An Example involving an AC Circuit

The input to this circuit is the voltage source voltage, $v_{\mathrm{i}}(t)$. The output is the voltage $v_{\mathrm{o}}(t)$.

Here plots of $v_{\mathrm{i}}(t)$ (top) and $v_{\mathrm{o}}(t)$ (bottom) versus time:

Given $C=0.2 \mu \mathrm{~F}$, determine the values of R_{1} and R_{2} :

$$
R_{1}=_\Omega \text { and } R_{2}=_\Omega .
$$

Hint: Show that $v_{\mathrm{i}}(t)=12 \cos (1000 t) \mathrm{V}$ and $v_{\mathrm{o}}(t)=2.5 \cos \left(1000 t-76^{\circ}\right) \mathrm{V}$.

Solution:

From the top plot, the period of $v_{\mathrm{i}}(t)$ is $T=6.3146 \mathrm{~ms}=6.3146 \times 10^{-3} \mathrm{~s}$. The frequency is $\omega=\frac{2 \pi}{T}=\frac{2 \pi}{6.3146 \times 10^{-3}}=0.995 \times 10^{3} \cong 1000 \mathrm{rad} / \mathrm{s}$. The amplitude of the input is 12 V and the phase angle is 0° so $v_{\mathrm{i}}(t)=12 \cos (1000 t) \mathrm{V}$.

From the bottom plot the amplitude of the output is $2.497 \cong 2.5$ and the phase angle is $-\cos ^{-1}\left(\frac{0.6048}{2.5}\right)=-76^{\circ}$. The input and output sinusoids have the same frequency so $v_{\mathrm{o}}(t)=2.5 \cos \left(1000 t-76^{\circ}\right) \mathrm{V}$.

Using phasors, we can summarize these results as $\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{i}}(\omega)}=\frac{2.5 \angle-76^{\circ}}{12 \angle 0^{\circ}}$.
Next, we analyze the circuit in the frequency domain:

$$
\begin{gathered}
R_{2} \| \frac{1}{j \omega C}=\frac{R_{2}}{1+j \omega C R_{2}} \\
\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{i}}(\omega)}=\frac{\frac{R_{2}}{1+j \omega C R_{2}}}{R_{1}+\frac{R_{2}}{1+j \omega C R_{2}}}=\frac{K}{1+j \omega C R_{p}}
\end{gathered}
$$

where $K=\frac{R_{1}}{R_{1}+R_{2}}$ and $R_{p}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

$$
\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{i}}(\omega)}=\frac{K}{\sqrt{1+\left(\omega C R_{p}\right)^{2}}} e^{-j \tan ^{-1} \omega C R_{p}}
$$

Combining these results gives $\frac{2.5 \angle-76^{\circ}}{12 \angle 0^{\circ}}=\frac{\mathbf{V}_{\mathrm{o}}(\omega)}{\mathbf{V}_{\mathrm{i}}(\omega)}=\frac{K}{\sqrt{1+\left(\omega C R_{p}\right)^{2}}} e^{-j \tan ^{-1} \omega C R_{p}}$.
In this case the angle of $\frac{\mathbf{V}_{o}(\omega)}{\mathbf{V}_{i}(\omega)}$ is specified to be -76° so
$C R_{p}=C \frac{R_{1} R_{2}}{R_{1}+R_{2}}=-\frac{\tan (-76)}{1000}=0.004$ and the magnitude of $\frac{\mathbf{V}_{o}(\omega)}{\mathbf{V}_{i}(\omega)}$ is specified to be $\frac{2.5}{12}$ so $\frac{K}{\sqrt{1+16}}=\frac{2.5}{12} \Rightarrow 0.859=K=\frac{R_{2}}{R_{1}+R_{2}}$. When $C=0.2 \mu \mathrm{~F}$ these equations indicate that $R_{1}=23.3 \mathrm{k} \Omega, R_{2}=142 \mathrm{k} \Omega$.

As a check, here's the PSpice circuit that produced the plots:

