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Critical points for random Boolean networks
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Abstract

A model of cellular metabolism due to S. Kauffman is analyzed. It consists of a network of Boolean gates randomly
assembled according to a probability distribution. It is shown that the behavior of the network depends very critically on
certain simple algebraic parameters of the distribution. In some cases, the analytic results support conclusions based on
simulations of random Boolean networks, but in other cases, they do not.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many dynamical systems are modeled by networks of interacting elements. Examples come from diverse areas
of science and engineering and over enormous scales of time and space, from biochemical networks within a cell
[1] to food webs[3] and collaboration networks in human organizations[16]. Often, these systems are subjected
to random or unpredictable processes. In this paper, we analyze a class of random networks that Kauffman[9,10]
proposed as models of cellular metabolism. These are networks of Boolean gates, where each gate corresponds to
a gene or protein, and the network describes the interactions among these chemical compounds. Although Boolean
networks capture at least some of the salient features of the operation of the genome, researchers have been mainly
interested in certain abstract properties of their dynamics. Kauffman’s thesis is that randomly assembled complex
systems often exhibit “spontaneous order”, i.e., even though they are not constructed according to any plan, their
behavior is often stable and robust.

Kauffman considered several measures of order, based on the limit cycle that the network enters. Since a Boolean
network has a finite number of gates, each of which has two possible states, the network itself has a finite number of
states, and it will eventually return to some state it had visited earlier. Since the network operates deterministically,
it will keep repeating this sequence of states, which is called the limit cycle. Among the measures of order that have
been considered are
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1. The number of stable gates—gates that eventually stop changing state.
2. The number of weak gates—gates that can be perturbed without changing the limit cycle that the network enters.
3. The size of the limit cycle.

The key findings of Kauffman’s experiments were that networks constructed from Boolean gates with more than
two inputs were usually disordered in all three senses: a significant fraction of the gates never stabilized and, when
perturbed, caused the network to enter a different limit cycle, and the size of the limit cycle was exponential in the
number of gates. But networks constructed from gates with two inputs tended to be ordered in all three senses, in
particular, the average limit cycle size was on the order of the square root of the number of gates.

These results raise many biological and mathematical questions. From the viewpoint of biology, a basic issue is
whether these Boolean networks capture the essential features of cellular metabolism. Genes are generally active
or inactive, i.e., transcribing their protein or not, and the transition between the two states usually happens on a
short time scale. Each gene tends to be directly affected by a small number of proteins. Thus the Boolean network
model seems to be at least a rough approximation of cellular metabolic networks. Also, genomes are the result
of evolution, which involves random events. However, it would be extremely unlikely that the simple probability
distributions used by Kauffman are realistic. He studied two kinds of random networks constructed from 2-input
gates. In the first kind, all of the 16 Boolean functions of two arguments are equally likely to be assigned to a gate.
This is certainly a reasonable place to start, given the lack of knowledge about the actual distribution of functions
in real genomic networks. Two of these 16 functions are constants, i.e., they ignore their inputs and output only
one value. Such gates exhibit an extreme form of order, and it seemed possible that their presence was the source
of order in networks of 2-input gates. However, Kauffman also ran simulations of randomly constructed networks
without constant gates, where the remaining 14 two-argument functions were equally likely, and the results were
similar to those where all 16 functions were used.

Kauffman proposed another category of functions as the source of order. He called these the canalyzing functions.
A canalyzing function is a Boolean function for which there exists some argument and some Boolean value such
that the output of the function is determined if the argument has that value. For example, the two-argument OR
functionx1 ∨ x2 is canalyzing because if either argument has the value 1, then the value ofx1 ∨ x2 is 1. Fourteen
out of the 16 two-argument Boolean functions, including the constant functions, are canalyzing, but this proportion
drops rapidly among Boolean functions with more than two arguments. Thus the hypothesis that nets with many
canalyzing gates tend to be ordered, while those with few of them do not, is consistent with the experimental results.

All these definitions and claims have precise mathematical formulations, so a natural question is whether the
experimental results are supported by proofs. Interestingly, at about the same time that Kauffman started investigating
random Boolean networks, the mathematical techniques for dealing with random networks were being developed
by Erdös and Rényi[5,6] and Gilbert[7], but it was about 30 years before any of these techniques were applied to the
analysis of random Boolean networks. The first proofs of any of Kauffman’s claims appear in an article co-authored
by the mathematical biologist Cohen and the random graph theorist Łuczak[2].

