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Abstract, 

File system designers today face a dilemma. A log-structured 
file system (LFS) can offer superior performance for many com- 
mon workloads such as those with frequent small writes, read traf- 
fic that is predominantly absorbed by the cache, and sufficient idle 
time to clean the log. However, an LFS has poor performance for 
other workloads, such as random updates to a full disk with little 
idle time to clean. In this paper, we show how adaptive algorithms 
can be used to enable LFS to provide high performance across a 
wider range of workloads. First, we show how to improve LFS 
write performance in three ways: by choosing the segment ‘size to 
match disk and workload characteristics, by modifying the LFS 
cleaning policy to adapt to changes in disk utilization, and by using 
cached data to lower cleaning costs. Second, we show how to im- 
prove LFS read performance by reorganizing data to match read 
patterns. Using trace-driven simulations on a combination of syn- 
thetic and measured workloads, we demonstrate that these exten- 
sions to LFS can significantly improve its performance. 

1 Introduction 

File system designs have long been driven by changes in the 
cost and performance of the underlying hardware. A designer must 
consider the relative cost per byte of memory versus disk 
[Rose92a], the relative performance of the CPU versus a network 
access versus a disk access [Dahl94], the relative magnitudes of 
seek time, rotational delay, and disk bandwidth [Selt90], not to 
mention changes in the workload placed on the file system. 

As a concrete example, the management of free blocks on disk 
has evolved over the past two decades to reflect hardware technol- 
ogy changes. Early file systems, such as the original UNIX file sys- 
tem [Ritc74], used a simple on-disk linked list to track free blocks.. 
Later, systems such as the BSD Fast File System (FFS) lJvIcKu843, 
replaced the on-disk linked list with an incore bitmap, allowing the 
file system to optimize block allocation to keep related data, such 
as blocks within a tile, as adjacent as possible on disk. By this point, 
CPU cycles had become cheap enough relative to disk access costs 
to make the overhead of searching the bitmap small compared with 
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the potential improvement in disk read performance from better 
block allocation policies. More recently, the increasing capacity of 
disks combined with the increasing use of RAIDS has driven some 
to abandon bit maps for B-trees to reduce the CPU ovcrhcad of 
searching for a free disk block [Swee96]; a 100 disk system today 
could require over 10 MB of bitmap. 

These changes pose a tremendous challenge to file system dc- 
signers. Although it may be possible to design a system that is effi- 
cient for today’s hardware and workload patterns, file system 
implementations are often used for decades, long after their design 
assumptions are no longer valid. For example, the BSD Fast File 
System is still in widespread use fifteen years after it was designed. 
In that time, disk capacities and bandwidths have increased by over 
two orders of magnitude, while disk access times have improved at 
a much slower rate. In addition, workloads can change dramatically 
over periods much shorter than file system lifetimes. 

In this paper, we propose and investigate a design principle for 
file systems, called self-tuning. A self-tuning system (1) measures 
the physical characteristics of the underlying hardware, (2) mea- 
sures the workload placed on the file system, and (3) adapts the tile 
system behavior to match. Building a self-tuning system requires 
new algorithms that monitor the environment and adjust behavior 
appropriately. The alternative to self-tuning is building a file sys- 
tem for a fixed point on the moving target of hardware and work- 
load characteristics, and either living with the resulting system well 
past its applicability or rebuilding the system from scratch every 
few years. A plethora of knobs could be added, but they are as like- 
ly to be mistuned as well-tuned. 

Weexplore self-tuning by means of a set of four enhancements 
to the design of a log-structured tile system (LFS) [Rose92a]. LFS 
research has been a good case study of the need for adaptive mcth- 
ods because it has shown the difficulty of designing a file system to 
have good performance across a wide spectrum of workloads, even 
for a fixed technology point. 

In LFS, disk storage is organized into a segmented, append- 
only log; disk writes are batched together to the end of the log. Pe- 
riodically, a garbage collection process called the cleaner locates 
dead space in the log and coalesces it into large free extents that are 
then available for new log writes.This architecture enables an LFS 
to offer superior performance for workloads with frequent small 
writes, read traffic that is predominantly absorbed by the cache, and 
sufficient idle time to clean the log. However, it has dramatically 
lower performance for some other workloads, such as those domi* 
nated by random updates to a full disk with little idle time to clean 
[Selt93, SeltgSa]. 

This dichotomy in LFS performance has led to a debate among 
LFS researchers [Selt93, Oust95a, Selt95a, Oust95b, Sclt95b, 
Oust95c], and has led many to conclude that LFS is an interesting, 
but impractical, idea. We would like to refocus the discussion away 
from comparing LFS and FFS, to how to design a single file system 
with good performance across a wide range of workloads and hard- 
ware characteristics. 

We make four contributions to improving the performance of 
log-structured tile systems. We evaluate our improvements to LFS 
using trace-driven simulations of both synthetic and measured 
workloads. 
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Three of our optimizations concern improving LFS write per- 
formance. First, we show how to choose the LFS segment size by 
trading transfer efficiency against cleaning efficiency. Second, we 
show how to combine traditional LFS cleaning with an alternate 
garbage collection mechanism called hole-plugging [wilk96]. Our 
approach adapts to changes in disk utilization and workload to 
avoid the traditional LFS performance cliff at high disk utilizations 
for random updates, while still preserving the advantage LFS has at 
lower disk utilizations. Third, we consider how to reduce cleaning 
costs by taking advantage of cached data when cleaning. All told, 
these three optimizations can improve LFS write performance by . 
up to a factor of four at high disk utilizations. 

Our final optimization concerns improving LFS performance 
for reads that miss in the cache. The original LFS work was moti- 
vated by the prediction that future systems would have increasingly 
large memory caches relative to disk capacity, so that fewer reads 
would reach disk. As a result, write cost would dominate file sys- 
tem performance. This was a reasonable prediction when LFS was 
first introduced. At that time, the cost per byte of DRAM had been 
decreasing relative to that of disk; since then, however, this trend 
has reversed, Interestingly, LFS is easily adapted to improve read 
performance; the LFS cleaner already has a mechanism for atomi- 
cally moving data around on disk and for creating large regions of 
contiguous space that can be used for coalescing related data to- 
gether. We demonstrate that a dynamic disk reorganizer can be 
used to improve disk read performance by nearly a factor of two for 
a workload in which read patterns do not match write patterns. 

Many other systems have applied self-tuning principles at some 
level; our work was initially inspired by these efforts. For example, 
TCP implementations have long measured round-trip delays to de- 
termine appropriate time-out values [JacoSS]. More recently these 
implementations have begun to adapt to patterns in how packets are 
dropped by the network under congestion @Iath96]. In the file sys- 
tem arena, AutoRAID lWilk96] adapts the amount of disk space 
devoted to mirroring vs. RAID-5 based on the percentage of free 
space available; AutoRAID also moves data between the mirrored 
region and the RAID-5 based on the pattern of writes to the data. 

Our four enhancements to LFS are by no means an exhaustive 
list of possible applications of self-tuning to LFS. Additional op- 
portunities include, to name just a few: altering the policy by which 
segments are chosen for cleaning based on whether updates occur 
randomly or exhibit locality; adapting the write buffer organization 
to segregate related data, depending on the available memory, level 
of multiprogramming, and sync frequency; adaptively clustering 
blocks during cleaning to maximize locality of future updates. Self- 
tuning provides a conceptual framework for developing robust so- 
lutions to these issues. 

The rest of the paper describes our work in more detail. Section 
2 provides background on a variety of file system paradigms. Sec- 
tion 3 describes our evaluation methodology, including a descrip- 
tion of our simulator and the traces we used. Sections 4 and 5 
outline how LFS can be changed to improve write and read perfor- 
mance, respectively. Section 6 describes related work. We summa- 

’ rize our conclusions in section 7. 

