}$. The current in an inductor is continuous, so $i(0+)=i(0-)$. Consequently,

$$
i(0)=0.4 \mathrm{~A}
$$

Returning to the equation for the inductor current, we have

$$
i(t)=\frac{1}{4} \int_{0}^{t} 4 e^{-5 \tau} d \tau+0.4=\frac{1}{-5}\left(e^{-5 t}-1\right)+0.4=0.6-0.2 e^{-5 t}
$$

In summary,

$$
i(t)=\left\{\begin{array}{cc}
0.4 & \text { for } t<0 \\
0.6-0.2 e^{-5 t} & \text { for } t \geq 0
\end{array}\right.
$$

Example 2: Figure 8-N4a shows a plot of $v(t)$, the voltage across the $24 \mathrm{k} \Omega$ resistor in Figure 8-N4b.
a) Determine the equation that represents $v(t)$ as a function of time.
b) Determine the value of the capacitance C.

Figure 8-N4

Part a)

The voltage is represented by an equation of the form $v(t)=\left\{\begin{array}{cl}D & \text { for } t<0 \\ E+F e^{-a t} & \text { for } t \geq 0\end{array}\right.$
where D, E, F and a are unknown constants. The constants D, E and F are described by

$$
D=v(t) \text { when } t<0, \quad E=\lim _{t \rightarrow \infty} v(t), \quad E+F=\lim _{t \rightarrow 0+} v(t)
$$

From the plot, we see that

$$
D=6, E=3.6, \text { and } E+F=6 \mathrm{~V}
$$

Consequently,

$$
v(t)=\left\{\begin{array}{cc}
6 & \text { for } t<0 \\
3.6+24 e^{-a t} & \text { for } t \geq 0
\end{array}\right.
$$

To determine the value of a, we pick a time when the circuit is not at steady state. One such point is labeled on the plot in Figure $8-\mathrm{N} 4$. We see $v(0.00247)=4 \mathrm{~V}$, that is, the value of the
voltage is 2 volts at time 0.00247 seconds or 2.47 ms . Substituting these into the equation for $v(t)$ gives

$$
4=3.6+2.4 e^{-a(0.00247)} \Rightarrow a=\frac{\ln (0.1667)}{-0.00247}=725
$$

Consequently

$$
v(t)=\left\{\begin{array}{cc}
6 & \text { for } t<0 \\
3.6+2.4 e^{-725 t} & \text { for } t \geq 0
\end{array}\right.
$$

Part b)

Figure 8-N5a shows the circuit immediately after the switch closes. In Figure 8-N5b, the part of the circuit connected to the capacitor has been replaced by its Thevenin equivalent circuit.

The time constant of the circuit is given by

$$
\tau=R_{t} C=\left(11 \times 10^{3}\right) C
$$

Also, the time constant is related to the exponent in $v(t)$ by $-725 t=-\frac{t}{\tau}$. Consequently

$$
\frac{1}{725}=\left(11 \times 10^{3}\right) C \Rightarrow C=\frac{1}{725\left(11 \times 10^{3}\right)}=125 \times 10^{-9}=125 \mathrm{nF}
$$

Figure 8-N5

Example 3: Figure 8-N6a shows a plot of $v(t)$, the voltage across one of the 5Ω resistors in Figure 8-N6b.
c) Determine the equation that represents $v(t)$ as a function of time.
d) Determine the value of the capacitance C.

Figure 8-N6

Part a)

The voltage is represented by an equation of the form $v(t)=\left\{\begin{array}{cl}D & \text { for } t<0 \\ E+F e^{-a t} & \text { for } t \geq 0\end{array}\right.$
where D, E, F and a are unknown constants. The constants D, E and F are described by

$$
D=v(t) \text { when } t<0, \quad E=\lim _{t \rightarrow \infty} v(t), \quad E+F=\lim _{t \rightarrow 0+} v(t)
$$

From the plot, we see that

$$
D=0, E=1.2, \text { and } E+F=6 \mathrm{~V}
$$

Consequently,

$$
v(t)=\left\{\begin{array}{cc}
0 & \text { for } t<0 \\
1.2+4.8 e^{-a t} & \text { for } t \geq 0
\end{array}\right.
$$

To determine the value of a, we pick a time when the circuit is not at steady state. One such point is labeled on the plot in Figure 8-N6. We see $v(0.72)=2 \mathrm{~V}$, that is, the value of the voltage is 2 volts at time 0.7 .2 seconds. Substituting these into the equation for $v(t)$ gives

$$
2=1.2+4.8 e^{-a(0.72)} \Rightarrow a=\frac{\ln (0.1667)}{-0.72}=2.5
$$

Consequently

$$
v(t)=\left\{\begin{array}{cc}
0 & \text { for } t<0 \\
1.2+4.8 e^{-2.5 t} & \text { for } t \geq 0
\end{array}\right.
$$

Part b)

Figure 8-N7a shows the circuit immediately after time $t=0$. In Figure 8-N7b, the part of the circuit connected to the capacitor has been replaced by its Thevenin equivalent circuit.

The time constant of the circuit is given by

$$
\tau=R_{t} C=8 C
$$

Also, the time constant is related to the exponent in $v(t)$ by $-725 t=-\frac{t}{\tau}$. Consequently

$$
\frac{1}{2.5}=8 C \Rightarrow C=\frac{1}{2.5(8)}=\frac{1}{20}=0.05 \mathrm{~F}
$$

Figure 8-N7

