Example:

The initial conditions for this circuit are

$$
v_{\mathrm{C}}(0)=0 \text { and } i_{\mathrm{L}}(0)=0
$$

Determine $v_{\mathrm{C}}(t)$ for $t \geq 0$ in each of the following cases:

A. $b=1.5 \mathrm{~A} / \mathrm{A}$
B. $b=1 \mathrm{~A} / \mathrm{A}$
C. $b=0.2 \mathrm{~A} / \mathrm{A}$

Solution:

After the switch closes, we have

where $A=12 \mathrm{~V}, R=10 \Omega, L=1 \mathrm{H}$ and $C=0.01 \mathrm{~F}$. Apply KVL to the outside loop to get

$$
v_{\mathrm{C}}+R i-A=0 \Rightarrow i=\frac{A-v_{\mathrm{C}}}{R}
$$

Apply KCL at the bottom node of the indictor to get

$$
\begin{equation*}
i+b i=i_{\mathrm{L}}+C \frac{d v_{\mathrm{C}}}{d t} \Rightarrow(1+b) \frac{A-v_{\mathrm{C}}}{R}=i_{\mathrm{L}}+C \frac{d v_{\mathrm{C}}}{d t} \tag{1}
\end{equation*}
$$

Apply KVL to the mesh consisting of the capacitor and the indictor to get

$$
L \frac{d i_{\mathrm{L}}}{d t}=v_{\mathrm{C}}
$$

Notice that equation 2 indicates that

$$
\left.\frac{d i_{\mathrm{L}}}{d t}\right|_{t=0}=\frac{v_{\mathrm{C}}(0)}{L}=0
$$

Substituting Equation 2 into Equation 1 gives

$$
\frac{(1+b)}{R} A=C L \frac{d^{2} i_{\mathrm{L}}}{d t^{2}}+(1+b) \frac{L}{R} \frac{d i_{\mathrm{L}}}{d t}+i_{\mathrm{L}}
$$

Consequently, the circuit is represented by the second order differential equation

$$
\begin{equation*}
\frac{(1+b)}{C L R} A=\frac{d^{2} i_{\mathrm{L}}}{d t^{2}}+\frac{(1+b)}{C R} \frac{d i_{\mathrm{L}}}{d t}+\frac{i_{\mathrm{L}}}{C L} \tag{3}
\end{equation*}
$$

Take the Laplace transform of equation 3 to get

$$
\frac{(1+b)}{C L R} \frac{A}{s}-=s^{2} I_{\mathrm{L}}+\frac{(1+b)}{C R} s I_{\mathrm{L}}+I_{\mathrm{L}}
$$

Solving for I_{L} gives

$$
I_{\mathrm{L}}=\frac{\frac{(1+b)}{C L R} A}{s\left(s^{2}+\frac{(1+b)}{C R} s+1\right)}=\frac{120(1+b)}{s\left(s^{2}+10(1+b) s+100\right)}
$$

A. For $b=1.5 \mathrm{~A} / \mathrm{A}$ we have

$$
I_{\mathrm{L}}=\frac{300}{s\left(s^{2}+25 s+100\right)}=\frac{300}{s(s+5)(s+20)}=\frac{3}{s}-\frac{4}{s+5}+\frac{1}{s+5}
$$

Taking the inverse Laplace transform gives

$$
i_{\mathrm{L}}=\left(3-4 e^{-5 t}+e^{-20 t}\right) u(t)
$$

Using equation 2

$$
v_{\mathrm{C}}=\frac{d i_{\mathrm{L}}}{d t}=20\left(e^{-5 t}-e^{-20 t}\right) u(t)+\left(3-4 e^{-5 t}+e^{-20 t}\right) \delta(t)
$$

The second term on the right side of this equation is always zero. It's zero when $t=0$ because the expression inside the parenthesis is evaluates to zero when $t=0$. It's zero at all other times because $\delta(t)$ is zero when $t \neq 0$. Consequently

$$
v_{\mathrm{C}}=\frac{d i_{\mathrm{L}}}{d t}=20\left(e^{-5 t}-e^{-20 t}\right) u(t)
$$

Alternate Solution:

Take the Laplace transform of equations 1 and 2 to get

$$
\frac{(1+b)}{R}\left(\frac{A}{s}-V_{\mathrm{C}}\right)=I_{\mathrm{L}}+C\left(s V_{\mathrm{C}}-v_{\mathrm{C}}(0)\right)=I_{\mathrm{L}}+C s V_{\mathrm{C}}
$$

and

$$
V_{\mathrm{C}}=L\left(s I_{\mathrm{L}}-i_{\mathrm{L}}(0)\right) \Rightarrow V_{\mathrm{C}}=L s I_{\mathrm{L}}
$$