2 Background 

Much debate concerning the best paradigm for building file 
systems has arisen because each of the major approaches has envi- 
ronments for which it is well suited. Our goal in this paper is not to 
compare LFS directly with other file systems because such compar- 
isons are highly dependent on workload and implementation de- 
tails. Rather, our goal is to understand the strengths and weaknesses 
of each system and to use that information to design adaptive algo- 
rithms that allow LFS to retain its strengths as well as incorporate 

the strengths of other systems. 
The traditional approach to building file systems has been to 

place most of the burden of minimizing seeks and rotational delays 
on the disk block allocation policy. For example, FFS ~cKu84] 
places new data and metadata blocks on disk near other semantical- 
ly related blocks (e.g., blocks within the same file or within the 
same directory). In update-in-place file systems such as FFS, once 
a block has been placed in a given disk location it does not move- 
all subsequent references to the block, both reads and updates, will 
be sent to that location. Particularly when dynamic access patterns 
follow semantic relationships (e.g., when large files are read or 
written in large chunks), this can offer good performance 
mcVo91, Se&X, Smit96J. However, performance can decrease 
over time as the disk becomes fragmented, particularly as the disk 
fills up, making it harder for the allocation policy to find appropri- 
ate slots for new blocks [Smit97]. Worse, this performance penalty 
persists; without a disk reorganizer, once the disk fills up, perfor- 
mance can be negatively impacted from then on. 

An update-in-place approach also has significant performance 
costs associated with crash recovery, both during recovery itself 
and during normal operation. A logically atomic update to the file 
system may require several physical disk writes; for example, cre- 
ating a new tile requires disk writes to the directory containing the 
file, the inode describing where to find the file’s data blocks, the 
free block list, etc. In FFS, this is accomplished by applying each 
update synchronously to disk in a consistent order, so that the crash 
recovery procedure can detect logical operations that were in 
progress at the time of the crash [Kowa78]. These synchronous up- 
dates can severely limit the effective disk bandwidth (although the 
ordering constraints can be loosened in some circumstances 
[Gang94]). Perhaps more importantly, crash recovery requires 
scanning the entire disk; for example, it can take over 10 minutes to 
recover a modem 9 GB FFS disk after a crash. 

Write-ahead logging file systems were designed to simplify 
crash recovery [Hagm87, Chut92, Birr93, Cust94, Veri95, 
Swee96]. Write-ahead logging batches metadata updates into a log. 
After the log is safely on disk, the updates are copied into fued disk 
locations, placed as in an update-in-place system. After most fail- 
ures, only the log, rather than the entire disk, must be examined in 
order to recover. The log always represents a consistent set of 
changes to the file system. In addition to more efficient recovery, 
write-ahead logging can sometimes offer better write performance 
than simple update-in-place by batching many small writes togeth- 
er into one larger log write and by reordering the second in-place 
writes to minimize seek and rotational delay. Because the final disk 
location of the data is the same, in the absence of contention be- 
tween reads and writes, read performance is identical whether up- 
datein-place or write-ahead logging is used. 

Log-structured file systems extend the write-ahead logging ap- 
proach by treating the log itself as the only storage location 
[Rose92]. Both data and metadata are written to the log in large 
contiguous regions, called segments. LFS also provides periodic 
checkpoints which allow recovery to proceed efficiently from the 
most recent checkpoint to the tail of the log. 

Logically, LFS treats the disk as an infinite append-only log. In 
practice, however, when LFS fills the disk with new log writes, it 
must generate new free space. Fortunately, not everything in the log 
is a part of the most recent version of the file system. When updated 
data is written to the end of the log, the previous copy of the data is 
still on disk in its old location and can be considered dead space or 
a hole in the log. (In other systems, the update would have been 
placed on top of the previous copy.) A garbage collecting process 
called the cleaner must coalesce these holes into empty segments 
which are then available for new log writes. 

For many workloads, there is sufficient idle time in which the 
LFS cleaner can run without interfering with normal file system ac- 
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cesses [Blac95]. However, when the disk tills up, disk updates are 
scattered randomly across the disk, or long-term sustained disk per- 
formance is required (leaving little idle time to clean), then LFS 
cleaning can significantly degrade file system performance [Selt93, 
Selt95]. Update-in-place file systems handle these situations more 
gracefully because they simply pay the initial cost to place each 
write on top of its previous location. 

Although most LFS performance evaluations have focused on 
write cost, read cost is also an important metric. The LFS data lay- 
out policy is simply to place blocks on disk in the order in which 
they are written. If reads are predominantly satisfied by the cache 
or if disk block reads occur in the same order in which they were 
written, then this simple data layout will be sufficient. However, 
when these conditions are not met, read cost can increase as addi- 
tional seeks and rotations are required between subsequently re- 
quested blocks. Update-in-place systems group semantically 
related data together regardless of the write order and therefore can 
provide better read performance when semantic information cor- 
rectly predicts dynamic read patterns. However, read patterns 
might also follow the temporal locality reflected in LFS, but not the 
semantic locality reflected in update-in-place systems. 

In the rest of the paper, we discuss how to improve LFS perfor- 
mance, in part by modifying its algorithms to take advantage of the 
insights provided by the other systems. 

3 Methodology 

We evaluate our modifications to LFS using trace-driven sim- 
ulations on both synthetic and measured workloads. In this section, 
we describe the simulator and the traces that we used. 

3.1 The Simulator 
Our LFS simulator is approximately 15,000 lines of C++ code. 

It allows a multitude of parameters to be varied including segment 
size, disk size, disk performance characteristics, and cache size. We 
use a segment size is 256 kB unless otherwise specified. 

Our baseline disk model characterizes performance using sim- 
ple seek, rotation, and bandwidth attributes. Throughout the paper, 
we use access tinre to refer to average seek time plus a half rotation. 
A disk request is modelled as taking the access time plus the request 
size over the disk bandwidth. Unless otherwise specified, we simu- 
late a 15 ms access time and 5 MB/s bandwidth, typical of a mid- 
range disk [Sea97a]. Although simple, this model reflects the fact 
that most LFS implementations make no effort to opportunistically 
choose which segments to write or clean based on the current disk 
head location. 

However, a more sophisticated disk model is required to study’ 
read performance. To evaluate reorganizing data for reads, we 
hooked our simulator to the HE97560 disk simulator from Dart- 
mouth [Kotz94]. Our simulator can be configured to run with or’ 
without data reorganization. 

Separate client and server caches can be simulated. Unless 
specified, the client caches are 16 MB and the server cache is 128 
MB. Data is channeled into the log through one write buffer. The 
write buffer is flushed every 30 seconds of simulated time to cap- 
ture the impact of partial segment writes; these occur in LFS when 
data must be committed to disk (e.g., at the end of a transaction) be 
fore an entire segment’s worth of data has accumulated. 

The cleaner runs when there are no more empty segments avail- 
able for new data. The amount of data that the cleaner may process 
at one time can be varied. For the experiments presented in this pa- 
per, we allowed the cleaner to process up to 20 MB at a time. Sev- 
eral garbage collection methods can be chosen, including 
traditiorzal LFS cleaning, hole-plugging pNilk96] and an adaptive 
combination of cleaning and hole-plugging. (Each of these methods 

will be discussed in more detail in Section 4.2.) A variety of poll. 
ties for choosing segments to garbage collect are also implement- 
ed, including greedy, which simply chooses the least utilized 
segment at each opportunity, and cost-benefit [Rosc92a]. The cost- 
bent? policy chooses the segment which minimizes the formuln 

ax (1 -u) 
, where u is the utilization of the segment nnd a is the 

age of the segment. Throughout the rest of the pnper, we refer to 
this policy as cost-age to avoid confusion with other cost-benclit 
formulas presented in section 4.2.2. 

