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1 Introduction

Communication errors are often present when a human instructs a robot using a
“natural” interface (i.e. in a visual or aural modality). For some activities the im-
plications of such errors are trivial, while for others there may be potentially severe
consequences. In this paper, we consider how such errors can be considered ex-
plicitly in the context of risk minimization. Whereas many robotic systems operate
using only imperative commands, our particular desire is to enable the system to en-
gage in a dialog with the user. This research is a natural extension of previous work
on visual languages for robot control and programming [1], which has been success-
fully used to operate the Aqua2 family of underwater robots [2]. In that work, divers
communicate with the robot visually using a set of fiducial markers, by forming
discrete geometric gestures with a pair of such markers. While this fiducial-based
visual control language, RoboChat, has proven to be robust and accurate, we do not
have any quantitative measure of uncertainty or cost assessment related to the tasks
at hand. The framework we propose here is designed to be an adjunct to a language
such as RoboChat and provide a measure of uncertainty in the utterances. Moreover,
by providing additional robustness (e.g. through uncertainty reduction and ensuring
robot safety) as a result of the dialog mechanism itself, a reduced level of perfor-
mance is required from the base communication system allowing for more flexible
alternative mechanisms.

Any interaction protocol will carry a certain degree of uncertainty with it and for
accurate human-robot communication, that uncertainty must be incorporated and
accounted for by a command-execution interface. In the presence of high uncer-
tainty, large degree of risk, or moderate uncertainty coupled with substantial risk,
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the robot should ask for confirmation. The principled basis for this decision to ask
for confirmation is our concern.

Our current work has been developed specifically, but not exclusively, for the
domain of underwater robotics. In this context, the robot operates in concert with
a human and the primary risk factors are measured as a function of the difficulties
incurred if the robotic system fails, and as a function of the total length of an exper-
iment. The longer the diver has to stay underwater the less desirable a situation it
is. In addition, if the robot fails far from the diver it is much more serious than if it
fails nearby. Finally, if the robot travels far away, it is intrinsically more dangerous
due to reduced visibility, current and other factors. Thus, risk is primarily described
in terms of risk to the human operator from a more extensive experiment, and risk
to the human and the robot as a result of being separated during a procedure or as a
result of a failure during the execution of a task.

The theoretical advancements in this paper focus on two principal ideas: uncer-
tainty in the input language used for human-robot interaction, and analysis of cost
of the task. We present a framework for initiating dialogs between a robot and a
human operator using a model for task costs and a model of uncertainty in the input
scheme. We also perform extensive experimental validation to assess the proposed
dialogue mechanism, both in the field and also in the lab in the form of human tri-
als. The field trials are also performed in both indoor, closed–water environments
(where it is easier to control the experimental parameters), and open-water scenarios
in an outdoor lake.

2 Background and Related Work

This work uses a gesture-like interface to accomplish human-robot interaction, and
this is somewhat related to visual programming languages. We briefly comment on
prior work, necessarily in a rather cursory manner, in some of the disparate and rich
domains our dialogue management scheme is based on. As this research builds on
our past work in vision-based human-robot interaction, we briefly revisit those in
this section as well.

Sattar et al. looked at using visual communications, and specifically visual servo-
control with respect to a human operator, to handle the navigation of an underwater
robot [3]. In that work, while the robot follows a diver to maneuver, the diver can
only modulate the robot’s activities by making hand signals that are interpreted by
a human operator on the surface. Visual communication has also been used by sev-
eral authors to allow communication between systems, for example in the work of
Dunbabin et al [4].

The work of Waldherr, Romero and Thrun [5] exemplifies the explicit communi-
cation paradigm in which hand gestures are used to interact with a robot and lead it
through an environment. Tsotsos et al. [6] considered a gestural interface for non-
expert users, in particular disabled children, based on a combination of stereo vision
and keyboard-like input. As an example of implicit communication, Rybski and
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Voyles [7] developed a system whereby a robot could observe a human performing
a task and learn about the environment.

