


An Exploration of Network RAM

Eric A. Anderson Jeanna'M. Neefe

February 4, 1995

Computer Science Division
University of California at Berkeley
Berkeley, CA 94720
1-510-642-8284

eanders,neefe@cs.berkeley.edu

Abstract

The goal of network RAM is to improve the performance of memory
intensive workloads by paging to idle memory over the network rather
than to disk. In this paper, we reexamine common assumptions about
network RAM, compare possible implementations, describe the structure
and performance of our user-level implementation and investigate various

methods for providing reliability.

Keywords: network RAM, remote memory paging, reliability, user-level im-

plementation

1 Why Network RAM

Virtual memory was intended to let program size be limited only by disk size

and to have the system transparently move code and data between the disks




and memory without sacrificing speed. Although disks are much cheaper than
memory, they are also much slower, so programs that paged to disk ran much
slower than an entirely DRAM version. Therefore people stopped running pro-
grams which paged to disk, and either purchased enough DRAM to run their
programs, or decided they didn’t need to run the programs.

Recently computer networks have become much faster, and studies have shown
that most workstations are idle. Therefore, people have decided to try paging to
and from the memory on idle workstations. Clearly, paging to idle memory over
the network will be faster than paging to disk because the physical seek time is
elliminated and the bandwidth of network connections is increasing faster than
the disk bandwidth. The hope for network RAM is that it would be fast enough
to approach all DRAM speeds, allowing, for example, two machines each with
64 megabytes of memory to perform comparably to a single machine with 128
megabytes of memory.

There are four major assumptions that people make when evaluating network

RAM:
1. Disks are slow.
2. Networks are fast.
3. Most machines have free memory.

4. Software overhead is low.

We would like to question these assumptions because they are somewhat inac-

curate.

1.1 Disks are Slow

The performance of disks for paging is generally assumed to be the worst case
latency. We measured the random access time for disk to be about 16 ms. For

some of the algorithms in the LAPACK suite, we discovered that the latency




for the disk was about 10 ms. However, for sequential access, we measured the
performance to be only 2 ms, which we believe is an effect of operating system
pre-fetching and track buffers on disks. If a program strides though an array and
the operating system places the pages of the process intelligently on disk or the
array is a memory mapped file, then we can expect the per page performance

to be about 2 ms.

1.2 Networks are fast

Current networks such as ATM over OC-3 have a peak bandwidth of 155
Mbits/second, which means that at least 0.22 ms must be wasted to trans-
fer a 4k page. Assuming an average time to access memory of 200 ns, and a
TLB overhead of 1 us, an entirely DRAM program could make QQ%%
= 1095 accesses to memory. Assuming that each access is 4 bytes, the program
running only in DRAM would have the time to access every single byte on the
page while network RAM is just transferring the page across the network. Since
the DRAM times are rather pessimistic, and the network RAM time ignores
software overhead, hardware overhead, and switch latency, programs which use
network RAM will need to repeatedly use the data on a page between page-in
and page-out to achieve a speed even close to DRAM speeds. Unfortunately,
there is a class of problems, namely large matrix problems for scientific pro-
grams which will often stride though an array, causing memory accesses once
or twice a page. These types of programs will run much slower using network
RAM than using all DRAM. Until achievable network bandwidths get much
faster, the time to bring pages into the network will limit the types of programs

that can effectively use network RAM.

1.3 Most machines have free memory

One goal for network RAM is to use it in a NOW(1]. While right now most of

the workstations on a network are idle, it is unclear that once a parallel work-




load, and a file system which caches on client nodes are added to the sequeﬁtial
workload that there will still be sufficient free workstations and therefore free
memory. For the purpose of this paper, we must assume that there exist work-
stations with large amounts of free memory to act as network RAM servers, and

so we will ignore this problem.

1.4 Software overhead is low.

We know that the cost for a TLB miss is at most 1 us on current workstaLtions.
The equivalent cost for network RAM is the cost of going through the VM
subsystem. Unfortunately, the cost of going through the VM subsystem, which
we saw as calls to mmap, is hundreds of ps. This is probably because the
VM subsystem has never been on the critical path in operating systems since
page faults were either program errors, or were going to be disk accesses. This

software overhead further limits the usability of network RAM.

1.5 Some good news.

Although the problems above show that network RAM will have a hard time
achieving a speed comparable to DRAM, network RAM is still faster than disks.
Our implementation achieves speeds of 2-5 times faster than average disk speed
(10ms). Further improvement eliminating communication overhead will further

lower this number.

