
Dr. Jeanna Matthews, Professor of Computer Science, Clarkson University

Materials for 2022 NACDL & The Samuelson Clinic’s Spring Seminar
Unlocking the Black Box: Challenging Surveillance Tools & Technologies in Criminal Cases
Chicago, IL , May 16 & 17, 2022

Litigating DNA Software Panel

Summary: This panel session with Megan Graham, Khasha Attaran and Jeanna Matthews
features a discussion about United States v. Ellis, the first federal case to order disclosure of the
source code to TrueAllele, a program that uses a black box algorithm to analyze DNA evidence.
We will talk about what sorts of information you should push for access to in DNA software
cases and strategies for litigating access to software source code.

1. Source Code and Beyond, What Type of Materials Are Relevant
United States v. Ellis was the first federal case to order disclosure of the source code to

TrueAllele, a program that uses a black box algorithm to analyze DNA evidence, but the scope
of the protective order actually included substantially more than source code. Here is a section
of the protective order:

The protections of this Order cover the following material that is hereby ordered to be
disclosed to Defense Counsel and their Experts:

a) TrueAllele source code for the version used in the instant case;
b) All software dependencies including third-party code libraries, toolboxes, plug- ins,
and frameworks;
c) Software engineering and development materials describing the development,
deployment, and maintenance of the version(s) of the TrueAllele software system used in
the instant case, including the software engineering documents recommended by
organizations such as the Institute of Electrical and Electronics Engineers or the Internal
Organization for Standardization;
d) All records of software glitches, crashes, bugs, or errors encountered during the
TrueAllele developmental validation study;
e) Software version numbers of the components of the TrueAllele system used for the
developmental validation study;
f) All records of unexpected results, including false inclusions, false exclusions and the
conditions under which the unexpected results were achieved.

When the goal is to assess the reliability of software for a particular case, it is important to

request access to as many of the relevant software development materials as possible. This
provides essential context for what testing was conducted, what where the criteria used for
acceptance testing, what errors have already been found and fixed in the system and more.
Industry organizations such as the Institute of Electrical and Electronics Engineers (IEEE) offer
standards for verification and validation (V&V) that outline the types of materials that are
considered best practices and in fact are required in many critical software industries. Given our

experience in U.S. v. Ellis, I would recommend working with your expert witness team to write
an even more specific and detailed list of software dependencies and V&V materials needed for
effective review and testing.

2. Problems with the Access We Were Provided

In U.S. v. Ellis, we were given access to 2 computers. On one computer, there was a working

black-box executable. We were able to run full tests but without any access to the inner
workings of the system. On the other computer, we had access to the source code of True
Allele. However, we could not assemble it into a working system for many reasons. First,
despite the order specifying all software dependencies, many of the dependencies were
missing. Second, some of the source code files were not provided and all the source code files
had been removed from their natural organization structure (directories and sub-directories
grouping like files together) and put all together in one flat collection. Third, the computer was
running an operating system on which True Allele was not normally constructed. Fourth, no
build instructions were provided. For all these reasons, we were unable to assemble the
provided source code into a working system.
 The first computer with a working black-box executable was like a running car for which
we could not pop the hood. The second computer with the source code was like a pile of parts
– nuts, bolts, pulleys, screws, etc. - that came from a completely dissembled car with some
parts missing, no schematics for putting it together, and parts from disparate components
mixed together (e.g. all the tiny parts of the transmission, engine and brakes mixed together).
One of the prosecutions own experts agreed that they would be unable to identify which
functions/parts would have been used in processing Mr. Ellis’ data from the information
provided to us.
 The prosecution argued that it was sufficient for us to test individual functions (e.g. test
the strength of an individual screw or pulley) and that it would too much risk to Cybergenetics
to allow us sufficient access to build a completely working version of the system that could be
examined. They did not explain how there would be any additional IP risk to them from
allowing us to build the system vs. reading the provided source code. We argued that there was
no additional IP risk but simply an attempt to make it impossible for us to carry out the type of
testing we proposed.

The prosecution argued that we could us publicly available data sets (e.g. a data set from
Rutgers University) to test the black-box executable. However, there are substantial problems
with this assertion. First, there is no definition of the correct LR for any given test making it
difficult to truly fail a test. (The range of LRs accepted for known samples is wide and vague.)
Second, there is no way to be sure that the executable system was indeed built from exactly the
source code provided to us. Matching version numbers alone are an unreliable reflection of
whether any other portions of the source code differed. It is completely possible to make a
change in source code without changing the version number. Third, it would take substantial
engineering effort and run time to prepare data sets like the Rutgers dataset for use and to
automate the running of hundreds or thousands of tests. Fourth, there is no way to rule out an
error in Mr. Ellis’ case using a dataset like the Rutgers set. Any given clients’ data could trigger

bugs not seen with other data. We asked to examine the internal operation of the system on
Mr. Ellis’ specific data, but were prevented from doing so, but the type of access provided.

3. What Types of Access Should You Push For
It is important to note that source code access is more frequently provided to look

violations of IP rights (e.g. code that has been copied from a company by a competitor). Looking
for signs of copied code is a completely different kind of review than assessing software for
reliability/investigating whether the software is behaving in an erroneous manner on a
particular client’s data.

It will greatly impede review if source code is not provided in a searchable digital format.
When reading software, it is important to be able to jump from the call site of a function to its
implementation. There are standards tools like Integrated Development Environments (IDEs)
that are essential to doing this quicky and efficiently. As much as possible. You should ask that
experts be provided a working environment like the development team has access to with all
the tools, editors, IDEs, etc. needed to efficiently read, follow and review the code.