Fiducial marker systems, as mentioned in the previous section, are efficiently
and robustly detectable under difficult conditions. Apart from the ARTag toolkit
mentioned previously, other fiducial marker systems have been developed for use in
a variety of applications. The ARToolkit marker system [8] consists of symbols very
similar to the ARTag flavor in that they contain different patterns enclosed within
a square black border. Circular markers are also possible in fiducial schemes, as
demonstrated by the Fourier Tags [9] fiducial system.

Gesture-based robot control has been considered extensively in Human-Robot
Interaction (HRI). This includes explicit as well as implicit communication frame-
works between human operators and robotics systems. Several authors have consid-
ered specialized gestural behaviors [10] or strokes on a touch screen to control basic
robot navigation. Skubic et al. have examined the combination of several types of
human interface components, with special emphasis on speech, to express spatial
relationships and spatial navigation tasks [11].

Vision-based gesture recognition has long been considered for a variety of tasks,
and has proven to be a challenging problem examined for over 20 years with diverse
well-established applications [12][13]. The types of gestural vocabularies range
from extremely simple actions, like simple fist versus open hand, to very complex
languages, such as the American Sign Language (ASL). ASL allows for the expres-
sion of substantial affect and individual variation, making it exceedingly difficult
to deal with in its complete form. For example, Tsotsos et al.[14] considered the
interpretation of elementary ASL primitives (i.e. simple component motions) and
achieved 86 to 97 per cent recognition rates under controlled conditions. While
such rates are good, they are disturbingly low for open-loop robot-control purposes.

While our current work looks at interaction under uncertainty in any input modal-
ity, researchers have investigated uncertainty modeling in human-robot communica-
tion with specific input methods. For example, Pateras et al. applied fuzzy logic to
reduce uncertainty to reduce high-level task descriptions into robot sensor-specific
commands in a spoken-dialog HRI model [15]. Montemerlo et al. have investi-
gated risk function for safer navigation and environmental sampling for the Nurse-
bot robotic nurse in the care of the elderly [16]. Bayesian risk estimates and active
learning in POMDP formulations in a limited-interaction dialog model [17] and
spoken language interaction models [18] have also been investigated in the past.
Researchers have also applied planning cost models for efficient human-robot inter-
action tasks [19] [20].

3 Methodology

In a typical human–robot interaction scenario, the human operator instructs the robot
to perform a task. Traditionally this takes place using a pragmatic interface (such as
keyboards or mice), but the term “human-robot interaction” usually implies more
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Fig. 1 Control flow in our risk-uncertainty model.

“natural” modalities such as speech, hand gestures or physical body movements.
Our approach is, in principle, independent of the specific modality, but our exper-
imental validation described later in the paper uses gestures. The essence of our
approach is to execute costly activities only if we are certain they have been indi-
cated. For actions that have low cost, we are willing to execute them even when the
level of certainty is low, since little is lost if they are executed inappropriately.

Whatever the modality, the robot has to determine the instructions and for most
natural interfaces this entails a substantial degree of uncertainty. The interaction
starts with the human operator providing input utterances to the robot. The robot
estimates a set of actions and generates a plan (in this case a potential trajectory)
needed to perform the given task using a simulator. The generated action and trajec-
tory is then evaluated by a cost and risk analysis module, comprised of a set of As-
sessors. This module outputs estimated total cost and together with the uncertainty
in the input dialog, is fed into a Decision Function. If the relationship between cost
and uncertainty is unacceptable then the robot decides to ask for feedback. Other-
wise, the robot executes the instructed task. A flowchart illustrating the control flow
in this process can be seen in Figure 1.

The core of our approach relies on calculating a probabilistic measure of the
uncertainty in the input language, and also calculating the cost involved in making
the robot perform the task as instructed by the human operator. The following two
subsections describe in detail these two aspects of our framework.