2 Possible Network RAM Implementations

Having decided that network RAM could benefit some programs, we next con-
sidered how to implement network RAM. The following is six different choices

as well as some advantages and disadvantages of each.

e Explicit Program Management. This implementation would require

user code to explicitly move data back and forth from either the disk or




the network. This idea requires substantial code modification, but it is
being explored as a possible technique for compilers. Carter [3] shows
that substantial speedup can be achieved by considering all levels of the
memory hierarchy from registers to disk. This solution is likely to have the
best performance because it deals with the entire memory hierarchy and
has the most high level knowledge about data use patterns. Combined
with user-level access to the network, this solution should have a very

small overhead.

User-Level. This solution requires that the user modify their code to
use a new malloc which allocates from network ram backed memory. This
is an easier modification than explicit program management, but can still
require source code. This method allows the user to limit the memory
the application uses on their workstation, allowing other interactive tasks
to run faster. This solution is more portable than any of the following
solutions because it assumes less about the operating system, but it has
the overhead of handling interrupts on page faults and managing the page

tables through system calls.

User Level Pager. This solution is possible in the operating system
Mach [8], which allows a user level program to handle moving pages to and
from second-level storage. The dependence on Mach makes this solution
rather un-portable. This solution’s overhead is probably similar to the

overhead of the device driver and user-level process solution.

Device Driver. This solution replaces the swap device for the operat-
ing system with a device which sends the pages to network RAM. One
standard implementation for this is to have the device driver up-call to a
process which will handle transmitting the page. Using a process requires
that the OS lock down pages for that process, and correctly schedule that
process while handling a page fault. This solution has the advantage that




it requires no code modification or kernel source modification. It has the
disadvantage that OS pages can be sent over the network, making re-
liability more important. This solution is less portable than user-level
implementations, but more portable than kernel modifications. The over-
head for this solution includes the cost of the VM subsystem plus if a
process is used the cost of context switches and copying pages in and out

of the kernel.

e Modified Kernel. This solution should give the highest performance
without modifying user programs because it requires no extra interrupts
or context switches. However, changes to kernels are not portable between
architectures. As VM overhead drops, this solution will become more

preferable because it eliminates many other overheads.

e Network Interface. This solution requires replacing the memory con-
troller with some sort of custom memory/network chip, making this solu-
tion the most un-portable. However this approach is used on many mul-
tiprocessors such as Alewife, Flash and Shrimp to handle shared memory.
This solution can have a lower overhead than a modified kernel because
it can operate on cache lines rather than entire pages, making the data
transferred smaller, and because this implementation can avoid VM over-
head. The multiprocessors incur another overhead to make the memory
coherent, but we can ignore that overhead for this comparison because it

should not occur if only a single processor is using the data.

After examining these choices, we decided to do a user-level implementation: We
believed that explicit program management would be to hard to convince people
to use, and that modifying the kernel or building a network interface would not
be practical during a single semester. Two other groups [7, 4] were already doing
implementations as device drivers, so a user level implementation would allow

for comparisons. We felt that the portability advantages, and the lower risk to




the operating system made our solution attractive for both experimentation and
use. As we discovered after talking to the other two groups, the overheads, and
hence performance from these different approaches are quite similar, so users
and implementors will have to examine the other factors in choosing between

these two approaches.

3 A User Level Implementation

This section describes how to use our implementation, how it was implemented

and how well it performs on different machines.

3.1 TUser Interface

Our user level implementation requires a code modification to allocate memory

from network ram. Pseudo C code to use this implementation looks like:

ptr = ralloc_init(size,cache.sz,groupsz);
/* choose backup method */

do netbackup();

/* or do_localmirror netbackup() */
add_servers();

/* take block pointed to by ptr,

and use it as memory */

The size parameter specifies the amount of memory to be allocated for use
in network RAM. The cache_sz parameter controls the amount of memory
that the implementation will use on the client node, i.e. where the program is
running. Finally the group_sz parameter causes the implementation to act as
if the page size was really group_sz times larger. Although we implement other
choices for backing store, we have only extensively tested sending the pages to
remote memory servers. Our implementation does not require that the remote

memory servers have the same architecture as the client machine.




3.2 Implementation

When a process attempts to access a page which is not mapped or is mapped
without the appropriate permissions (e.g. attempting to write to a read only
page), the operating system delivers a signal to the process. Using the signal C
library call we can handle the signal and fix the page instead of terminating the
process. The system will automatically restart the process at the last memory
access, which will now succeed, and the program will continue without realizing
that anything special has happened.