Our simulator is descended from Mendel Rosenblum’s LFS 
simulator [Rose92b]. Mike Dahlin modified this simulntor to nc- 
cept input from a trace file and to track cache information [Dnhl95] 
and used it to evaluate cooperative caching in xFS [Dnh194], WC 
have added a writebuffer andimplemented the modiflcntions being 
evaluated here. The benefit of this history is that the simulator has 
already been used in several significant LFS evaluations. As a rc- 
sult, there is a considerable amount of previous data with which WC 

can compare our results. 

3.2 The Traces 
The simulator is driven by traces of tile system activity, Ench 

trace record represents one of the following operations: read, write, 
delete, truncate, sync, or attribute access. Files are specilled with a 
unique identifier. Each record specifies which client generated the 
request and when the request was issued. 

We use both measured traces of real systems and synthetically 
generated traces. We use the synthetic traces to stress the system 
with a specific (usually worst-case) environment. This is necessary 
in order to demonstrate that our self-tuning algorithms achieve ro- 
bust performance across a wide range of workloads. We use the renl 
traces to verify that we are helping, or at least not harming, nverngo 
case performance. 

For a measured trace, we use the Berkeley Auspex Trace 
[Dahl94]. This trace follows the NFS activity of 236 clients ser- 
viced by an Auspex file server over the period of 1 week during Into 
1993. It was gathered by snooping Ethernet packets on four sub- 
nets. The clients are the desktop workstations of the University of 
California at Berkeley Computer Science Division. There nrc np- 
proximately 4 million reads and 1 million writes, each to 8 kB 
blocks, in the trace. In addition, there are approximately 40,000 file 
deletes. There are no syncs recorded in the trace, so all partial scg 
ments are due to the flush of the write buffer every 30 seconds, Be- 
cause these traces are of NFS activity, we do not see any of the 
accesses that hit in the local cache. Accordingly, the size of the cll- 
ent caches is set to zero in the simulations. The trace does not con- 
tain a checkpoint of the initial state of the tile system, so to initinlizc 
the disk, we examine the trace and infer as much as we can nbout 
what existed at the beginning. The trace lacks pathname informn- 
tion which limited our ability to evaluate semantic reorganization. 

A worst-case workload for LFS is one with random updates, no 
idle time, and high disk utilization. The TFC-B dntnbnsc bench- 
mark is an example of such a workload and was examined in 
[Selt93, Selt951. We approximate this workload with n syntheticnl- 
ly generated random update workload that has similar worst-case 
characteristics for LFS. To initialize the disk, we first write enough 
blocks sequentially to fill the disk to the desired utilization. Wo 
then make ten times as many random updates as blocks initially 
written with a sync call after every fourth. All writes issue from n 
single client. 

For many of the experiments in this paper, the results are scnsi- 
tive to the amount of free space available on the disk. Traditionally, 
this is specified as disk utilization. However, the nmount of free 
space relative to the amount of actively written data matters also. 
For example, a disk at 90% utilization will behave very differently 
if only 20% is being actively written than if all of the data is being 
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acttvety wntten. ror tne ranaom upaate worktoaa, au or me aata on 
disk is actively written. For the Auspex trace, we initialize the disk 
by inferring as much as we can about the initial state of the file sys- 
tem. After initialization, over 60% of the data on disk is not rewrit- 
ten; it is a common characteristic of real systems that only a small 
portion of the disk is actively written [Ruem93]. In this paper, we 
specify the disk utilization, but note that a given disk utilization 
corresponds to a higher ratio of free space to active data for the 
Auspex trace than for the random update workload. 

4 Improving Write Performance 

LFS was designed to provide high performance for writes 
through large batched disk transfers. However, additional research 
demonstrated that cleaning overhead can result in dramatically 
lower write performance for some workloads [Selt93, Selt95al. In 
this section, we show how self-tuning principles can be applied to 
LFS to provide high write performance across a broader range of 
workloads, even those that were previously problematic. 

In our evaluation, we examine the effect of our optimizations 
on write cost, Write cost is the metric traditionally used in evaluat- 
ing LFS write performance [Rose92b]. The original write cost 
model can be expressed with the following formula: 

WriteCost (EQ 1) 

SegmentsTransferredT,,,t 

= SegntentsTransferredN,,,D,, 

SegsWrittenN,,,D,,, + SegsReadctean + SessWr~ttenctean 
= 

The write cost is the ratio of total work to the work necessary to 
initially write the new data to disk. The total number of segments 
transferred includes both the initial writes of new data 
(SegsWrirtertN,,y) and cleaner reads and writes (SegsReadcr,,, 
+ SegsWrittenCt&. The cleaner reads an entire segment even if 
only a few live blocks remain. It may be beneficial to allow the 
cleaner to read only the live blocks when that would take less time 
[RosegZb], but following the original LFS, we did not include this 
optimization. Ideally, the data would be written once and never 
moved by the cleaner; this happens if all data in the segment is 
overwritten before the segment is reclaimed. In the best case, then, 
SegsReadCtea,, + SegsWrittencteO,, is 0 and the write cost is 1. 

4.1 Understanding Write Cost: The Effect of 
Segment Size 

In this section, we discuss why segment size plays a larger role 
in the write performance of LFS than has been previously suggest- 
ed, In [Rose92a, Rosegab], segment size is chosen to be large 
enough that the access time becomes insignificant when amortized 
over the segment transfer. In Sprite LFS, a relatively large 1 MB 
segment is used. 

On the other hand, there is a countervailing benefit to choosing 
a smaller segment size. [Rose92b] observes that at smaller segment 
sizes the variance in segment utilizations is larger; allowing the 
cleaner to choose less utilized segments. In particular, smaller seg- 
ments are more likely to empty completely before cleaning. Empty 
segments can simply be declared clean without requiring any disk 
transfers by the cleaner. In the limit, with one-block segments, 
cleaning costs would always be zero because all segments would be 
either full or empty and no data would need to be compacted. Of 
course, single block segments would eliminate any advantage from 
batched transfers. 

tn mts secuon, we aescrme a way to quanuty mis traae-err oe- 
tween amortizing disk access times across larger transfer units and 
reducing cleaner overhead. 

Figure 1 shows the results of varying the segment size for the 
Berkeley Auspex trace. According to the original definition of 
write cost in EQ 1, write cost is minimized at small segments be- 
cause smaller segments reduce cleaner overhead. However, this 
does not reflect the inefficiency introduced by transferring smaller 
segments. 

In EQ 2, we introduce a quantity to reflect this inefficiency. We 
define transfer ineficiency to be the ratio between the actual seg- 
ment transfer time and the time it would have taken to transfer the 
segment at full disk bandwidth. Figure 1 plots this computed value 
across a range of segment sizes for a typical disk with a 15 ms ac- 
cess time and 5 MB/s bandwidth. As segments become large, the 
access time becomes insignificant relative to the time for transfer- 
ring the segment, and therefore the transfer inefficiency approaches 
one. 

(EQ 2) 

SegTransferTimeA,,,,t 

= SegTransferTimeld,,t 

AccessTime + 
SegmentSize 

DiskBandwidth = 
SegmentSize 

DiskBandwith 

= AccessTime x D~g~~n~~~~~h + 1 

The write cost in EQ 1 measures the overhead of cleaning. The 
transfer inefficiency in EQ 2 measures the bandwidth degradation 
caused by seek and rotational delay. In EQ 3, we introduce a new 
quantity, overall write cost, that captures both of these effects. The 
overall write cost is the total time required to write new data and 
clean segments, divided by the time to write just the new data at full 
disk bandwidth. If all disk transfers are in units of full segments, 
then this is simply the product of the original write cost in EQ 1 
times the transfer inefficiency in EQ 2. 