3.1 Uncertainty Modeling

To interact with a mobile robot, a human operator has to use a mode of communica-
tion, such as speech, gestures, touch interface, or mouse input on a computer screen.
In practice, there will almost always be noise in the system that will introduce un-
certainty in the dialog.
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In our human-robot interaction framework, utterances are considered to be inputs
to the system. Gestures, gi, are symbols containing specific instructions to the robot.
A gesture set, G, is made up of a finite number of gestures. Each gesture gi has as-
sociated with it a probability p(gi) of being in an utterance. The robot is aware of
the gesture set G (i.e. the “language” set), and the probabilities pi(g) are precom-
puted and is available to the system. Statements, S, (i.e. sentences) in our framework
can be atomic gestures (e.g. “go left”, or “take picture”), or they can be compound
commands constituted of several atomic gestures, including repetitions. We assume
each gesture is independently uttered by the operator.

Programs or Tasks are either a smaller subset of or equal to a set of statements.
By definition, we indicate programs to contain only consistent instructions (i.e. in-
structions that are legal in semantics or syntax). Each program Pi has a likelihood of
occurrence li and a cost ci associated with it. It is worth noting however, given the
input language, the set of all possible programs will be reduced, as the inconsistent
ones, both syntactically and semantically, are going to be expunged.

Since there will always exist uncertainty in input observation, we can model the
input language scheme as a Hidden Markov Model [21], with the actual input ges-
tures becoming the hidden states of the HMM. An HMM requires three probability
matrices to be specified to estimate the input utterances, namely:

1. Initial probabilities of the hidden states, π .
2. Transition probabilities between the hidden states, A.
3. Confusion matrix, or the emission probabilities, B.

For any given input mechanism, we assume the matrices can be estimated or
learned. Once the matrices are available, the Baum-Welch algorithm can be used to
train the HMM parameters and the Viterbi algorithm can be applied to estimate the
likelihood of the input utterance [22].

3.2 Cost Analysis

Once the uncertainty is computed, we perform a cost assessment of the given task.
This is performed irrespective of the uncertainty; i.e. a low uncertainty measure will
not cause the cost calculation task to be suspended. To estimate the cost of running
a program, we use a set of Assessors, that are applied on the robot state as the task is
simulated. After executing each command in the input statement, the set of assessors
examine the current state of the robot and produce an estimated value of risk. At
the end of the simulation the overall program cost is a sum of all the assessor’s
outputs over the duration of the simulated program. This sum is eventually taken
into consideration by the Decision Function. We approach the cost factor from two
different perspectives; namely the risk associated from the operator’s perspective,
and the cost involved in terms of operational overhead of the robot while attempting
to perform the task.
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3.2.1 Risk Measurement

Risk encompasses many factors, including domain specific ones. In our case, the risk
model reflects the difficulty of recovering the robot in the event of a total systems
failure. In addition, the level of risk to the human operators is a function of time.
Examples of high risk scenarios could be the robot venturing too far from safety, or
drifting too close to the obstacles, or other objects that pose significant threat to the
robot, requiring excessive time to perform the task, etc. We denote the set of such
factors by A = {α1,α2, . . .αn}.

3.2.2 Cost Measurement

This component measures the operational overhead associated with robot operation,
over the duration of the task to be executed. The overhead measures are a function
of factors such as power consumption, battery condition, system temperature, com-
putational load, total distance travelled etc. We denote the set of such factors by
B = {β1,β2, . . .βn}.

3.2.3 Decision Function

Let f be the risk measurement function, and ϕ denote the overhead cost measure-
ment function. Then, overall operational cost, C becomes,

C = f (α1,α2, . . . ,αn)+ϕ(β1,β2, . . . ,βn) (1)

If we denote the uncertainty measure as P, the Decision Function ρ can be ex-
pressed as,

τ = ρ(C,P) (2)

