First-Order Circuits

Example 1:

Determine the voltage $v_o(t)$.

Solution:

This is a first order circuit containing an inductor. First, determine $i_L(t)$.

Consider the circuit for time t < 0.

Step 1: Determine the initial inductor current.

Consider the circuit for time t > 0.

Step 2. The circuit will not be at steady state immediately after the source voltage changes abruptly at time t = 0. Determine the Norton equivalent circuit for the part of the circuit connected to the inductor.

Step 3. The time constant of a first order circuit containing an inductor is given by $\tau = \frac{L}{R_{\star}}$.

Then
$$a = \frac{1}{\tau}$$
.

Step 4. The inductor current is given by $i_L(t) = i_{sc} + (i(0) - i_{sc})e^{-at}$ for $t \ge 0$

Step 5. Express the output voltage as a function of the source voltage and the inductor current.

Step 6. The output voltage is given by

Example 2:

Determine the current $i_o(t)$.

Solution:

This is a first order circuit containing a capacitor. First, determine $v_{\rm C}(t)$.

Consider the circuit for time t < 0.

Step 1: Determine the initial capacitor voltage.

Consider the circuit for time t > 0.

Step 2. The circuit will not be at steady state immediately after the source voltage changes abruptly at time t = 0. Determine the Thevenin equivalent circuit for the part of the circuit connected to the capacitor. First, determine the open circuit voltage, v_{oc} :

Step 3. The time constant of a first order circuit containing an capacitor is given by $\tau = R_t C$.

Then
$$a = \frac{1}{\tau}$$
.

Step 4. The capacitor voltage is given by $v_{\rm C}(t) = v_{\rm oc} + (v_{\rm C}(0) - v_{\rm oc})e^{-at}$ for $t \ge 0$

Step 5. Express the output current as a function of the source voltage and the capacitor voltage.

Step 6. The output current is given by