Example

The input to a linear circuit is the voltage, v_{i}. The output is the voltage, v_{0}. The transfer function of the circuit is

$$
H(s)=\frac{V_{\mathrm{o}}(s)}{V_{\mathrm{i}}(s)}
$$

The poles and zeros of $H(s)$ are shown on this pole-zero diagram. (There are no zeros.) The dc gain of the circuit is

$$
\mathbf{H}(0)=5
$$

Determine the step response of the circuit.

Solution:

The transfer function of the circuit is

$$
H(s)=\frac{a}{(s+2)(s+5)}
$$

where a is a constant to be determined. The circuit is stable because all its poles lie in the right half of the s-plane. Consequently,

$$
\mathbf{H}(\omega)=\left.H(s)\right|_{s=j \omega}=\frac{a}{(2+j \omega)(5+j \omega)}=\frac{\frac{a}{10}}{\left(1+j \frac{\omega}{2}\right)\left(1+j \frac{\omega}{5}\right)}
$$

At dc $(\omega=0)$

$$
5=\mathbf{H}(0)=\frac{a}{10} \Rightarrow a=50
$$

The step response is given by
$v_{0}(t)=\mathcal{L}^{-1}\left[\frac{H(s)}{s}\right]=\mathcal{L}^{-1}\left[\frac{50}{s(s+2)(s+5)}\right]=\mathcal{L}^{-1}\left[\frac{5}{s}+\frac{\frac{10}{3}}{s+5}-\frac{\frac{25}{3}}{s+2}\right]=\left(5+\frac{10}{3} e^{-5 t}-\frac{25}{3} e^{-2 t}\right) u(t) \mathrm{V}$

Example

The input to a linear circuit is the voltage, v_{i}. The output is the voltage, v_{0}. The transfer function of the circuit is

$$
H(s)=\frac{V_{\mathrm{o}}(s)}{V_{\mathrm{i}}(s)}
$$

The poles and zeros of $H(s)$ are shown on this pole-zero diagram. At $\omega=5 \mathrm{rad} / \mathrm{s}$ the gain of the circuit is

$$
\mathbf{H}(5)=10
$$

Determine the step response of the circuit.

Solution:

The transfer function of the circuit is

$$
H(s)=\frac{a(s-0)}{(s+4-j 3)(s+4+j 3)}=\frac{a s}{s^{2}+8 s+25}
$$

where a is a constant to be determined. The circuit is stable because all its poles lie in the right half of the s-plane. Consequently,

$$
\mathbf{H}(\omega)=\left.H(s)\right|_{s=j \omega}=\frac{j a \omega}{(j \omega)^{2}+j 8 \omega+25}=\frac{j a \omega}{\left(25-\omega^{2}\right)+j 8 \omega}
$$

At $\omega=5 \mathrm{rad} / \mathrm{s}$

$$
10=\frac{j a 5}{\left(25-5^{2}\right)+j 8(5)}=\frac{a}{8} \Rightarrow a=80
$$

The step response is given by

$$
\begin{aligned}
v_{0}(t)=\mathcal{L}^{-1}\left[\frac{H(s)}{s}\right]=\mathcal{L}^{-1}\left[\frac{80 s}{s\left(s^{2}+8 s+25\right)}\right]=\mathcal{L}^{-1}\left[\frac{80}{s^{2}+8 s+25}\right] & =\mathcal{L}^{-1}\left[\frac{80}{3} \times \frac{3}{(s+4)^{2}+3^{2}}\right] \\
& =\frac{80}{3} e^{-4 t} \sin (4 t) u(t) \mathrm{V}
\end{aligned}
$$

Example

The input to a linear circuit is the voltage, v_{i}. The output is the voltage, v_{0}. The transfer function of the circuit is

$$
H(s)=\frac{V_{\mathrm{o}}(s)}{V_{\mathrm{i}}(s)}
$$

The poles and zeros of $H(s)$ are shown on this pole-zero diagram. (There is a double pole at $s=-4$.) The dc gain of the circuit is

$$
\mathbf{H}(0)=5
$$

Determine the step response of the circuit.

Solution:

The transfer function of the circuit is

$$
H(s)=\frac{a(s+2)}{(s+4)^{2}}
$$

where a is a constant to be determined. The circuit is stable because all its poles lie in the right half of the s-plane. Consequently,

$$
\mathbf{H}(\omega)=\left.H(s)\right|_{s=j \omega}=\frac{a(j \omega+2)}{(j \omega+4)^{2}}=\frac{\frac{a}{8}\left(1+j \frac{\omega}{2}\right)}{\left(1+j \frac{\omega}{4}\right)^{2}}
$$

At dc $(\omega=0)$

$$
5=\mathbf{H}(0)=\frac{a}{8} \Rightarrow a=40
$$

The step response is given by
$v_{0}(t)=\mathcal{L}^{-1}\left[\frac{H(s)}{s}\right]=\mathcal{L}^{-1}\left[\frac{40(s+2)}{s(s+4)^{2}}\right]=\mathcal{L}^{-1}\left[\frac{5}{s}-\frac{5}{s+4}+\frac{20}{(s+4)^{2}}\right]=\left(5+(20 t-5) e^{-4 t}\right) u(t) \mathrm{V}$

Example:

The input to a circuit is the voltage, v_{i}. The step response of the circuit is

$$
v_{\mathrm{o}}=5 e^{-4 t} \sin (2 t) u(t) \mathrm{V}
$$

Sketch the pole-zero diagram for this circuit.

Solution:

$$
\begin{aligned}
\frac{H(s)}{s}=\mathcal{L}\left[5 e^{-4 t} \sin (2 t) u(t)\right]=5 \times\left.\frac{2}{s^{2}+2^{2}}\right|_{s \leftarrow s+4} & =\frac{10}{(s+4)^{2}+2^{2}} \\
& =\frac{10}{s^{2}+8 s+20}=\frac{10}{(s+4-j 2)(s+4+j 2)}
\end{aligned}
$$

Consequently

$$
H(s)=\frac{10 s}{(s+4-j 2)(s+4+j 2)}
$$

Example:

The input to a circuit is the voltage, v_{i}. The step response of the circuit is

$$
v_{\mathrm{o}}=5 t e^{-4 t} u(t) \mathrm{V}
$$

Sketch the pole-zero diagram for this circuit.

Solution:

$$
\frac{H(s)}{s}=\mathcal{L}\left[5 t e^{-4 t} u(t) \mathrm{V}\right]=5 \times\left.\frac{1}{s^{2}}\right|_{s \leftarrow s+4}=\frac{5}{(s+4)^{2}}
$$

Consequently

$$
H(s)=\frac{5 s}{(s+4)^{2}}
$$