Random graph theory is now a flourishing branch of combinatorics. The most extensively studied version of
random graph is the independent edge model. In this version, there is a probabilityp (which may depend on the
number of vertices in the graph) such that for each pair of vertices independently, there is an undirected edge between
them with probabilityp. Graph theorists have discovered many deep and interesting results about this kind of random
graph, but it does not seem to be a good model of the random networks studied in biology, communications, and
engineering. A major distinction is that the degree distribution of this kind of graph is Poisson, but the degree
distributions of many real-world networks obey a power law. A better model for these situations may be random
graphs with a specified degree distribution, which are considered in recent papers by Molloy and Reed[13,14].
Some other shortcomings of the standard version of random graph pointed out by Newman et al.[15] are that it is
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undirected and has only one type of vertex. They develop some techniques for dealing with random directed graphs
with vertices of several types. However, even this model lacks the structure needed to model the dynamic behavior
of networks.

Kauffman’s Boolean networks are a further extension of the models in[15] that do include this additional structure.
The gates of a Boolean network are vertices assigned a type corresponding to a Boolean function, and the directed
edges indicate the inputs to each gate. But instead of simply regarding each vertex as a static entity, we are interested
in how the functions of the gates change the state of the network over time. Our random Boolean networks are
specified by a sequence of probabilitiesp1, p2, . . . whose sum is 1, where for each gate independently,pi is the
probability that it is assigned to theith Boolean function. (We are assuming some canonical ordering of the finite
Boolean functions.) Once each gate has been assigned its function, its indegree is determined by the number of
arguments of the function, and its input gates are chosen at random using the uniform distribution. Lastly, a random
initial state is chosen.

Our main results are simple algebraic conditions, derived from the distributionp1, p2, . . . that imply ordered
behavior of the first two kinds mentioned above: almost all gates stabilize quickly, and almost all gates can be
perturbed without affecting the long-term behavior of the network. Conversely, if the conditions fail, then the
networks do not behave in such an ordered fashion. Our conditions actually imply forms of ordered behavior
stronger than Kauffman’s. That is, the gates stabilize in time on the order of logn, wheren is the number of gates,
and the effect of a perturbation dies out within order logn steps. Consequently, the failure of our conditions implies
forms of disordered behavior that are weaker than the negations of Kauffman’s.

We then apply our main results to the two classes of 2-input Boolean networks mentioned above. Here, our
analysis verifies some of Kauffman’s claims for networks in the first class, but it casts doubt on similar claims for
the other class.

2. Definitions

A Boolean networkB is a 3-tuple〈V,E, f〉 whereV is a set{1, . . . , n} for some natural numbern, E is a set of
directed edges onV , andf = (f1, . . . , fn) is a sequence of Boolean functions such that for eachv ∈ V , the number
of arguments offv is indeg(v), the indegree ofv in E. The interpretation is thatV is a collection of Boolean gates,
E describes their interconnections andf describes their operation.

The gates update their states synchronously at discrete time steps 0,1, . . . . At any time t , each gatev is in
some statexv ∈ {0,1}. Letting x = (x1, . . . , xn), we say thatB is in statex at time t . Let indeg(v) = m and
u1 < u2 < · · · < um be the gates such that(ui, v) ∈ E for i = 1, . . . , m. These are referred to as thein-gatesof v.
Then the state ofv at timet + 1 is yv = fv(xu1, . . . , xum). Lettingy = (y1, . . . , yn), we putB(x) = y. Note that
the ordering of the in-gates implicitly associates each one with the corresponding argument offv. Alternatively, we
could label each edge inE with an integer so that if(u, v) is labeledi, thenu corresponds to argumenti of fv. The
next definitions describe the dynamical properties of Boolean networks that we will analyze.

Definition 1. Let x ∈ {0,1}n.
1. Fort = 0,1, . . . , we putBt(x) for the state ofB at timet , given that its state at time 0 isx. That is,

B0(x) = x and Bt+1(x) = B(Bt (x)) for all t.

We also putBtv(x) for yv wherey = Bt(x).
2. Gatev stabilizes int steps on inputx if Bt

′
v (x) = Btv(x) for all t ′ ≥ t .
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3. Forx ∈ {0,1}n andv ∈ {1, . . . , n}, we putxv for the state which is identical tox except thatxvv = 1 − xv.
4. Letu, v ∈ {1, . . . , n} andx ∈ {0,1}n. We say thatv affectsu at timet on inputx if Btu(x) �= Btu(x

v). We put
At(v, x) = {u ∈ V : v affectsuat timet on inputx}.

5. Gatev is t-weak on inputx if At(v, x) = ∅, i.e.,Bt(x) = Bt(xv). Gatev is t-strong onx if it is not t-weak on
x. If x is understood, we simply sayv is t-weak ort-strong.