The important steps in the signal handler are marked with small horizontal
lines on Figure 1. Our code maintains a free page so that transfer time and
computation can be overlapped. The step of resetting the signal handler may
be eliminated for some machines which correctly implement POSIX signal han-
dling. We handle both retrieving and sending pages in a single call to the
signal handle to reduce overhead from handling the signal and to simplify the
implementation.

The code to manage the page mappings through mmap and munmap are almost
identical on the Alphas, HP’s and Sun’s. We use a file on the local disk as a
cache file. We use mmap and munmap to place the different pieces of the
cache file in different parts of the address space, making it appear as though
all of the pages are mapped. Thus only the cache requires space on disk, and
better support from the operating system could eliminate even this requirement.
Unfortunately, a side effect of mapping a file into memory is that the OS will
try to write the pages out to disk. Because the writes are asynchronous and
because current network overhead is so high, this has a negligible effect. We
also tried using a private mapping, but on Solaris 2.3, this seemed to halve the
memory the process actually used.

The non-communication overhead for this implementation as shown in the figure
is the cost of handling an interrupt, calling mmap and munmap, and possibly

resetting the signal handler. We measured this time as well as the time to




Usel Code Signal Handler = Remote Node

—~— e
_—
—_—

... PageID
Map Free Pag/ o > Send Page

Pick New Free—s <

Unmap FreePages | "~ PagelD+Data

""" et
Reset Signal B
Handler s

-_—
- =
-—
-

Figure 1: Steps taken to handle a page fault when sending pages to a remote

paging server




retrieve a page and send a page out, which we call a page replacement. In our
measurements, we found the time over Ethernet was mostly because of the low
bandwidth. The time for the Alpha on Ethernet is about twice as long as all the
other machines on Ethernet because the Alpha page size is 8k rather than the
4k page sizes of the other machines. TCP and ATM overhead for these switches
limited the performance of Solaris over ATM. The 2.1 ms page replacement time
for the HP’s over FDDI is very good because it is only 3 times higher than the
link time for the data of 0.6 ms. We expect the time for the faster machines
will drop once a more efficient protocol than TCP is used.

We attempted to compare our non-communication overhead with the measure-
ments of other groups. Mainwaring, Wright and Yoshikawa [7] measured an
overhead of about 1 ms for their implementation of a device driver plus process
for Solaris 2.3. Chan and Hsu [4] measured a total time of about 3 ms to re-
trieve a page in their implementation on Solaris 2.3. Because they used active
messages, their time was smaller than other groups. Unfortunately, they have
not yet had a chance to measure their minimal overhead.

The following graph summarizes the overhead and total page time for the dif-
ferent workstations and networks that we have tested. The overhead time is
indicated by the white sections of the bars. This overhead includes the time to
take the interrupt, the time to map and unmap a page and the time to reset

the signal handler.

10




PRETTY GRAPH GOES HERE

11




Performance

Sparc 5 Etherne
Sparc 20 Ethernets
Sparc 10/41 Fore AT
Sparc 10/51 Fore AT |
Sparc 20 SAHI ATM
HP735 FDDI

HP 712/80 Etherne

Alpha Ethernet

0 2 4 6 8 10 12 14

16

18

20

Page 1




4

Reliability Issues in Network RAM

“The main disadvantages of remote memory paging lie in security

and fault tolerance.” Felten and Zahorjan, 1991.

4.1

Reasons To Provide Reliable Network RAM

o Increased Probability of Failure

Clearly, with each additional node we involve, we are multiplying the
probability of a failure. This is especially worrisome if we envision network
RAM in an environment where workstations sit right on people’s desks.
In this type of environment, accidental node failure is more likely (due to
workstations being turned off and on, cables being kicked, etc). Its not
the same as relying on dedicated servers which are handled only by special

personnel.

The network itself is also an inherent source of unreliability. In the absence
of adaptive routing, a network failure on the path between a client and a
node storing its pages is basically equivalent to the failure of the remote

node.

Desire to Present A Clean Abstraction

Ideally, network RAM would provide the user with the logical model of
running on her local node only faster. This abstraction is compromised
if the failure of some remote node, which the user did not choose or even
know about, causes the failure of the user’s process. When a global re-
source manager chooses the idle workstations (and even migrates pages as
nodes transition from idle to busy) without consulting the user, it should

make the failure of these remote nodes transparent to the user.