OverallWriteCost 

(EQ 3) 

when all transfers are done in units of segments 

SegmentsTransferredT,,,I x SegTransferTimeA,tuat 

= SegmentsWrittenN,,VD., x SegTransferTimeld,,t 

= WriteCost x TransferZnefficiencysegs (EQ 4) 

Figure 1 shows that this quantity does allow us to see the impact 
of the competing effects we have discussed. It is minimized at an 
intermediate segment size. Note that when the transfer inefficiency 
is 1, the overall write cost is equal to the original write cost. This is 
consistent with the assumption made in [Rose92b] that the segment 
size is large enough that access time becomes insignificant. In Fig- 
ure 1, the difference between EQ 3 and EQ 4 is due to the impact of 
partial segments. 
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segment size (bytes) 

FIGURE! 1. Varying segment size for the Auspex 
workload. Disk utilization is 85%; access time is 
15 ms and bandwidth is 5 MB/s. Small segments 
are inefficient due to seek and rotational delay; 
large segments are inefficient due to fewer 
opportunities to find nearly empty segments. 
Overall write cost includes the impact of partial 
segments; write cost times TI does not. Write cost 
and overall write cost are simulated quantities. 
Transfer inefficiency is computed. 

Changes in disk characteristics affect the trade-off between 
cleaner overhead and transfer inefficiency. Figure 2 shows that the 
optimal segment size for the Auspex workload is approximately 
four times the product of disk access time and bandwidth (i.e., four 
times the amount of data that could be transferred during the time 
necessary to position the disk head). Figure 2 shows the overall 
write cost curves for the disks used in Sprite LFS (17.5 ms access 
time and 1.3 MB/s bandwidth) and.for more modem disks (15 ms, 
5 MB/s and 10 ms, 15 MB/s). This graph shows that for the Auspex 
workload a segment size of 64-128 kB would have been better than 
the 1 MB segments used in Sprite LFS. The optimal segment size 
has been increasing since then. This suggests that to be able to scale 
with disk technology improvements, an LFS file system should 
measure and adapt to its underlying disk performance; [wort95] 
outlines a set of techniques for extracting disk parameters on-line. 

Figure 3 shows overall write cost for the random update work- 
load. Despite the inefficiency of single-block transfers, overall 
write cost is still lowest for single block segments (8 kB) because 
all cleaning overhead is avoided. (Note, however, that we do not in- 
clude segment header overhead in our estimate of overall write 
cost.) With more than one block, there is little benefit to smaller 
segments. Because blocks are not overwritten in groups, segments 
empty slowly; even small segments stay nearly as full as the disk. 

We are exploring ways to vary the segment size dynamically by 
enabling the cleaner to observe the average length of the runs of 
holes in the segments it cleans; a workload with short runs might 
benefit from a smaller segment size. Another possibility would be 
to format the disk with several fixed segment sizes. One use would 
be to exploit the fact that different zones of the disk have different 
performance characteristics; the bandwidth between innei and out- 
er tracks can vary by as much as 50%. Another use would be to al- 
low data to be written into the smaller segments initially and then 
cleaned into the larger ones. For workloads with locality, recently 
written data is more likely to be overwritten; this would suggest us- 
ing smaller segments to maximize the likelihood of emptying seg- 
ments as all of their data is overwritten. By contrast, cleaned data 
tends to be older and less likely to be overwritten; this suggests us- 
ing larger segments to better amortize disk access times. For the 

8k 16k 32k 64k 128k256k512k 1M 2M 4M Otd 
segment size (bytes) 

FIGURE 2. Effect of disk characteristics on 
overall write cost for the Auspex workload. Disk 
utilization is 85%. The bottom curve with access 
time of 17.5 ms and bandwidth of 1.3 MB/s 
represents the disks measured in Sprite LFS; note 
that Sprite chose a segment size of 1 MB. The 
middle curve represents the baseline disk simulated 
in this paper, and the top curve represents the 
highest performance disk available from Seagatc as 
this paper goes to press [Sea97b]. Note thnt the 
curve is the same for different disks with the same 
access time bandwidth product. For all curves, 
overall write cost is minimized for a segment size 
of roughly four times bandwidth times access time. 
Overall write cost increases for faster disks because 
it is harder to match the peak disk performance, 
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FIGURE 3. Varying segment size for the 
random update workload. Disk utilization is 
85%; access time is 15 ms and bandwidth is 
5 MB/s. One-block segments avoid all cleaning 
costs. Large segments benefit from larger transfers 
even though it is difficult to find low utilization 
segments to clean. Overall write cost includes the 
impact of partial segments; write cost times Ti does 
not. Write cost and overall write cost are simulated 
quantities. Transfer inefficiency is computed. Note 
that the scale of the y-axis for the random workload 
graphs in this paper differ from that for the Auspcx 
graphs, for example in Figures 1 and 2. 

randomupdate workload, newly written segments are not any mom 
likely to empty and so would not benefit from the smaller segments, 
but at least the cleaned segments could benefit from the larger ones. 
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4.2 Adaptive Cleaning: Choosing the Best Garbage 
Collection Mechanism Based on Usage Patterns 

In this section, we present an LFS cleaning algorithm that 
avoids the dramatic performance degradation seen at high disk uti- 
lization while retaining the good performance of traditional LFS 
cleaning at lower utilizations. It does this by dynamically choosing 
between two mechanisms: traditional LFS cleaning and hole-plug- 
ging jWilk96]. Our adaptive method successfully chooses the low- 
est cost mechanism based on the observed usage patterns. 

4.2.1 Comparing ‘Ikaditional Cleaning With Hole- 
p~wgiw 

In traditional cleaning, the live blocks in several partially empty 
segments are combined to produce a new full segment, freeing the 
old partially empty segments for reuse. In many environments, tm- 
ditional cleaning performs very well. Idle time can often be exploit- 
ed to hide cleaning costs from users; for the workloads examined in 
[Blac95], 97% of cleaning could be done in the background. 
[McNu94] shows that cleaning costs are relatively low at disk uti- 
lizations below 80%. If segment updates show a high degree of lo- 
cality, then some segments will be emptier than others and will 
yield more free space when cleaned. 

The problem with cleaning appears at high disk utilizations, es- 
pecially for workloads with many random updates and insufficient 
idle time [Selt93, Selt95al. Because segments do not have a chance 
to empty before they must be cleaned, the cost of cleaning can sky- 
rocket. In order to coalesce one free segment’s worth of space, the 
cleaner must process many nearly full segments. Each segment 
must be read, and all but the few holes rewritten into a new seg- 
ment. Recalling EQ 1, this translates into high SegsReudcr,, and 
SegsWrittenCtea,, and therefore high write cost. In an extreme case, 
the entire disk might need to be cleaned in order to coalesce a single 
contiguous segment. 

In hole-plugging, partially empty segments are freed by writing 
their live blocks into the holes found in other segments. In order to 
produce one free segment’s worth of space, we need only read one 
segment and rewrite each of its live blocks. These writes are more 
expensive per block than writing complete segments because each 
block write requires additional seek and rotational delay. However, 
despite the higher per-block cost, at high disk utilizations, hole- 
plugging is still better than cleaning because we avoid processing 
so many segments. At lower disk utilizations, the larger cost of 
writing individual blocks makes hole-plugging more expensive 
than traditional LFS cleaning. 

In order to compare traditional cleaning with hole-plugging, we 
introduce a write cost formula for hole-plugging in EQ 5. In the tra- 
ditional LFS cleaning mechanism, all transfers are done in units of 
whole segments. However, with hole-plugging, some transfers are 
done in units of whole segments (the initial writes of new data, 
SegsWrittenD,,, and segments read to be broken up into patches 
for holes, SegsReudcte&, while other transfers are in units of in- 
dividual blocks (the patches, BlocksWritten~+,t,,~ In prac- 
tice, the TransferTimeBtOCk would vary based on 

&. 
s; e locality of 

blocks written. When implementing hole-plugging, it would make 
sense to take advantage of this by choosing holes to plug and by or- 
dering the block writes to minimize the total latency. We do not 
simulate this effect. 