For small intervals of time, the dynamical properties described above are determined by the “local” structure
of the network. That is, the behavior of a gate over the interval 0,1, . . . , t is determined by the portion of the
network consisting of all gates that can reach the gate by a path inE of length at mostt . Similarly, the gates
affected by a given gate lie in the portion consisting of all gates reachable from the gate by such a path. Of
course, for large enought , these portions will be the entire network. The next definitions capture these notions of
locality.

Definition 2.

1. For any subsetI ⊆ V ,

S0
+(I ) = I and St+1

+ (I ) = {u : (v, u) ∈ E for somev ∈ St+(I )} for t ≥ 0.

That is,St+(I ) is the set of gates at the ends of paths of lengtht that start inI . Similarly,St−(I ) is the set of gates
at the beginning of paths of lengtht that end inI .

2. Then

Nt
+(I ) =

t⋃
s=0

Ss+(I ) and Nt
−(I ) =

t⋃
s=0

Ss−(I )

are the out- and in-neighborhoods, respectively, ofI of radiust .

We putSt+(v) for St+({v}) and similarly for the other notations. Thus the state of gatev at timet is determined
by the states of the gates inSt−(v) at time 0 and the functions assigned to the gates inNt−1

− (v).

As we will show, for sufficiently smallI andt , the “typical”Nt+(I ) andNt−(I ) induce a forest on〈V,E〉, i.e.,
there are no directed or undirected cycles among their gates. If this is the case forNt+(v), then we can give a simple
recursive definition ofAt(v, x).

Definition 3. Let f (x1, . . . , xm) be a Boolean function ofm arguments, andx = (x1, . . . , xm) ∈ {0,1}m be an
assignment of 0’s and 1’s to its arguments. Fori ∈ {1, . . . , m}, we say that argumenti directly affectsf on inputx
if f (x) �= f (xi ). We extend this notion to gates in a Boolean network in the obvious way. Given a Boolean network
B where gatev has in-gatesu1 < · · · < um and statex ∈ {0,1}n, for i = 1, . . . , m, ui directly affectsv on inputx
if Bv(x) �= Bv(xui ).

Lemma 1. AssumeNt+(v) induces a tree onE. Then for anys ≤ t , anyx ∈ {0,1}n, and any gateu ∈ Ss+(v), v
affectsu at times on inputx if and only if

1. s = 0 andu = v, or
2. s > 0 and lettingw be the unique gate such thatw ∈ Ss−1

+ (v)∩ S1−(u), v affectsw at times − 1 on inputx, and
w directly affectsu on inputBs−1(x).
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3. Random Boolean networks

We will be examining randomly constructed Boolean networks. The random model we use appears to be suf-
ficiently general to capture the particular classes of random Boolean networks in the literature. Letφ1, φ2, . . .

be some ordering of all the finite Boolean functions, and letp1, p2, . . . be a sequence of probabilities such that∑∞
i=1pi = 1. The selection of a random Boolean network withn gates is a three-stage process. First, each gate is

independently assigned a Boolean function using the distributionp1, p2, . . . . That is, for eachv = 1, . . . , n and
j = 1,2, . . . , the probability that gatev is assignedφj is pj . The probabilities may depend onn, the number of
gates in the network; i.e., each probability is actually a functionpi(n). For example,pi(n) = 0 for anyφi with
more thann arguments. For simplicity of notation, we suppress the functional notation. Next, the in-gates for each
gate are selected. If the gate has been assigned anm-argument function, then its in-gates are chosen from the

 n

m




equally likely possibilities. Finally, a random initial state is chosen from the 2n equally likely possibilities.
If θ is a property of Boolean nets then pr(θ) denotes the probability that a random Boolean network withn gates

satisfiesθ . If φ is also a property then pr(θ |φ) is the probability ofθ over random Boolean networks withn gates,
conditioned onφ.

We make several restrictions on the distributionp1, p2, . . . still consistent with the random networks in the
literature. Since we are assuming that all orderings of the in-gates to a gate are equally likely, for anyj andk such
thatφj andφk are identical except for the ordering of their arguments,pj = pk. Also, for anyj andk such that
φj = ¬φk, pj = pk. This implies that, for any gatev and t ≥ 0, Btv(x) is equally likely to be 0 or 1. Lastly,
we assume that the average and variance of the number of arguments of a randomly selected Boolean function, or
equivalently, the average and variance of the indegree of a gate, are finite. That is, letting eachφi havemi arguments,∑∞

i=1pim
2
i ∈ [0,∞).

