Design Problems

Example:

The input of this circuit is the voltage source voltage, v_{s}. The output is the resistor voltage, v_{0}. Design this circuit to have the step response

$$
v_{\mathrm{o}}=5 t e^{-4 t} u(t) \mathrm{V}
$$

Solution:

Equating the Laplace transform of the step response of the give circuit to the Laplace transform of the given step response:

$$
V_{\mathrm{o}}(s)=\frac{\frac{k R}{L}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}=\frac{5}{(s+4)^{2}}
$$

Equating the poles:

$$
s_{1,2}=\frac{-\frac{R}{L} \pm \sqrt{\left(\frac{R}{L}\right)^{2}-\frac{4}{L C}}}{2}=-4 \pm j 0
$$

Summarizing the results of these comparisons:

$$
\frac{R}{2 L}=4, \quad R=2 \sqrt{\frac{L}{C}} \quad \text { and } \quad \frac{k R}{L}=5
$$

Pick $L=1 \mathrm{H}$, then $k=0.625 \mathrm{~V} / \mathrm{V}, R=8 \Omega$ and $C=0.0625 \mathrm{~F}$.

Example:

The input of this circuit is the voltage source voltage, v_{s}. The output is the resistor voltage, v_{0}.
Design this circuit to have the step response

$$
v_{\mathrm{o}}=5 e^{-4 t} \sin (2 t) u(t) \mathrm{V}
$$

Solution:

Equating the Laplace transform of the step response of the give circuit to the Laplace transform of the given step response:

$$
V_{\mathrm{o}}(s)=\frac{\frac{k R}{L}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}=\frac{10}{(s+4)^{2}+4}=\frac{10}{s^{2}+8 s+20}
$$

Equating coefficients:

$$
\frac{R}{L}=8, \quad \frac{1}{L C}=20 \quad \text { and } \quad \frac{k R}{L}=10
$$

Pick $L=1 \mathrm{H}$, then $k=1.25 \mathrm{~V} / \mathrm{V}, R=8 \Omega$ and $C=0.05 \mathrm{~F}$.

Example:

The input of this circuit is the voltage source voltage, v_{s}. The output is the resistor voltage, v_{0}. Design this circuit to have the step response

$$
v_{0}=5\left(e^{-2 t}-e^{-4 t}\right) u(t) \mathrm{V}
$$

Solution:

Equating the Laplace transform of the step response of the give circuit to the Laplace transform of the given step response:

$$
V_{\mathrm{o}}(s)=\frac{\frac{k R}{L}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}=\frac{5}{s+2}-\frac{5}{s+4}=\frac{10}{s^{2}+6 s+8}
$$

Equating coefficients:

$$
\frac{R}{L}=6, \quad \frac{1}{L C}=8 \quad \text { and } \quad \frac{k R}{L}=10
$$

Pick $L=1 \mathrm{H}$, then $k=1.667 \mathrm{~V} / \mathrm{V}, R=6 \Omega$ and $C=0.125 \mathrm{~F}$.

Example:

The input of this circuit is the voltage source voltage, v_{s}. The output is the resistor voltage, v_{o}. Design this circuit to have the step response

$$
v_{o}=5\left(e^{-2 t}+e^{-4 t}\right) u(t) \mathrm{V}
$$

Solution:

Comparing the Laplace transform of the step response of the give circuit to the Laplace transform of the given step response:

$$
V_{o}(s)=\frac{\frac{k R}{L}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}} \neq \frac{5}{(s+2)}+\frac{5}{(s+4)}=\frac{10 s+30}{s^{2}+6 s+8}
$$

These two functions can not be made equal by any choice of k, R, C and L because the numerators have different forms.