Combining these equations we get

$$
\frac{(1+b)}{R}\left(\frac{A}{s}-V_{\mathrm{C}}\right)=\frac{V_{\mathrm{C}}}{L s}+C s V_{\mathrm{C}} \Rightarrow \frac{(1+b)}{R}\left(\frac{A}{s}\right) L s=V_{\mathrm{C}}+\frac{(1+b)}{R} L s V_{\mathrm{C}}+C L s^{2} V_{\mathrm{C}}
$$

Solving for V_{C} gives

$$
V_{\mathrm{C}}=\frac{\frac{A(1+b)}{R C}}{s^{2}+\frac{(1+b)}{R C} s+\frac{1}{C L}}=\frac{120(1+b)}{s^{2}+10(1+b) s+100}
$$

D. For $b=1.5 \mathrm{~A} / \mathrm{A}$ we have

$$
V_{\mathrm{C}}=\frac{300}{s^{2}+25 s+100}=\frac{300}{(s+5)(s+20)}=\frac{20}{(s+5)}-\frac{20}{(s+20)}
$$

Taking the inverse Laplace transform gives

$$
v_{\mathrm{C}}=20\left(e^{-5 t}-e^{-20 t}\right) u(t)
$$

B. For $b=1.0 \mathrm{~A} / \mathrm{A}$ we have

$$
V_{\mathrm{C}}=\frac{240}{s^{2}+20 s+100}=\frac{240}{(s+10)^{2}}
$$

Taking the inverse Laplace transform gives

$$
v_{\mathrm{C}}=\mathcal{L}^{-1}\left[\frac{240}{(s+10)^{2}}\right]=240 e^{-10 t} \mathcal{L}^{-1}\left[\frac{1}{s^{2}}\right]=240 t e^{-10 t} u(t)
$$

E. For $b=0.2 \mathrm{~A} / \mathrm{A}$ we have

$$
V_{\mathrm{C}}=\frac{144}{s^{2}+12 s+100}=\frac{144}{(s+6)^{2}+8^{2}}
$$

Taking the inverse Laplace transform gives

$$
v_{\mathrm{C}}=\mathcal{L}^{-1}\left[\frac{144}{(s+6)^{2}+8^{2}}\right]=18 e^{-6 t} \mathcal{L}^{-1}\left[\frac{8}{s^{2}+8^{2}}\right]=16 e^{-6 t} \sin (8 t) u(t)
$$

Second Alternate Solution:

Represent the circuit in the s-domain as

Because the initial conditions are zero, the voltage sources accounting for the initial conditions hare zero volt voltage sources and can be replaced by short circuits:

Apply KVL to the outside loop to get

$$
V_{\mathrm{C}}+R I-\frac{A}{s}=0 \Rightarrow I=\frac{\frac{A}{s}-V_{\mathrm{C}}}{R}
$$

Apply KCL at the bottom node of the indictor to get

$$
I+b I=I_{\mathrm{L}}+\frac{V_{\mathrm{C}}}{\frac{1}{C s}} \Rightarrow \frac{(1+b)}{R} \frac{A}{s}=I_{\mathrm{L}}+C s V_{\mathrm{C}}+\frac{(1+b)}{R} V_{\mathrm{C}}
$$

Apply KVL to the mesh consisting of the capacitor and the indictor to get

$$
L s I_{\mathrm{L}}=V_{\mathrm{C}} \Rightarrow I_{\mathrm{L}}=\frac{V_{\mathrm{C}}}{L s}
$$

Combining these equations and solving for V_{C}, we get

$$
\begin{gathered}
\frac{(1+b)}{R} \frac{A}{s}=\frac{V_{\mathrm{C}}}{L s}+C s V_{\mathrm{C}}+\frac{(1+b)}{R} V_{\mathrm{C}} \Rightarrow \frac{(1+b) A}{R C}=s^{2} V_{\mathrm{C}}+\frac{(1+b)}{R C} s V_{\mathrm{C}}+\frac{V_{\mathrm{C}}}{L C} \\
V_{\mathrm{C}}=\frac{\frac{(1+b) A}{R C}}{s^{2}+\frac{(1+b)}{R C} s+\frac{1}{L C}}=\frac{120(1+b)}{s^{2}+10(1+b) s+100}
\end{gathered}
$$

This is equation 4 . Now v_{C} can be determined as before.
(checked using LNAP and MATLAB, 3/13/06)