4. Branching processes

As will be shown, fort not large compared ton, the typicalNt+(v) induces a tree in a Boolean network withn
gates. A perturbation of the state of suchv may cause perturbations to the states ofS1+(v) in the next step, then
S2+(v), and so on, in a “wave” that propagates throughNt+(v). It is possible that this wave dies out and the effects
of the perturbation are transient, i.e., gatev is t-weak. We will show that this behavior can be approximated by a
branching process. Then, by applying basic results about branching processes, we will derive our results about weak
gates. We will summarize the results that we need. For more information on branching processes, see Harris[8].

A branching process can be identified with a rooted labeled tree. The tree may have infinite branches. Each node
will be labeled with the unique path from the root to that node. That is, the root is labeled with the null sequence.
If the root hask children, they are labeled with the sequences(1), (2), . . . , (k). If the second child of the root has
l children, then they are labeled with the sequences(2,1), (2,2), . . . , (2, l), and so on. Generationt consists of all
nodes labeled with a sequence of lengtht . The number of children of any node is independent of the number of
children of any other node, but the probability of having a certain number of children is the same for all nodes.
Thus the probability space of a branching process is determined by a sequence(qk : k = 0,1, . . . ) whereqk is the
probability that a node hask children. The probability measure on this space will be denoted by bpr. In describing
events in this space,P will denote a branching process. Ifχ is a property of branching processes,P |= χ meansχ
holds forP , and bpr(P |= χ) is the probability thatχ holds.



54 J.F. Lynch / Physica D 172 (2002) 49–64

For t ≥ 0,P � t will be the finite labeled tree which isP restricted to its firstt generations.Zt will be the random
variable which is the size of generationt , i.e., the number of nodes of deptht .

The generating function of the branching process is the series

F(z) =
∞∑
k=0

qkz
k.

That is,F(z) is the probability generating function ofZ1 sinceqk = bpr(Z1 = k). A basic result is that thet th
iterate ofF(z) is the probability generating function ofZt . The iterates ofF(z) are defined by

F0(z) = z and Ft+1(z) = F(Ft (z)) for t ≥ 0. (1)

Then

Theorem 1. The probability generating function ofZt is Ft(z), i.e.,

Ft(z) =
∞∑
k=0

bpr(Zt = k)zk.

This enables us to express the moments ofZt in terms of the moments ofZ1, which in turn have simple
representations in terms of the derivatives ofF(z). Let µ andσ 2 be the first and second moments ofZ1, i.e.,
µ = E(Z1) andσ 2 = var(Z1).

Theorem 2. We have

µ = F ′(1) and σ 2 = F ′′(1)+ F ′(1)− (F ′(1))2.

More generally, for all t ≥ 0, the first and second momentsof Zt are

E(Zt ) = µt and var(Zt ) =



σ 2µt(µt − 1)

µ2 − µ
if µ �= 1,

tσ 2 if µ = 1.

5. Weak gates

We put log for log2. In this section,α andβ will be positive constants satisfying 2α logδ+2β < 1 andα logδ < β,
whereδ = E(mi).

Lemma 2. LetS ⊆ {1, . . . , n}, |S| ≤ nβ , andt ≤ α logn. The following events have probability1 − o(1):

1. For everyv ∈ S,Nt−(v) induces a tree in〈V,E〉.
2. For every distinctu, v ∈ S,Nt−(u) ∩Nt−(v) = ∅.

Proof. We show that each of these events fails with probability o(1). The calculations are similar for both events,
and we show the work only for event 1.

If event 1 fails, then there exist distinct gatesv1, . . . , vs such that

s ≤ α logn,
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for i = 1, . . . , s − 1, vi is an in-gate ofvi+1, and

vs ∈ S,

and distinct gatesw1, . . . , wr such that

r ≤ α logn,

for i = 1, . . . , r − 1,wi is an in-gate ofwi+1,

w1 = v1, and

for someh ∈ {1, . . . , s}, wr = vh.
Eitherh above is 1 or greater than 1. The two cases are similar, and we will describe only the second. Therefore,

we can assumer ≥ 2. Nows, r, andh can be chosen in O((logn)3) ways. The gatesv1, . . . , vs andw2, . . . , wr−1

can be chosen in O(ns+r−3+β) ways. For eachj ∈ {1, . . . , s − 1} − {h− 1}, the probability thatvj is an in-gate of
vj+1 is

∞∑
i=1

pi


 n− 1

mi − 1





 n

mi




=
∞∑
i=1

pi
mi

n
= δ

n
.

Similarly, the probability that eachwj is an in-gate ofwj+1 for j = 1, . . . , r − 2 is δ/n. The probability that both
vh−1 andwr−1 are in-gates ofvh is

∞∑
i=1

pi


 n− 2

mi − 2





 n

mi




=
∞∑
i=1

pi
mi(mi − 1)

n(n− 1)
= O(n−2).