12




o Threat To Operating System Code
Also, in some implementations of network RAM, it is possible to page out
operating system data. At the device driver level there is no notion of
what pages are being sent out, so Mainwaring, et. al[7] had trouble with
OS code being paged out. In such implementations, reliability is especially
important because the failure of a remote node puts more than just an

individual user process at risk.

e Especially Bad for Long Running Processes
Another important point to consider is that long running jobs are espe-
cially at risk. Clearly, the longer a process runs the more opportunity
there is for a failure to occur and the more time the process already has
invested in its computation. It is likely that many of the processes wanting

to take advantage of network RAM will be long running.

For these reasons, we believe that it is worthwhile to explore methods for pro-

viding reliable network RAM.

4.2 What we mean by reliability

In light of the needs of these long running jobs, it is worth clarifying our use of
the word reliable. Network RAM does not have the same reliability requirements
as a file system or a transaction processing system. Unlike these types of systems
where lost data may not be reproducible, for network RAM all data can be
recovered by re-running the program with the same input. Therefore, reliability
in the sense of “safely on disk” is not nearly as important as reliability in the
sense of “accessible in a timely manner”. For network RAM, the worst case
scenario is having to restart the process. However, for long running jobs, this

solution may not be attractive nor acceptable.

13




4.3 Reliability Methods: Description and Comparison

In this section, we will be discussing ways to provide accessibility to the needed
pages in a timely manner even in the face of remote node failures. Our goal is
to enable the system to recover from the failure of some fixed number of nodes.
If too many failures occur the process will have to be restarted. The reliability
methods which we have considered fall into three general categories: sending

asynchronously to disk, replicating pages, and computing parity over pages.

4.3.1 A Basis for Comparison

Before beginning our discussion of the various reliability methods, we should
describe the basic model of “unreliable” network RAM that we are assuming.
We assume the existence of a global resource manager that maintains idle/busy
status information for each node in the system. When a client wishes to use
network RAM, it must first contact the global resource manager to find idle
nodes willing to receive its pages. When the client sends a page to an idle
node, it must also send a key which can later be used to request the page.
The remote nodes must record the mapping between the client’s keys and their
corresponding pages. For all pages sent out, the client must also record the
location of each copy.

Figure 2 lists some costs incurred by basic network RAM. For each reliability
method discussed, we will provide a similar table, containing the additional
costs associated with the method. The categories listed in these tables are some
of most important factors on which we based our comparison of the different
reliability methods. Its important to point out that these tables do not discuss
the transmission protocols at the level of acknowledgements and retransmissions.
To simplify the protocols described, we are assuming reliable message delivery
to any node which is alive and accessible. Of course, at a lower level these
additional messages do exist and we assume that the client maintains a “being

paged out” pool where pages sit until acknowledgements are received indicating

14




Comparison Factor Original Cost

Messages in network

(normal case)

whole pages Pout + Pin
short messages P;
CPU local request needed page

wait for page to arrive (overlap with next 3)
choose a page to free
decide where to send page being replaced

send page

CPU remote receive and store page

send page when requested

Remote memory Pout pages

Page-out latency send page

Page-in latency
best case send request to remote node

wait for page to arrive

if single failure detect failure

process dies!

Figure 2: This table summarizes the costs associated with basic “unreliable”
network RAM. We are assuming reliable message delivery to nodes that are
alive. P,y tefers to the number of pages paged out. P;, refers to the number

of pages retrieved from a remote node.

15




Comparison Factor Change in Cost

Messages in network

(normal case)

whole pages | no change
short messages no change
CPU local send to disk
CPU remote no change
Remote memory no change
Page-out latency wait for room in write buffer

Page-in latency
best case no change

if single failure time to read from disk

always available!

Figure 3: This table summarizes the costs of asynchronously sending the page

to disk over and above the cost of base network RAM.

that they have been successfully received by a remote node.

4.3.2 Sending Asynchronously to Disk

The simplest reliability scheme would be to asynchronously write the page to
disk at the same time that it is paged out over the network. (Of course only
dirty pages need to be sent to disk.) When the page is once again needed,
in the normal case we are able to request the page from the remote node and
avoid the penalty of reading from disk. Even if the remote node is unable to
respond to the request, the data is still safely accessible from the local disk. In
the common case, we would have the benefit of faster access time without the
threat of process failure due to remote node or network failure.