The function ρ increases proportionally with the cost measure C and is inversely
proportional with P. If τ exceeds a given threshold, the system prompts the user
for clarification, and the feedback is passed through the uncertainty model and cost
estimation process in a similar fashion. Until the τ falls below a threshold, the sys-
tem will keep asking the user to provide feedback. To estimate the threshold τ , we
generate all possible consistent sentences based on the observed input (by using the
confusion matrix B of gestures, gi), and pass them through the HMM to obtain likely
observation values. These sentences are also passed through the task simulator (i.e.
set of assessors) to evaluate the cost measures for all of the sentences. Once the pos-
sible sentences have been generated and their corresponding likelihoods and costs
have been computed, we take the average cost of these programs and set that as the
value of threshold τ . Next, we pick the most likely program and compare its like-
lihood to that of the threshold. If it exceeds the threshold, we ask for confirmation.
Otherwise, we execute the program as instructed.
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4 Experiments and Results

In order to validate our approach and quantify the performance of the proposed
algorithm, we conducted a set of dialog-based experiments, both on-board and off-
board. In the off-board experiments, a set of users were asked to program the robot
to perform certain tasks, with an input modality that ensured a non-trivial amount
of uncertainty in communication. Since the key concept in this work involves a
human-robot dialog mechanism, we did not require task execution for the off-board
trials. We performed field trials on-board on the Aqua2 underwater robot, both in
open-water and closed-water environments, to qualitatively assess the feasibility of
a real-world deployment of the system. Results and experiences from both sets of
experiments are presented in the following sections, preceded by a brief description
of the input language.

4.1 Language Description

The language used for programming the robot is designed to be easily deployable
in a human-robot dialog context for the Aqua2 robot. For these experiments, we
used a subset of the complete language. The language tokens (gestures) comprised
of basic motion commands, commands for localizing and commands to track and
follow an object of interest. The commands can be optionally followed by numeric
arguments, which denote the number of seconds the commands should be executed
for. In our experiments, the actual input argument was multiplied by three to prolong
the execution time of the robot. One could use large number of tokens to address a
large space of numeric arguments, but in theory that space is infinitely large, and a
non-trivial subset of such tokens can impose a significant cognitive burden on the
user. The commands are mostly self-explanatory (as seen in Tables 1 and 2). The
visual following task is a two-step process – the TUNETRACKER command instructs
the robot to calibrate the vision system to follow the target directly in front of the
robot; the FOLLOW command instructs the robot to actually start following the target
of interest as it moves away. The numeric argument after FOLLOW is the duration
for which the robot should follow the target. The system only starts to evaluate the
input after it encounters an EXECUTE command. A common task in the underwater
domain is that of surveillance and inspection. As such, the commands chosen for the
trials instruct the robot to carry out such surveillance tasks in different trajectories.

4.2 User Study

We performed a set of user studies to collect quantitative performance measures of
our algorithm. When operating as a diver’s assistant in underwater environments, the
system uses fiducials to engage in a dialog with the robot. However, in the off-board
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bench trials, we employed a simplified “gesture-only language”, where the users
were limited to using mouse input. We used a vocabulary set of 18 tokens defined
by oriented mouse gestures, and as such each segment is bounded by a 20o-wide
arc. The choice for using mouse gestures stemmed from the need to introduce un-
certainty in the input modality, while keeping the cognitive load roughly comparable
to that experienced by scuba divers.

To calculate uncertainty in input, we trained a Hidden Markov Model using com-
monly used programs given to the robot (such as those used in previous experiments
and field trials). To estimate task costs, we simulated the programs using a simula-
tion engine and used a set of assessors that takes into account the operating context
of an autonomous underwater vehicle. The simulator has been designed to take into
account the robot’s velocity, maneuverability and propulsion characteristics to ac-
curately and realistically simulate trajectories taken by the robot while executing
commands such as those used in our experiments.

In particular, we applied the following assessors during the user studies:

1. Total distance: The operating cost and risk factors both increase with total dis-
tance traveled by the robot. The cost associated with the amount of wear is a
function of total travel, and higher travel distances also increase external opera-
tional risks.

2. Farthest distance: The farther the robot goes from the initial position (i.e. op-
erator’s position), the higher the chance of losing the robot. In the event that the
robot encounters unusual circumstances which it is not equipped to handle, the
involvement of a human operator is also a small possibility, thereby increasing
the overall task cost.