Altogether, the probability that event 1 fails is

O

(
(logn)3 × ns+r−3+β ×

(
δ

n

)s+r−4

× n−2

)
= O((logn)3δ2α lognnβ−1)

= O((logn)3n2αlogδ+β−1) = o(1). �

We will use the branching process defined as follows. Let

λ =
∞∑
i=1

pi

mi∑
j=1

|{x ∈ {0,1}mi : argumentj directly affectsφi on inputx}|
2mi

. (2)

Thusλ may be regarded as the average number of arguments that directly affect a random Boolean function with a
random input. The branching process is defined by

qk = λk

k!
e−λ
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for k = 0,1, . . . . Therefore,F(z) = eλz−λ. FromTheorem 2,

µ = λ, σ 2 = λ, E(Zt ) = λt and var(Zt ) =


λt (λt − 1)

λ− 1
if µ �= 1,

tλ if µ = 1.

Definition 4. Let T be a labeled tree of heightt , B = 〈V,E, f〉 be a Boolean network, andx ∈ {0,1}n be its state.
For v ∈ {1, . . . , n}, we putT ⇒ v if Nt−(At (v, x)) induces a tree in〈V,E〉, and there is an isomorphism fromT
onto〈At(v, x), E〉.

Lemma 3. If |T | ≤ nβ and the height ofT is t ≤ α logn, then for allx ∈ {0,1}n, pr(T ⇒ v) = bpr(P � t ∼= T )

(1 + o(1)).

Proof. By Lemma 2, if there is an isomorphismτ from T onto 〈At(v, x), E〉, then almost surelyNt−(At (v, x))
induces a tree in〈V,E〉. Thus we need only to analyze the probability thatτ exists. Letu1, . . . , uh be the nonleaf
nodes ofT , in lexicographic order. The construction ofτ is recursive and proceeds in stages 1, . . . , h. At each stage
s, τ(us) has been defined at some previous stage, and it is extended to the children ofus . (At stage 1,τ(u1) = v

has already been defined.) Also, the Boolean functions assigned to these children are selected.
Thus, assume that at stages, τ(u1), . . . , τ (uKs ) have already been defined, wheres ≤ Ks . Letus haveks children.

Then there are
 n−Ks

ks




ways of selecting the children ofτ(us) inAt(v, x). Having chosen these children, we next assign Boolean functions
to them. Independently, for each childw of τ(us), let φi be assigned to it. This event has probabilitypi , and the
probability thatτ(us) is an in-gate ofw is

 n− 1

mi − 1





 n

mi




= mi

n

Summing over alli, we get the probability thatτ(us) directly affectsw
∞∑
i=1

pi

mi∑
j=1

pr(τ (us) is thej th in-gate ofw andj directly affectsφi on inputBl(x)| indeg(w) = mi),

wherel is the depth ofus in T

=
∞∑
i=1

pi

mi∑
j=1

pr(τ (us) is thej th in-gate ofw| indeg(w) = mi)

× |{x ∈ {0,1}mi : argumentj directly affectsφi on inputx}|
2mi

=
∞∑
m=1

∑
1≤i<∞
mi=m

pi

m∑
j=1

pr(τ (us) is thej th in-gate ofw|indeg(w) = m)
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× |{x ∈ {0,1}m : argumentj directly affectsφi on inputx}|
2m

=
∞∑
m=1

m∑
j=1

pr(τ (us) is thej th in-gate ofw|indeg(w) = m)

×
∑

1≤i<∞
mi=m

pi × |{x ∈ {0,1}m : argumentj directly affectsφi on inputx}|
2m

=
∞∑
m=1


 m∑
j=1

pr(τ (us) is thej th in-gate ofw|indeg(w) = m)




×


 ∑

1≤i<∞
mi=m

pi × |{x ∈ {0,1}m : argument 1 directly affectsφi on inputx }|
2m




=
∞∑
m=1

m

n


 ∑

1≤i<∞
mi=m

pi × |{x ∈ {0,1}m : argument 1 directly affectsφi on inputx}|
2m




=
∞∑
i=1

pi

n

mi∑
j=1

|{ x ∈ {0,1}mi : argumentj directly affectsφi on inputx}|
2mi

= λ

n
.

Therefore, the probability that theseks gates are directly affected byτ(us) is (λ/n)ks .
Since the events of assigning Boolean functions to all the gates are independent, the probability that the selected

gates belong toAt(v, x) is

h∏
s=1


 n−Ks

ks


(λ

n

)ks
=
(

h∏
s=1

λks

ks !