(EQ 5) 

TransferTimeTOrat 

= TransferTimeId,,, 

TransferTimeTOrat 

= SegmentsWrittenN,,D,, x SegTransferTimeId,,, 

where Transferlime~,,~ 

= TransferTimesee x (SegsWrittenDora + SegsReadCt,,,) 
+ TransferTimeglOCkx BIocksWrittenHO,e-ptuggi,,g 

There are several ways that hole-plugging could be integrated 
into an LFS. In existing LFS implementations, each segment has a 
segment header that contains information about its constituent 
blocks. In order to maintain this structure, the header would need to 
be read and updated for each segment patched. Two headers per 
segment would be required to prevent corruption. Alternatively, the 
per-block information in the segment header could be distributed 
into individual block headers. A 512-byte block header for each 
8 kB block would be an overhead of 6.25%. Interspersed block 
headers would also reduce read bandwidth by the same amount. In 
Figure 4, we evaluate the space-time trade-off between these two 
strategies for the random update workload. The block header ap- 
proach performs better at 99% utilization than the segment header 
approach does at 85% utilization-more than allowing for the 
6.25% space overhead. Therefore, we use the block header ap- 
proach for the rest of the experiments in this paper. 

Figure 4 compares the write cost of cleaning with hole-plug- 
ging. Even for this worst-case workload, cleaning performs better 
than hole-plugging up through 85% disk utilization. However, 
above 85%, the overall write cost of cleaning shoots from below 10 
to above 64. Hole-plugging degrades much more gracellly, stay- 
ing below 15 for the block header approach. 

20 30 40 50 60 70 60 so 100 
disk utilization (percent) 

FIGURE 4. Cleauine and hole-ulwting for the 
random update wokload. Segments& is 256 
kB; access time is 15 ms; bandwidth is 5 MB/s. 
Hole-plugging with block headers requires 
updating the block and its contiguously allocated 
header; otherwise the segment header must be read 
and written as well. Greedy cleaning is used 
because it is optimal for this workload; see 
Figure 6 for a comparison with cost-age. Although 
this point is not shown, at 99% utilization, the 
overall write cost for cleaning soars to 64.5. 
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FIGURE 5. Cleaning and hole-plugging for the 
Berkeley Auspex workload. Segment size is 256 
kI3; access time is 15 ms; bandwidth is 5 MB/s. 
Cost-age cleaning is used. Cleaning performs as 
well or better than hole-plugging except above 
99% disk utilization. Note the change in the scale 
of the y-axis relative to Figure 4. 

Figure 5 shows the behavior of both cleaning and hole-plug- 
ging for the Berkeley Auspex workload. Cleaning performs as well 
or better than holeplugging up to 99% utilization for this workload. 

Holeplugging could be considered a generalization of write- 
ahead logging; writeahead logging writes the new updates to the 
log and then later writes them on top of the “holes” that those up- 
dates created. Writeahead logging offers consistent performance 
by paying the constant cost of one batched write plus one in-place 
block write per block written. Similarly, we might expect hole- 
plugging costs to remain fairly constant. However, in Figures 4-5, 
the cost of holeplugging decreases with lower disk utilization. This 
is because at low disk utilization many segments empty completely 
before they must be processed and hole-plugging, unlike write- 
ahead logging, can benefit from this effect. 

4.2.2 Adaptive Cleaning Policy 
In order to retain the good common case performance of tradi- 

tional cleaning while avoiding its dramatic performance degrada- 
tion at high disk utilizations, we introduce a policy that chooses 
adaptively between cleaning and hole-plugging at each garbage 
collection opportunity. (This is orthogonal to the policy used to 
choose which segments to clean.) 

When garbage collection is needed, we first choose candidate 
segments for both traditional cleaning and hole-plugging. For 
cleaning, the candidate segments are the ones that will be compact- 
ed to form new segments. We simulated both greedy and cost-age 
cleaning policies. For hole-plugging, the candidate segments are 
those whose live blocks will be used to fill in the holes found else- 
where. As in AutoRAID, we use the least utilized segments to plug 
the holes in the most utilized segments. 

Once we have identified the candidates, we estimate the cost- 
benefit of each approach with EQ 6 and EQ 7. 

Cost is expressed in terms of the total time to perform the gar- 
bage collection. Benefit is expressed in tenns of free space re- 
claimed. For hole-plugging, the cost is the time to read the 
candidate segments and write their live blocks into holes found in 
other partially empty segments; the space freed is the size of all the 
candidate segments read. For cleaning, the cost is the time to read 
the candidate segments and rewrite their live blocks as whole seg- 
ments to the end of the log; the space freed is the size of all the emp- 
ty blocks found in the candidate segments. 

@Q 6) 

where Transfernmeclea,,in, 

= (CandidatesRead + LiveBlocks/BlocksPerSeg) X 

TransferTimeseg 

and SpaceFreedclea,,i,,g 

= EmptyBlocks x BlockSize 

where Transfer~meH,le-~Iugging 

= CandidatesRead x TransferTime&* + 
LiveBlocks x TransferTimeglOck 

aid SpaceFreedHcre-plug~ing 
= CandidatesRead x SegmentSize 

Once we have calculated these cost-benefit estimates, wo slm- 
ply choose the mechanism with the lower estimate. Note thnt this 
decision applies only to the current garbage collection opportunity, 
At the next opportunity, we may choose the other appronch. 

In Figure 6, we show cleaning, hole-plugging and the adaptive 
policy for the random update workload. We include greedy clean- 
ing as well as cost-age since greedy has been shown to have slightly 
better performance than cost-age on a random workload [Rose92n, 
Selt95bl. The adaptive policy correctly shifts from cleaning to 
hole-plugging at the appropriate point. We are indeed able to retain 
the good common case performance of traditional cleaning whllo 
avoiding its dramatic performance degradation at high disk utllizn- 
tions. 

1 I t I I I 
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FIGURE 6. Adaptive cleaning for the random 
update workload. Note that the hole-plugging and 
greedy cleaning curves are the same as in Figure 4. 
The adaptive algorithm chooses between holc- 
plugging and greedy cleaning: it correctly follows 
the lower cost mechanism at each point. 
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FIGURE 7. Adaptive cleaning for the Berkeley 
Auspex workload. Note that the hole-plugging 
and cost-age cleaning curves are the same as in 
Figure 5. The x-axis is on a reverse log scale in 
order to show clearly the region above 90%. 
Adaptive outperforms both hole-plugging and 
cleaning because it can choose the appropriate 
method at each garbage collection opportunity. 

In Figure 7, we show cleaning, hole-plugging, and the adaptive 
policy for the Berkeley Auspex workload. Notice that at some 
points the adaptive policy performs better than the minimum of 
cleaning and hole-plugging by doing each when appropriate. 

This adaptive method could also be used to adapt between any 
additional garbage collection mechanisms given a correct cost-ben- 
efit model of their behavior. 

Changes in disk characteristics also have an impact on the 
trade-off between cleaning and hole-plugging, making the need for 
adaptive cleaning even more acute. Disk bandwidth has been im- 
proving faster than disk access times, resulting in higher relative 
block transfer costs. Figure 8 shows that on a faster disk the gap be- 
tween hole-plugging and cleaning is larger at lower diskutilizations 
and that the crossover point is later. Similarly, on RAID systems, 
hole-plugging would be penalized relative to cleaning because of 
the need to read the old data in blocks being plugged in order to up- 
date parity. 

4.3 Using Cached Data To Reduce Write Cost 
In this section, we describe how to reduce cleaning costs by tak- 

ing advantage of data that is already cached. When a segment is 
completely cached, it can be cleaned by writing its live blocks- 
there is no need to do a disk read. This lowers the 
Se~l~terltsReadCI,,,, component of write cost in EQ 1. As far as we 
know, no LFS implementation performs this optimization. 