3. Execution Time: An extremely long execution time also carries the overhead of
elevated operational and external risk.

4. Average Distance: While the farthest and total distance metrics consider ex-
tremes in range and travel, respectively, the average distance looks at the distance
of the robot (from start location) where most of the task execution time is spent.

Each user were given three programs to send to the system, and each program
was performed three times. A total of 10 users participated in the trials, resulting
in 30 trials for each program, and 90 in all; please refer to Table 1 for the pro-
grams used for the experiments, and whether confirmations were expected or not.
Except for mistakes that created inconsistent programs, users did not receive any
feedback about the correctness of their program. When a user finished “writing” a
program, she either received feedback notifying her of program completion, or a
confirmation dialog was generated based on the output of the Decision Function.
The users were informed beforehand about the estimated cost of the program; i.e.
whether to expect to receive a feedback or not. In case of a confirmation request for
Programs 1 and 3, the users were instructed to redo the program. For Program 2,
the users were informed of the approximate values of the outputs of the assessors.
If the values shown in the confirmation request exceeded the expected numbers by
10%, the users required to reprogram it. Thus, in all cases, users required to conduct
the programming task until the presence or absence of confirmation dialogs were
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consistent with the expected behavior. It is worth noting, however, that this does not
necessarily indicate correctness of the programming, but merely indicates that the
Decision Function has judged the input program (and likely alternatives of that) to
be sufficiently inexpensive and thus safe for execution.

(a) Divers programming Aqua2 during pool tri-
als.

(b) A diver programming Aqua2 during an HRI
trial held at a lake in central Québec.

(c) Example of command acknowledgement given on the LED screen of the Aqua2 robot
during field trials.

Fig. 2 Field trials of the proposed algorithm on board the Aqua2 robot.

4.3 Field Trials

We performed field trials of our system on-board the Aqua2 underwater robot, in
both open-water and closed-water environments. In both trials, the robot was vi-
sually programmed with the same language set used for the user studies, using
ARTag [23] and ARToolkitPlus [8] fiducials used as input tokens; see Tab. 2 for
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the programs used in the field trials. The assessors used for the user studies were
also used in the field trials; in addition, we provided an assessor to take into account
the depth of the robot during task execution. Because of the inherent difficulty in
operating underwater, the trials were not timed. Users were asked to do each pro-
gram once. Unlike in the user study, where there were no execution stage, the robot
performed the tasks that it was programmed to do, when given positive confirmation
to do so. In all experimental cases, the robot behaved consistently, asking confirma-
tions when required, and executing tasks immediately when the tasks were inexpen-
sive to perform. Unlike the user study, where the users had no feedback, the field
trial participants were given feedback in the form of symbol acknowledgement us-
ing a LED display at the back of the robot (as seen on Figure 2(c)). Also unlike
the user studies, the field trial users were given access to a command to delete the
program and start from the beginning, in case they made a mistake.

ID Sequence Confirm?
1 FORWARD, 3, PICTURE, LEFT, 3, PICTURE,

UP, GPSFIX, GPSBEARING, EXECUTE
No

2 FORWARD, 9, LEFT, 6, FORWARD, 9, MOVIE,
9, RIGHT, 3, SURFACE, STOP, GPSFIX, EXE-
CUTE

Yes

3 LEFT, 6, RIGHT, 3, MOVIE, 3, TUNE-
TRACKER, FOLLOW, 6, UP, GPSFIX, EX-
ECUTE

No

Table 1 Programs used in the user study.