)(
1 − O(nβ)

n

)O(nβ)

=
(

h∏
s=1

λks

ks !

)
(1 − O(n2β−1)).

The probability that no other gates are inAt(v, x) is(
1 − λh

n

)n−|T |
= e−λh(1 + O(n2β−1)).

Therefore

pr(T ⇒ v) =
(

h∏
s=1

λks

ks !
e−λ

)
(1 + o(1)) = bpr(P � t ∼= T )(1 + o(1)). �

We say that a propertyχ of branching processes depends only on the firstt generations if, for any two branching
processesP1 andP2 such thatP1 � t ∼= P2 � t , eitherP1 |= χ andP2 |= χ , orP1 � χ andP2 � χ . Thusχ can be
identified with a set of labeled trees of depth at mostt . We will also use the notation〈At(v, x), E〉 |= χ to mean
〈At(v, x), E〉 induces a tree in〈V,E〉 whose corresponding branching process satisfiesχ .

Theorem 3. Let χ be a property of branching processes that depends only on the firstα logn generations. Then
for all x ∈ { 0,1}n

pr(〈At(v, x), E〉 |= χ) = bpr(P |= χ)+ o(1).
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Proof. By the previous lemma, it suffices to show that bpr(|P � α logn| ≥ nβ) = o(1).
If |P � α logn| ≥ nβ , thenZt ≥ nβ/(α logn) for somet = 1, . . . , α logn. SinceE(Zt ) = λt ≤ δt ≤ nα logδ �

nβ/(α logn),

pr

(
Zt ≥ nβ

α logn

)
≤ var(Zt )

(nβ/(α logn)− E(Zt ))2
by Chebyshev’s inequality

=



λ2t−1 + λ2t−2 + · · · + λt

(nβ/(α logn)− λt )2
if λ �= 1

tλ

(nβ/(α logn)− λt )2
if λ = 1

= o(1/logn) in either case. �

A gatev such thatNα logn
− (Aα logn(v, x)) is acyclic isα logn-weak if and only if its corresponding branch-

ing process is extinct withinα logn generations. Clearly this depends only on the firstα logn generations, so
Theorem 3applies. By basic results from branching process theory, the probability of extinction int generations is bpr
(Zt = 0) = Ft(0), and limt→∞Ft(0) = r, wherer is the smallest nonnegative root ofz = F(z). Further, when
µ ≤ 1, r = 1, and whenµ > 1, r < 1. Therefore

Theorem 4. There is a constantr such that for allx ∈ { 0,1}n

lim
n→∞pr(v isα logn-weak) = r.

Whenλ ≤ 1, r = 1, and whenλ > 1, r < 1.

Corollary 1. The expected number ofα logn-weak gates in a random Boolean network is asymptotic to rn.

A stronger result is

Corollary 2. The number ofα logn-weak gates in almost all Boolean networks is asymptotic to rn.

That is, there is a functionε(n) such thatε(n) → 0 and, letting the random variableXn be the number of
α logn-weak gates in a random Boolean network withn gates,

lim
n→∞pr(|Xn − rn| ≤ nε(n)) = 1.

Proof. By the previous corollary,

E(Xn) = rn + nε(n),

whereε(n) is a function such that limn→∞ε(n) = 0. Whenλ ≤ 1,r = 1, so, letting the random variableYn = n−Xn,
by Markov’s inequality

pr(Yn ≥ n
√

|ε(n)|) = O(
√

|ε(n)|).
Therefore, the corollary holds forλ ≤ 1.

Whenλ > 1, r < 1, and we need to estimate var(Xn). Using methods similar to those in the proofs ofLemma 2
andTheorems 3 and 4it can be shown that, for any two distinct gatesu andv, almost surelyNα logn

− (Aα logn(u, x))
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andNα logn
− (Aα logn(v, x)) are acyclic, their intersection is empty, and

lim
n→∞pr(uandv areα logn-weak) = r2.

Therefore

var(Xn) = r(1 − r)n+ n2ε′(n)

for some functionε′(n) → 0. By Chebyshev’s inequality

pr(|Xn − rn − nε(n)| > n
4
√

|ε′(n)|) ≤ r(1 − r)n+ n2ε′(n)
n2

√|ε′(n)| → 0,

and the corollary also holds forλ > 1. �

Whenλ > 1, it is also true that most of theα logn-strong gates affect many other gates when perturbed.

Corollary 3. Letλ > 1.For almost all random Boolean networks, if gatev isα logn-strong, then there is a positive
W such that fort ≤ α logn, the number of gates affected byv at timet is asymptotic toWλt .