The fact that the pages are safely stored on the local disk has some definite ad-
vantages. For example, if a network failure causes the client to be disconnected

from the network, it will appear as if all of the client’s page servers have failed

16




at once. This is the only method which we ‘considered which would be able to
continue in this case. However, in fairness to the other methods, if the machine
is completely cut off from the network, it is likely to have other problems to
prevent it from continuing (such as access to remote files, etc.). Another benefit
of having the pages stored safely on disk is that remote machines can feel free to
simply dump the pages if needed- greatly simplifying the idle to busy transitions
for remote nodes.

The main problem with this method is that fast pageout times will cause disk
write buffers to fill eliminating truely asynchronous writes. We will still get the
benefit of the fast reads over the network, but slowing to disk speed on our
writes will certainly limit the potential performance gains. For example, in our
implementation, we have measured the time to replace a 4K page to be between
2.1 ms and 9.4 ms. (See the bar graph in Section 3.2.) At these current speeds,
disk writes can truly be asynchronous if the disk can sustain between 0.42 and
1.9 MB/sec of write bandwidth which is a reasonable expectation. However, as
the times for page replacement over the network go down (as they need to in
order to make network RAM more reasonable) the disk may no longer be able
to sustain sufficient write bandwidth. For example, with a page replacement
time of 0.25 ms, the disk could have to provide 15.6 MB/sec of write bandwidth
to keep the writes asynchronous. A single disk is probably unable to provide
this and equipping all nodes with an array of disks seems a bit extreme.
Another problem with the sending asynchronously to disk is that we still limit
the size of our processes to the size of the local disk. Although we currently
live with this limitation, network RAM provides the opportunity to free us from
this restriction and it would be a shame td choose a method which prevenfs us

from taking advantage of it.

4.3.3 Replication

17




Comparison Factor

Change in Cost

Local Control

Remote Control

Messages in network
(normal case)
whole pages

short messages

Poug * k
P xk

Pout x k
Pinxk+1

CPU local transmission of duplicates record location information sent by server
free duplicate pages free duplicate pages
CPU remote no change decide where to send duplicates

send duplicates

send location information to client

Remote memory

Pout * k pages

Pout * k pages

if single failure

detect failure
send request to alternate node

wait for page to arrive

Page-out latency send k extra pages no change
Page-in latency
best case no change no change

detect failure
send request to alternate node

wait for page to arrive

Figure 4: This table summarizes the costs of the two replication schemes over

and above the cost of base network RAM. We are assuming reliable message

delivery to nodes that are alive. P,y refers to the number of pages paged out.

P;y, refers to the number of pages retrieved from a remote node. k is the degree

of replication.

18




The next two reliability schemes we have considered is locally controlled repli-
cation and remotely controlled replication. In remotely controlled replication,
the remote node must report back to the original node the location of all the
replicas. Otherwise, the remote node as the information holder would become
a single point of failure. The second method has the advantage that the client
need not oversee the transfer to other hosts, thus shifting responsibility away
from the actively processing node.

In both of these schemes, when the original node needs its page back, it can
retrieve it from any one of the remote nodes holding a copy. If a failed node is
detected, a remaining copy holder should send a duplicate page to replacement
idle node so that the system can return to a stable, fault tolerant state.

The main problem with replication schemes is that they use extra memory. One
solution to this problem is combining replication with migration of secondary
copies to remote disk. In this scheme, we make a distinction between the primary
copy and the secondary copy of a page. The primary copy remains in memory
on the remote node while the secondary copy can be migrated to remote disk.
If the primary copy holder fails, the secondary copy can be retrieved from disk
and made the new primary. A replacement idle node can be selected to become
the new secondary copy holder.

In the common case, the primary copy holder will be able to quickly satisfy the
client’s request for the page. If the primary copy holder fails, the client must
request the secondary copy- paying not only network transfer cost but also the
cost of reading from the remote disk. Therefore, since accesses to secondary

copies are extremely expensive, they must be kept rare to reduce their impact.

4.3.4 Parity

Parity schemes were the third basic type of reliability method that we consid-
ered. As with the replication schemes, it is easy to conceive of both locally

and remotely controlled parity schemes. However, we chose to consider only re-

19




motely controlled parity schemes because they free the actively processing client
from the time required by the parity calculations. In a simple parity scheme,
the client sends one copy of its page to a remote node, the remote node splits
the page into pieces and computes a parity piece. The remote node then dis-
tributes these pieces to other idle nodes and informs the original client of the
location of the pieces. Again, this is necessary to prevent the node which holds
the location information from becoming a single point of failure. The problem
with this scheme is that the client must reassemble or possibly even reconstruct
the page on every single page request.