In exploring this possibility, we consider two different cleaning 
policies: normal cost-age in which cached data is not used, and a 
modified cost-age (cost-age-cache) in which fully cached segments 
are preferentially chosen by taking into account that a segment is 
cached in the cost-age formula. For this modified policy, when a 
segment is cached, the cost portion of the cost-age function in- 
cludes only the cost to write out the live blocks and not the cost to 
read the complete segment. 

We implemented the modified cleaning policy in our simulator 
by keeping an in-memory set of cached segments; its size is limited 
to the number of complete segments that fit in memory. As a block 
leaves the cache, we check this set and remove its segment if nec- 
essary. We track only segments that remain completely cached af- 
ter being written; detecting when full segments re-enter the cache 
would complicate the implementation for only marginal benefit. 
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FIGURE 8. Effect of disk characteristics on the 
trade-off between cleaning and hole-plugging, 
for the random update workload. Note that the 
slow curves are the same as in Figure 6, using a 
disk with 15 ms access time and 5 MB/s 
bandwidth. The fast curves use a disk with 10 ms 
access time and 15 MB/s bandwidth. Cleaning 
performs relatively better than hole-plugging on 
the fast disk because of the larger gap between 
block transfer efficiency and segment transfer 
efficiency. Overall write cost increases for the fast 
disk because it is harder to match the peak disk 
performance. 
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FIGURE 9. Varying server cache size for the 
Auspex workload. Segment size is 256 kB; access 
time is 15 ms; bandwidth is 5 MB/s. Three 
different disk utilizations are shown for both 
normal cost-age and cost-age that uses cached data. 
The client cache size is set to zero as described in 
section 3.2. This graph shows the reduction in 
overall write cost obtained by exploiting cached 
data during cleaning. The benefit is greater at 
higher disk utilizations. 

We see significant improvement even though we do not take advan- 
tage of segments that are re-cached. 

In Figure 9, we show the impact of increasing server cache size 
on overall write cost for the Berkeley Auspex workload at various 
disk utilizations. The top group of lines illustrates the behavior 
when the disk is 95% utilized. The next two groups of lines are with 
the disk at 85% and 60% utilization, respectively. 

As expected, the performance of the cost-age policy is insensi- 
tive to cache size. Indeed, all of the cost-age lines are flat. For the 
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cost-age-cache policy, there is more benefit with larger caches as 
one would expect. 

We see incremental benefit even up through 1 GB, indicating 
that the working set of the Auspex trace is larger than 1 GB. This is 
unsurprising considering that the total data held on the server was 
approximately 100 GB of binaries and home directories. At a cache 
size of 256 MB and disk utilization of 95%, we see an 11% reduc- 
tion in overall write cost corresponding to a 30% reduction in clean- 
ing overhead. 

In addition, the benefit of cleaning from cache increases as the 
utilization of the disk increases. To illustrate why,.we consider the 
effect on the cost-age formula for cleaning a single segment as the 
utilization of that segment increases. For a highly utilized segment, 
we reclaim less space and therefore the read that we avoid has high- 
er cost relative to the amount of space reclaimed. To see this quan- 
titatively, consider the cost-age formulas. Recall from section 3.1 
that when we are unable to use cached daFp;void reading the seg- 
ment, the cost-age of the segment is , where u is the 

ax (l-u) 
percentage of live blocks in the segment and a is the age of the seg- 
ment. When we are able to use cached data to avoid y read, the 
cost-age drops to u . Their difference, , is 

ax (l-u) ax (l-u) 
larger for segments with greater utilization. 

As overall disk utilization increases, LFS will have to clean 
segments with higher utilization. As a result, the increased benefit 
for fuller segments translates directly into increased benefit for firll- 
er disks. Interestingly, this means that using cached data is especial- 
ly helpful in addressing the worst-case performance of LFS at high 
disk utilizations. 

Also, notice that we begin to see benefit at smaller cache sizes 
as the utilization increases. At lower utilizations, we can wait long- 
er to clean; therefore, we need a larger cache in order to still be 
holding the segments we are interested in cleaning. 

4.4 Putting It All Together 
Figure 10 shows the combined impact of the optimizations we 

have discussed in this section relative to original LFS. There is up 
to a 20% reduction in overall write cost for the Berkeley Auspex 
trace and an up to four-fold reduction for the random workload. 
That corresponds to a 42% and almost six-fold reduction in cleaner 
overhead, respectively. Log scale is used to clearly’display both 
workloads. 

4.5 Future Work 
Other opportunities exist to use self-tuning to improve LFS 

write performance. For example, one promising area is to adaptive- 
ly exploit the differences in access characteristics of rapidly chang- 
ing data versus more stable data. 

For example, existing cleaning policies use the age of a seg- 
ment to approximate the rate at which its blocks are being overwrit- 
ten, because long term cleaning costs are minimized by 
aggressively cleaning segments that are partially full of relatively 
stable data. However, users change their working sets from time to 
time, resulting in old segments being rapidly updated, while newer 
segments are more stable. And for a random workload, using age to 
approximate rate of change is suboptimal We have devised but not 
evaluated a self-tuning algorithm for choosing which segments to 
clean that takes advantage of this effect. 
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FIGURE 10. Overall write cost of original LFS 
versus modified LFS. Segment size is 256 kB; 
server cache size is 128 MB; access time is 15 ms; 
bandwidth is 5 MB/s; client cache size is 16 MB. 
Note the log scale on both axes. This graph shows 
the aggregate effect on overall write cost of using 
both adaptive cleaning and cached data. The 
segment size is the same for all curves. However, 
an additional benefit would be obtained for the 
Auspex trace if the Sprite LFS segment size of 1 
MB was used for the original LFS curves (see 
Figures l-2). 

5 Improving Read Performance 

In LFS, data that is written together is grouped together on disk, 
If read patterns follow write patterns, this data layout will also work 
well for reads. However, for workloads where this is not true, LFS 
can be modified to detect expensive read patterns and reorganize 
accordingly. In fact, the cleaner is already reorganizing data to re- 
claim free space for writes, and the same mechanisms can be used 
to reorganize data for reads. 

5.1 Motivation for Reorganizing Data for Reads 
LFS was originally designed to be a write-optimized file sys- 

tem and therefore most LFS performance evaluations have focused 
on write cost as their primary metric. Despite the emphasls on 
writes, it has been speculated that LFS would still offer good read 
performance. 

First, data is often read as it is written. In that case, the temporal 
locality of LFS will be as effective as the semantic locality of up- 
date-in-place systems. Studies of traditional UNIX workloads 
[Bake911 show that most files are written and read sequentially. 
However, there are workloads for which reads patterns do not 
match write patterns. Even for a UNIX workload, LFS may often 
do a poor job of keeping the contents of a directory together. For 
example, if all files in the directory are actively read but only some 
are actively written, the actively written files will move far away 
from the read-only ones. As long as the data remains cached, there 
is no penalty; once the data is demoted, however, the penalty of 
fetching the files in the directory from disk will be higher than in an 
update-in-place system. Another problematic workload is random 
writes followed by sequential reads. Decision support databnse 
workloads can exhibit this pattern. Random updates are applied to 
the active portion of the database and then sometime later large 
sweeping queries read relations sequentially [Tran95]. 

Second, it was initially argued that almost all reads would be 
satisfied from large caches and therefore would be unaffected by 
disk layout. However, the rapid fluctuation in the relative cost pcf 
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byte of disk and DRAM make such predictions uncertam at best. 

More importantly, the large and widening gap between CPU and 
disk performance has meant that file system read response times are 
dominated by disk accesses, even for very high cache hit rates 
[Dahl95]. 

Third, Ousterhout has argued that while fragmentation in an 
FFS degrades performance for both reads and writes, LFS cleaning 
has no ill effects on read cost [Oust95c]. However, this is not obvi- 
ous since cleaning coalesces blocks from different segments to- 
gether even though the contents of these segments are unrelated 
both semantically and temporally. 