Proof. For t ≥ 0, letWt = Zt/µ
t (= Zt/λ

t in our case). Again by basic results from branching process theory,
there is a random variableW such that

bpr
(

lim
t→∞Wt = W

)
= 1 and lim

t→∞bpr(Zt �= 0 andW = 0) = 0. (3)

From this the corollary follows. �

6. Forced gates

Instead of analyzing the stable gates in a Boolean network, we will study the forced gates. Since a gate stabilizes
if it is forced, this is a stronger condition, but it seems to be more amenable to combinatorial analysis.

For the remainder of this section,t will represent a natural number in the range 0, . . . , α logn, andy will be a
variable taking on the values 0 and 1. Given a Boolean functionφ(x1, . . . , xm) andx = (x1, . . . , xm) ∈ {0,1, ∗}m,
we say thatx forcesφ to y if, for all x′ ∈ {0,1}m such thatxi = x′

i wheneverxi �= ∗, φ(x′) = y. The∗’s are “do not
care” values, meaning their value does not affect the value ofφ whenever the remaining arguments agree withx.
For example,φ is forced by everyx ∈ {0,1}m; if φ is a constant function, then it is forced by everyx ∈ {0,1, ∗}m;
if φ(x1, x2) = x1 ∨ x2, then it is forced to 0 by (0, 0) and to 1 by (0, 1), (1, 0), (1, 1),(1, ∗) and(∗,1). We can now
give a recursive definition of forcing for the gates of a Boolean network.

Definition 5. A gatev is forced toy in 0 steps iffv is the constant functiony. Fort ≥ 0,v is forced toy in t+1 steps
if, letting u1, . . . , um be its in-gates, there isx ∈ {0,1, ∗}m such thatx forcesfv toy and for eachi = 1, . . . , m such
thatxi �= ∗, fui is forced toxi in t steps. We say thatv is forced (in some number of steps) if it is forced to 0 or 1.

It is clear that forcing is a stronger condition than stability.

Lemma 4. If a gate in a Boolean network is forced toy in t steps, then it stabilizes toy in t steps.

Further, conditioning on the event thatNt−(v) induces a tree, the probabilities that the in-gates ofv are forced in
t −1 steps are independent, and there is a recursive formula for computing the probability thatv is forced int steps.
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SinceNt−(v) is almost surely a tree for the values oft being considered here, the conditional probability given by
the recursive formula will be asymptotic to the unconditional probability of being forced int steps.

For any natural numberm andx ∈ {0,1, ∗}m, let |x|0 be the number of coordinates ofx that are 0, and similarly
for |x|1 and|x|∗. For i = 1,2, . . . let Py

i (z0, z1) be the polynomial inz0 andz1 defined by

P
y
i (z0, z1) =

∑
x∈{0,1,∗}mi

x forcesφi toy

z
|x|0
0 z

|x|1
1 (1 − z0 − z1)

|x|∗ .

Let

Gy(z0, z1) =
∞∑
i=1

piP
y
i (z0, z1) (4)

Recursively, define

G
y

0(z0, z1) = Gy(z0, z1), G
y

t+1(z0, z1) = Gy(G0
t (z0, z1),G

1
t (z0, z1)) for t ≥ 0.

Lemma 5. If Nt−(v) induces a tree, then the probability thatv is forced toy in t steps isGy
t (0,0).

From the definition ofGy and the symmetry conditionpi = pj wheneverφi = ¬φj , we haveG0(a, b) =
G1(a, b) for all a andb, and thereforeG0

t (0,0) = G1
t (0,0) for all t ≥ 0. Therefore letting

G(z) = 2G0
( z

2
,
z

2

)
(5)

and defining

G0(z) = G(z), Gt+1(z) = G(Gt(z)) for t ≥ 0.

Lemma 6. If Nt−(v) induces a tree, then the probability thatv is forced int steps isGt(0).

Theorem 5. There existsg ∈ [0,1] such that

lim
n→∞pr(v is forced inα logn steps) = g.

Further,

lim
t→∞Gt(0) = g

andg is a root of the equation

g = G(g).

Proof. For nonnegativea andb such thata + b ≤ 1,

P 0
i (a, b)+ P 1

i (a, b) ≤
∑

x∈{0,1,∗}mi
a|x|0b|x|1(1 − a − b)|x|∗ = 1 (6)

and therefore

G(a) ≤
∞∑
i=1

pi = 1 for a ≤ 1.
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This implies thatG(z) is a continuous function on [0,1] and allGt(0) are bounded above by 1. We will show that
Gt(0) is a strictly increasing sequence int . Then, takingg = sup(Gt (0) : t ≥ 1), the theorem follows.