ID Sequence Confirm?
1 FORWARD, 9, LEFT, 5, FORWARD, 9, LEFT 5,

STOP, MOVIE, 9, EXECUTE
Yes

2 FORWARD, 5, LEFT, 3, FORWARD, 5, LEFT 3,
FORWARD, 5, LEFT 3, STOP, EXECUTE

No

3 SWIMCIRCLE, 3, STOP, EXECUTE No
4 SWIMCIRCLE, 3, FORWARD, 5, PICTURE,

LEFT, 2, PICTURE, FORWARD, 3, PICTURE,
RIGHT, 2, PICTURE, SURFACE, STOP, EXE-
CUTE

Yes

5 TUNETRACKER, FOLLOW, 9, SURFACE,
STOP, EXECUTE

Yes

Table 2 Programs used in the field trials.
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(a) Programming times, all users combined.

(b) Programming attempts and generated confirmations, all
users combined.

Fig. 3 Results from user studies, timing 3(a) and confirmations 3(b).

4.4 Results

From the user studies, it was observed that in cases where the programs were cor-
rectly entered, the system behaved consistently in terms of confirmation requests.
Program 2 was the only one that issued confirmations, while Programs 1 and 3 only
confirmed that the task would be executed as instructed. As mentioned in Sec. 4.2,
the users were not given any feedback in terms of program correctness. Thus, the
programs sent to the robot were not accurate in some trials; i.e. the input programs
did not match exactly the programs listed in Tab. 1. In case of mistakes, the De-
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cision Function evaluated the input program and most likely alternatives, and only
allowed a program to be executed (without confirmation) if and only if the task was
evaluated to be less costly.

The cost of feedback, not unexpectedly, is the required time to program the robot.
As seen in Figure 3(a), all three programs took more time to program on average
with confirmations (top bar in each program group). From the user studies data, we
see that the time cost is in the order of approximately 50% of the time required to
program without any reconfirmations. Although the users paid a penalty in terms
of programming time, the absence of safety checks meant a greater risk to the sys-
tem and higher probability of task failures. This was illustrated in all cases where the
system issued a confirmation request; an example of which is demonstrated in a trial
of program 3 by user 2. The input to the system was given as “LEFT 9 RIGHT 3
MOVIE 3 FOLLOW FOLLOW 9 UP GPSFIX EXECUTE”, where the mistakes
are in bold. The system took note of the change in duration from 6×3 = 18 sec-
onds to 9×3 = 27 seconds on two occasions, but more importantly, the FOLLOW
command was issued without a TUNETRACKER command. This, and the change
in parameters to the higher values prompted the system to generate a confirmation
request, which helped the user realize that mistakes were made in programming.
A subsequent reprogramming fixed the mistakes and the task was successfully ac-
cepted without a confirmation. The distribution of confirmation requests and total
number of attempts to program is shown in Figure 3(b).

During the field trials, we were not able to collect quantitative data, but the sys-
tem consistently generated confirmations based on the expensiveness of the task. In
the underwater environment, where divers are cognitively loaded with maintaining
dive gear and other life-support tasks, having feedback on input and the ability to
start over proved to be especially important. These two features relieved some of the
burden of programming, and also ensured correct task execution by the robot, as the
diver could restart programming in case of mistakes.

5 Conclusions

This paper has presented an approach to human-robot dialog in the context of ob-
taining assurance prior to actions that are both risky and uncertain. Our model for
risk is slightly unconventional in that it expresses the risk of a system failure and the
associated recovery procedure that may be needed on the part of a human operator.
Our model of dialog uncertainty is a direct product of the HMM used for recog-
nition, and by simulating the program and likely alternatives that this observation
encodes, we can obtain an estimate of the risk involved in executing the action. By
seeking confirmation for particularly costly actions when they are also uncertain,
we have demonstrated experimentally that this achieves an reduction in overall cost
of action while requiring a relatively small number of confirmatory interactions.

In our current framework we do not combine a failure-based risk model with a
cost function based on Bayes Risk. This appears to be a challenging undertaking due
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to the intrinsic complexity of the computation required, but it would be an appealing
synthesis that would capture most of the key aspects of our problem domain. It
remains an open problem for the moment. We are also interested in evaluating the
interaction mechanism across a wider user population and a larger range of dialog
models, across multiple robotic platforms, including terrestrial and aerial vehicles.
This study is ongoing and new results are expected on a continual basis.
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