In this section, we explore one approach to reorganizing data 
for reads-a dynamic algorithm that operates at the granularity of 
blocks. Since there are many other possible approaches (for exam- 
ple, an algorithm based on regrouping semantic units), at this time, 
we do not attempt to conclude that the reorganization algorithm we 
are currently exploring is the best. Our goal in this paper is to ex- 
plore one attractive possibility based on self-tuning principles and 
to reopen a discussion on the opportunity to improve LFS read per- 
formance for some workloads. 

5.2 Dynamic Reorganization 
The goal of dynamic data reorganization is to arrive at an opti- 

mal data layout based on observed access patterns. To accomplish 
this, the reorganizer must solve three problems. First, it needs to 
keep track of the history of previous events. Second, it must find a 
layout that would deliver near-optimal performance for the ob- 
served access patterns, assuming that past events are a good predic- 
tor of future access patterns. Third, it must analyze the difference 
between the current layout and the desired layout and if necessary 
issue I/O requests to correct the difference. 

5.2.1 ‘backing File Access History 
To capture the past access pattern, we build a block accerr 

graplt, similar to the file access graphs proposed by [Grif94], for 
use in prefetching file data into memory. Intuitively, reorganizing 
data for reads is complementary to prefetching. Prefetching must 
identify blocks or files that are used together to know what to pull 
into memory. Reorganizing data for reads requires the same infor- 
mation and uses it to organize file blocks so that when they are read 
(or prefetched) from disk it can be done efficiently. 

Each node in the file access graph represents a file block. An 
edge connecting node A and node B denotes that block B was ac- 
cessed immediately after block A. The edges are weighted by the 
number of such accesses. 

One concern with this approach is the amount of storage re- 
quired to accommodate the growth of the edge lists. We experi- 
mented with some simple approaches of pruning the graph and 
found that we can successfully reduce the storage costs by limiting 
the number of outgoing edges and pruning them in LRU order. This 
simple approach proves effective because the number of neighbors 
per node follows a bimodal distribution. Most nodes have only a 
few neighbors that can all be represented in limited space. A few 
nodes have many neighbors, but in that case it is less important to 
record them all because a large number of neighbors indicates that 
there is not a dominant access pattern for which we could optimize. 
The data structure we use to represent a graph node includes a block 
identifier, the last reference time, and a pointer to each neighbor re- 
corded. We varied the number of neighbors recorded from 4 to 16 
and saw negligible impact on graph quality. A graph node record- 
ing 4 neighbors is 48 bytes, about 0.6% overhead for an 8 kB block. 
When a block is not being referenced, its graph node could also be 
paged to disk to limit the amount of memory used. 

5d.z computmg uptmm Layout 
Once we have captured the file system events in the access 

graph, the next challenge is to find a disk layout strategy that will 
optimize for the observed usage pattern. Such a layout strategy will 
attempt to place blocks that are frequently accessed together close 
to one another in order to minimize seek and rotational delays. We 
observe that given an access graph, finding such a layout is an ap- 
plication of the more general irregular graph partitioning problem. 
More specifically, we must partition the file access graph into some 
number of roughly equal parts, such that the number of edges con- 
necting nodes in different parts is minimized. By maximizing the 
number of internal edges and minimizing the number of external 
edges, we discover a partitioning of the file blocks such that blocks 
in the same partition are frequently accessed together, while blocks 
in different partitions are rarely accessed together. 

Although the general irregular graph partitioning problem is 
NP-complete, there exist many heuristic solutions in the literature 
[Bam93,Hend93]. We have adopted a simple dynamic graph parti- 
tion algorithm based on these heuristic solutions for our data reor- 
ganizer. For each read access, we create an edge between the 
current block and the previous block (or increment the weight of an 
existing edge). If the previous block is in a different partition than 
the current block, we shift the existing partition boundaries to bring 
the nodes in question closer, if doing so would result in new parti- 
tions which minimize inter-partition edges. 

We have validated our dynamic algorithm by comparing the 
partition qualities of our algorithm with that of a well known off- 
line graph partitioning package Eary95]. For tile access graphs 
based on the Berkeley Auspex traces, the partitions produced by 
our data reorganizer were better than or equivalent to those gener- 
ated by the off-line algorithm, even with only 4 neighbors recorded 
per block. This algorithm required approximately 130 ps per block 
read. 

5.2.3 Selecting Data to Reorganize 
Partitioning the file access graph allows us to identify the data 

blocks that should be located near each other. Based on this graph, 
we may need to issue I/O requests to improve the current data lay- 
out. In order to do this, the data reorganizer monitors three variables 
for each partition: (1) the current disk locations of the partition 
members and their corresponding access costs, (2) the new access 
costs of the partition members if they were brought together by the 
data reorganizer, and (3) the likelihood that the partition will be ac- 
cessed again. We place the partitions into a priority queue ordered 
by a ranking based on these three variables. Currently, we place 
partitions on the queue when the expected time to read the partition 
exceeds the ideal and we order the queue by frequency of access. 
Partitions can be removed from the priority queue and reorganized 
at convenient times, such as during idle periods, when the partition 
is brought into memory, or when the partition is about to be evicted 
from memory. 

5.2.4 Evaluation 
We first evaluated the impact of reorganization for the Berke- 

ley Auspex trace and were unsurprised to see little benefit. In order 
to evaluate the benefit of reorganization, we must know the default 
layout that was produced as the data was originally written and then 
subsequently cleaned. Unfortunately, we do not know the original 
disk layout at the start of the trace. We expect reorganization to be 
especially valuable for cold data and by definition, we do not see 
the writes for cold data in the trace. 

We chose to use a semi-synthetic benchmark to approximate 
the uncached read portion of a software development workload. 
When a developer visits a new region of the source tree, those reads 
are uncached, and observed file system performance will depend on 
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FIGURE 11. Average disk read response time 
per 8 kB bIock for the synthetic compilation 
workload. The y-axis reports the average time to 
complete an 8 kB disk read for each compile 
iteration; the x-axis represents the passage of time. 
The HP97560 disk model was used. For original 
LFS, the response time increases from 8 ms to 
around 12 ms during the measurement period. 
With reorganization turned on, the response time 
is kept stable around 6.5 ms. 

how quickly the data can be retrieved from disk. Once the data is 
read in, software development becomes write-dominated, until the 
developer changes working set, at which point the cycle repeats. 

To model uncached reads in a software environment, we mod- 
ified the HPUX kernel to record all file system calls generated by 
the following benchmark. We first recursively copy a number of C 
source directories. We then edit a randomly chosen source file and 
compile the entire subdirectory. Finally, we flush the cache to sim- 
ulate the passage of time. This cycle is repeated many times. In or- 
der to get more accurate estimates of disk read performance, we 
hooked our simulator to the HP97560 disk simulator from Dart- 
mouth [Kotz94]. We assume that reorganization could be accom- 
plished in the background since we are modeling a workload for 
which a significant amount of time passes between the edit-compile 
cycles. 

Figure 11 shows the average time needed to read one 8 kB 
block from disk as a function of the number of times we repeated 
the edit-compile cycle. The time is dominated by the linking stage, 
during which a large number of object files are read. Under LFS 
without data reorganization, the object files are placed close to each 
other initially. But as we modify the sources, the newly written ob- 
ject tiles are moved to the end of the log. As a result, the object tiles 
swept by the linking stages are gradually scattered over a large 
number of segments, causing a rise in II0 response time. When we 
turn on the data reorganizer, it correctly concludes that the object 
tiles needed in the linking phases belong to the same file access 
graph partitions. As a result, the I/O response time remains nearly 
constant with reorganization. 

Figure 12 provides further insight into the causes of the perfor- 
mance difference. The HP97560 disk controller model [Kotz94] in- 
cludes a 64 kB read-ahead buffer cache. The graph shows the 
average time a read request spends in the disk cache. As a result of 
periodically optimizing layout for read performance, we are able to 
raise the read-ahead cache hit rate from 37.9% to 66.8%. As we in- 
crease the disk speed from 2.4 MB/s to 5 MB/s, we are able to tin- 
ther raise the disk cache hit rate to 79.4% while an unmodified LFS 
can only go up to 41.2%. 