In order to identify what code is actually executed on the data at issue in a particular case, it
would be necessary to be able to run through the execution of the software in tool such as a
debugger that follows execution step by step through the code. This is a commonly-used best-
practice tool and I have heard no argument for why it increase the risk to a company’s IP to
enable experts to examine code with such a tool vs. just reading the source code.

It is also important to ask for access to all software dependencies including external
databases that provide input to the execution of the software. This is essential because errors
can just as easily be found in databased on which the software relies as directly in the source
code. To illustrate why this is so, consider the example of software that recommends a
restaurant to you based on your location. If it incorrectly recommends a restaurant hundreds of
miles away after consulting a database of possible restaurants, then the problem causing the
error may very well be in the contents of that database. If the expert is prevented from
examining important dependencies like databases, then it may be impossible for them to
identify an error impacting a particular recommendation, especially when unlike with far away
restaurants the user is unable to recognize an incorrect output. This is the case with outputs
like LRs for which there is no ground truth that would allow an operator to recognize and call
attention to a suspicious result.

It is worth noting that access to external databases could be handled securely in a number
of ways. First, if as in Ellis, a fully working black-box executable is also provided with access to
offsite databases there should be no additional security concerns. Second, connections to
external database could be secured using encryption technology like VPNs. Third, a copy of the
database could be run on the same machine or on another machine located on the premises
where the expert is examining the system.

It is worth noting that for many software systems, especially complex systems like
probabilistic genotyping, experts from multiple disciplines may need to be involved in the
review (e.g. computer scientists, statisticians, geneticists, etc.). If possible, would highly
recommend to structure the review in such a way that expert witnesses can collaborate
without all having to travel to the same location at the same time.

Finally, it is important to consider what tools experts are allowed to bring in with than and
what notes experts are allowed to take to document their findings for communication to the
court. It can be important to bring in data sets and tools. The prosecution in U.S. v. Ellis even
suggested using the Rutgers dataset which would have required a sizable set of data and tools
to be brought in. I have mentioned other problems with the specific suggestion but the fact
that the prosecution suggested illustrates the types of testing and access that could be
expected/needed. Consider mentioning in the protective order the ability to bring in tools and
datasets.

It is also important to consider requesting that the expert be able to take a limited set of
digital notes e.g. recording small relevant portions of code and other details for comment and
inclusion in their report to the court.

4. Other Helpful Resources

Mats Heimdahl and Jeanna Matthews,

Amici Curiae Brief in New Jersey v. Pickett , October 14 2020. Full Decision , Some key quotes
Declaration in US v. Ellis, Heimdahl and Matthews, November 16 2020. Response, Nathan
Adams and Jeanna Matthews, February 16 2021. Decision , Some key quotes

S. Lacambra, J. Matthews and K. Walsh.
Opening the Black Box: Defendants' Rights to Confront Forensic Software
The Champion , May 2018.
PDF

J. Matthews, G. Northup, I. Grasso, S. Lorenz, M. Babaeianjelodar, H. Bashaw, S. Mondal,

A. Matthews, M. Njie, J. Goldthwaite
When Trusted Black Boxes Don't Agree: Incentivizing Iterative Improvement and
Accountability in Critical Software Systems
Proceedings of the 2020 AAAI/ACM Conference on Artificial Intelligence, Ethics and Society
(AIES) , New York, New York, USA, February 7-8 2020.
PDF (Paper), Slides

J. Matthews, N. Adams, J. Goldthwaite

Decoding Probabilistic Genotyping Software,
Questioning Forensics 2020, 22 and You: Fighting for Privacy & Justice in an Age of Genetic
Surveillance, Brooklyn Law School, Brooklyn, New York, USA, January 14-25 2020.

N. Adams, S. Lorenz, M. Babaeianjelodar, J. Matthews, D. Krane

Quantifying the impact of post-validation modifications to Forensic Statistical
Tool Criminalistics Track, American Academy of Forensic Sciences (AAFS) 2019 Annual

Scientific Meeting , February 18-23 2019.
Abstract: PDF

J. Matthews, S. Lorenz, M. Babaeianjelodar, A. Matthews, M. Njie, N. Adams, D. Krane, J.

Goldthwaite, C. Hughes
The Right To Confront Your Accusers: Opening the Black Box of Forensic DNA Software
Proceedings of the 2019 AAAI/ACM Conference on Artificial Intelligence, Ethics and Society
(AIES) , Honolulu, Hawaii, January 27-28 2019.
PDF

Brown Institute Magic Grant,

Decoding Differences in DNA Forensic Software , 2018-2019.
Magic Grant Profile
Example of impact: STRmix ruled inadmissable in US v. Gissantaner, October 16 2019. (PDF)

J. Matthews, N. Adams, J. Greco,

You're just complaining because you're guilty: A DEF CON Guide to Adversarial Testing of
Software Used In the Criminal Justice System
DEF CON 26 , Las Vegas, August 9-12 2018.
Schedule , Slides , Video

J. Matthews, N. Adams, J. Greco,

You're just complaining because you're guilty: A Guide for Citizens and Hackers to Adversarial
Testing of Software Used In the Criminal Justice System
Bsides Las Vegas 2018, Las Vegas, August 7-8 2018.
Video

Michael Edge, Jeanna Matthews,

Open practices in our science and our courtrooms ,
Open Science Framework, July 14 2021.