Another parity scheme solves the reassembly problem. by using a parity group
(a group of remote nodes which together handle the client’s page requests).
Unlike in the simple parity scheme, when the remote node receives the client’s
page, it does not split it into pieces. Instead, it places the entire page into
a block. Parity is computed across the corresponding blocks on each member
of the parity group. For each block, one node in the group acts as the parity
node. Therefore, the remote node, which receives the page, chooses a free block
in which to place the page, reads the corresponding parity block (locking it),
recomputes a new parity block, stores its updated block and sends the new
parity block back. Thus only two remote nodes are affected when a page is
received. When a node requests its page to be returned, in the normal case,
the remote node which has the complete page is able to service the request
directly with no reassembly required. If that node is inaccessible, the node
can contact the rest of its paging group, ask for their corresponding blocks and
reconstruct the missing page. This method does incur the overhead of managing
the page group, but we believe that this is a reasonable job for the same service
which manages the idle resources. This management would involve handling
membership changes in the parity group. If a group member fails, the resource
manager must instruct the remaining members to cooperate in reconstructing

the lost blocks.

20




Comparison Factor

Simple Parity

Change in Cost
Parity Group

Messages in network

(normal case)

compute a parity piece
distribute pieces

notify client of location

whole pages —P;n, (fewer!) 2 % Pout
partial pages Pout *xn+ Pip x(n+ 1) 0
short messages 14+ Fin*xn no change
CPU local record location info from remote | no change
request all the pieces
reassemble
CPU remote break pages into pieces request corresponding parity page

Remote memory

1/n % Pout pages

1/n * Pout pages

if single failure

reassemble

reconstruct

Page-out latency no change no change
Page-in latency
best case request all pieces no change

reconstruct

Figure 5: This table summarizes the costs of the two parity schemes over and
above the cost of base network RAM. We are assuming reliable message delivery
to nodes that are alive. P,y refers to the number of pages paged out. P;, refers

to the number of pages retrieved from a remote node. n is the number of pieces

over which parity is computed.

21

compute new parity page
send back the updated parity page

store the new page

contact members of parity group




4.4 Reliability Conclusions

In light of the previous discussion, we believe that the replication/remote disk
combination and the parity group scheme are the most promising. They both
allow for fast access in the normal case and do not use much extra memory. As
we discussed sending asynchronously to disk has some very nice properties, but

its fundamental limitations make us hesitant to recommend it.

5 Summary

We have shown that some of the common assumptions underlying network RAM
are inaccurate, limiting the general applicability of network RAM. We have
demonstrated that a user-level implementation can achieve speeds of 2-5 times
faster than disk speeds and has a performance comparible to device driver imple-
mentations. We have examined ways to provide reliable network RAM, which

should now be tested in an implementation.

References

[1] Anderson, T.E.;.Culler, D.E.; Patterson, D.A et al.; “A Case for NOW
(Networks of Workstations)”, November 1994.

[2] Asami, S., “Evaluating Network RAM via Paging”, NOW Retreat Presen-
tation slides, June 1994.

[3] Carter, L.; Ferrante, J.; Hummel S. “Hierarchical Tiling: A Framework for

Multi-level parallelism and Locality.”

[4] Chan, T. and Hsu, W., “PRIME: Paging to Remote Idle MEmory”,
SCAMD, November 1994.

[5] Iftode, L., Li, K., and Petersen, K., “Memory Servers for Multicomputers”,
1993.

22




[6] Felten, E.W. and Zahorjan, J., “Issues in the Implementation of a Remote
Memory Paging System”, March 1991.

[7] Mainwaring, A., Wright, K., Yoshikawa, C., “The Design and Implementa-
tion of a Network RAM Prototype”, November 1994.

[8] Mc Namee, D.; Armstrong, K. “Extending the Mach external pager inter-
face to accomodate user-level page replaceemnt policies.” USENIX Work-

shop Proceedings: Mach. 1990.

[9] Nguyen, G. and Oza N., “On the Use of Network DRAM in LAPACK
Programs”, November 1994.

[10] Nitzberg, B. and Lo, V., “Distributed Shared Memory: A Survey of Issues
and Algorithms”, August 1991.

[11] Shi, J.; Xi, J. “Paging across network: a study of queuing effect”, November
1994.

23




	scan0004
	scan0005
	scan0007