Software development is not the only example of uncached 
read accesses that may be problematic for LFS. For example, many 
people store all their mail messages in a single directory and return 

read-ahead buffer 
Ohit 
Omiss 

disk disk 

orig LFS LFS with reorganizer 

FIGURE 12. Breakdown of average disk read 
response time per 8K block for the synthetic 
compilation workload. Each bar represents the 
average time needed to fetch an 8K block from disk 
across all iterations reported in Figure 11. Slow 
disk refers to the original HP97560 disk model; the 
fast disk refers the same model with a bandwidth of 
5 MB/s. The top segment in each bar shows the 
fraction of the read time for data accesses satisfied 
in the disk read-ahead buffer cache. The hit and 
miss rates are specified in each column. The 
column heights are hit rate times hit time and miss 
rate times miss time, respectively. 

frequently to search for a desired piece of mail. In LFS, each newly 
received mail message will be appended to the current tail of the 
log. Since these appends are separated in time, they will not bo 
grouped together in the log. When the user tries to search through 
the entire directory, there will be many seeks between the scattered 
data blocks. Although a user may search this directory frequently, 
it is unlikely that the data will still be in the cache after the last 
search. Over time, the performance of searching through this direc- 
tory will degrade. This is like the effect shown for our benchmark 
in Figure 11. 

6 Related Work 

When LFS was originally introduced [Rose92a, Rose92b], the 
design space of this radically new file system organization was ex- 
plored with simulations using write cost as a metric. A full lmplc- 
mentation of LFS was incorporated into the Sprite operatlng syslcm 
and was used in a production environment. Many possible avenues 
of improvement to LFS were proposed, but not all of them wcrc ful- 
ly pursued, including reorganizing data for reads and the impact of 
different segment sizes. 

[Selt92, Selt93, Selt95a] further explored the LFS paradigm. 
[Selt93] and [Selt95a] describe an implementation of LFS for BSD 
and compare it with the Berkeley Fast File System (FFS) and an cn- 
hanced extent-based FFS. This work demonstrated that cleaning 
costs can seriously degrade LFS performance on workloads with 
random updates at high disk utilization, such as the TPC-B bench- 
mark. In addition, it is pointed out that certain modifications to an 
update-in-place system such as FFS can allow it to achieve some of 
the same benefits as LFS. 
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A debate ensued [OustgSa, Oust95b, Selt95b, Oust95c] con- 
cerning whether the results presented in [Selt93] and [Selt95a] were 
legitimate and representative. Despite the criticism of the results, 
they do describe some real problems with LFS that should not be 
ignored. In this paper, we investigate ways to enable LFS to provide 
reasonable performance even for these problematic workloads. 

[McNu94, Blac95, Lome95] all explore enhancements to LFS. 
[McNu94] presents a mathematical model of garbage collection 
and concludes that disk utilization must be kept below 80% for LFS 
to provide good performance. In this paper, we explore solutions 
that do not require leaving 20% of the disk unused. [Blac95] con- 
siders how much of the garbage collection costs can be shifted into 
the background. [Lome95] argues for the use of LFS for databases 
and suggests detecting expensive read patterns and simply rewrit- 
ing the data in the same order it is read. 

[Dah195] makes an initial evaluation of using cached data to 
lower cleaning costs. We continue this evaluation by considering 
the effects of additional parameters and workloads. 

Our section on adaptive cleaning combines traditional LFS 
cleaning with another garbage collection mechanism, hole-plug- 
ging, that was used in HP AutoRAID [wilk96]. We observe that 
hole-plugging is especially beneficial at high disk utilizations, 
while cleaning is better at lower disk utilizations (below SO-85%). 
In AutoRAID, hole-plugging. is used rather than traditional LFS 
cleaning or an adaptive combination of the two, because Auto- 
RAID is structured such that hole-plugging always performs better. 
The AutoRAID consists of two areas: the mirrored or RAID-l area, 
which houses recently updated data, and the RAID-5 area, which 
houses older data. The RAID-5 area is the part of AutoRAID that is 
log-structured. It is always at high utilization becauseit is constant- 
ly cleaned in order to return PEGS (segments) to the free pool where 
they can be used for mirrored writes or fresh demotions into the 
RAID-5 log. In addition, the updates to the RAID-5 area are fairly 
random because the mirrored storage area absorbs the updates to 
the hot data. The remaining update stream reaching the RAID-S ap- 
plies to cold data and shows very little locality in practice. Thus, the 
AutoRAID environment is the worst possible case for traditional 
cleaning (high utilized segments that are updated randomly) 
[Stae96]. AutoRAID does PEG-cleaning only in the special case 
that there are no holes to be plugged; that is when all PEGS but one 
are full or empty. In this case, the live blocks from that single PEG 
are appended to the end of the RAID-5 write log pNilk961. 

There is a significant amount of research into altering disk Iay- 
out to improve read performance. [Wong83, Vong90, Ruem91, 
AkyU95] discuss the benefits of placing the most frequently access- 
ed data in the middle of the disk where it is most likely to be close 
to the disk head. These systems do restructuring at either the cylin- 
der or block level. They use the disk controller or the device driver, 
not the file system, to monitor access frequencies and the move da- 
ta. [AkyU95] limits the number of blocks for which information 
must be maintained much like we do; however we are maintaining 
information about the relationships between blocks where they are 
maintaining access frequencies. [Ruemgl] evaluates the benefits 
for an update-in-place file system and conjectures that the benefits 
would be even greater for a file system that did not do such a good 
job of initial data placement. mcDo89, Staegl] explore file system 
directed reorganization at the granularity of whole files. Update-in- 
place systems such as FFS lMcKu84] reduce average disk access 
times by collecting statically related data in cylinder groups. 

The problem of organizing data for reads is very similar to 
prefetching. In order to facilitate prefetching, [Grif94] proposes a 
file access graph similar to the one we use to reorganize data for 
read accesses. [Kroe96] uses a data compression technique, predic- 
tion by partial match, to predict file system activity and thus im- 
prove the effectiveness of prefetching. 

We observe that partitioning the access graph used to capture 

file system activity is an application of the more general irregular 
graph partitioning problem. Although the general problem is NP- 
complete, there exist many heuristic solutions in the literature 
iBam93, Hend931. 

There is a recent trend towards incorporating LFS techniques 
into other file system architectures. Network Appliance’s file sys- 
tem, WAFL, improves write performance for their RAID array by 
writing multiple blocks in a stripe [H&95]. Sweeney et al. recently 
incorporated location-independent inodes, an idea from LFS, into 
XFS [Swee96], a write-ahead logging file system. As in LFS, loca- 
tion-independent inodes would make it easier to incorporate a disk 
reorganizer. In contrast, most traditional file systems, such as FFS, 
fix the disk location of a file’s inode (containing the table of point- 
ers to the file’s data blocks) when the file is first created, because a 
physical pointer to the inode can be embedded in any number of di- 
rectories, moving an inode in FFS could require scanning the entire 
disk. 

7 Conclusions 

In this paper, we have argued that self-tuning-measuring both 
the underlying hardware and the workload of a system, and then dy- 
namically adapting to match-is a powerful paradigm for improv- 
ing the performance of file systems. We illustrated self-tuning 
principles with four optimizations to log-structured tile systems: 
choosing the segment size to trade-off transfer efficiency against 
cleaning efficiency; dynamically choosing the cleaning method to 
provide good performance across the spectrum of disk utilizations 
and workload patterns; factoring in cache contents to reduce the 
cost of cleaning; and re-organizing disk contents to improve read 
performance. We believe that together these improvements make 
log structure a much more attractive alternative for file system de- 
sign. 
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