To showGt(0) < Gt+1(0), again assuming thatNα logn
− (v) is a tree, note that the event thatv is forced toy in

t steps is characterized by a collectionC of rooted trees of height at mostt whose nodes are labeled with Boolean
functions. Each of these trees is contained in the collectionD of rooted labeled trees that characterizes the event
thatv is forced toy in t + 1 steps. Further, some of these trees inC are of heightt , and their only leaves that are
labeled with constant functions have deptht . Take any such tree and replace each leaf that is labeled with a constant
with a subtree consisting of a node labeled with a nonconstant function and new in-gates all labeled with constants
such that the state of the leaf remains unchanged. The new tree belongs toD but notC becausev will be forced in
t + 1 steps but nott steps. Therefore,D is strictly larger thanC, andGt(0) < Gt+1(0). �

Corollary 4. The expected number of gates that are forced inα logn steps is asymptotic to gn.

Corollary 5. The number of gates that are forced inα logn steps in almost all Boolean networks is asymptotic
to gn.

7. Networks of 2-input gates

We now apply the general results of the previous two sections to some networks studied by Kauffman. As
mentioned inSection 1, he suggested that networks with a large proportion of canalyzing gates tend to be stable with
high probability. A Boolean functionf (x1, . . . , xm) is canalyzing if it is forced by somex ∈ {0,1, ∗}m wherexi �= ∗
for exactly onei ∈ {1, . . . , m}. Kauffman’s claim seems to be supported by experiments indicating that networks
constructed from two-argument Boolean functions usually exhibit stable behavior, while those constructed from
Boolean functions with more than two arguments do not. Fourteen out of the sixteen two-argument Boolean functions
are canalyzing, but this proportion drops rapidly among Boolean functions with more than two arguments. However,
our analysis does not support the experimental findings. To explain these results, we classify the two-argument
Boolean functions into three categories.

I. The two constant functions are:

f (x1, x2) = 0 and f (x1, x2) = 1.

II. The twelve nonconstant canalyzing functions, consisting of
A. The four functions that depend on one argument are:

f (x1, x2) = x1 and f (x1, x2) = ¬x1, f (x1, x2) = x2 and f (x1, x2) = ¬x2

B. The eight canalyzing functions that depend on both arguments are:

x1 ∨ x2 and ¬x1 ∧ ¬x2, ¬x1 ∨ x2 and x1 ∧ ¬x2,

x1 ∨ ¬x2 and ¬x1 ∧ x2, ¬x1 ∨ ¬x2 and x1 ∧ x2

III. The two noncanalyzing functions exclusive or and equivalence are:

x1 ⊕ x2 and x1 ≡ x2

Note that each function is paired with its negation. Leta, b andc be the respective sums of the probabilities of
the functions of type I, II and III, i.e.,a is the probability that a gate is assigned a function of type I, and so
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on. We can now express theλ parameter ofSection 5(seeEq. (2)) in terms ofa, b and c. Clearly, if φi is of
type I,

2∑
j=1

|{x ∈ {0,1}2 : argumentj directly affectsφi on inputx}| = 0.

If φi is of type II.A., sayφi(x1, x2) = x1, then

2∑
j=1

|{x ∈ {0,1}2 : argumentj directly affectsφi on inputx}| = 4.

If φi is of type II.B., sayφi(x1, x2) = x1 ∨ x2, then

2∑
j=1

|{x ∈ {0,1}2 : argument|, j directly affectsφi on inputx}| = 4.

Altogether, the type II functions contributeb to λ. Lastly, it is easily seen that ifφi is a type III function, then

2∑
j=1

|{x ∈ {0,1}2 : argumentj directly affectsφi on inputx}| = 8,

and therefore the type III functions contribute 2c to λ, giving

λ = b + 2c.

To analyze the forced gates, note thatG(z) (seeEqs. (4) and (5)) is a weighted sum of the 16 terms 2P 0
i (z/2, z/2)

corresponding to the two-argument Boolean functions. This sum can be simplified by using the above classification
and pairing of these functions.

If φi is the constant functionφi(x1, x2) = 0, thenP 0
i (z/2, z/2) = 1, but if it is the constant functionφi(x1, x2) =

1, thenP 0
i (z/2, z/2) = 0. Therefore the type I functions contribute the terma toG(z).

If φi is a type II.A. function, sayφi(x1, x2) = x1, thenP 0
i (z/2, z/2) = z/2. If φi(x1, x2) = ¬x1, then

P 0
i (z/2, z/2) = z/2 again. Ifφi(x1, x2) is a type II.B. function, sayx1 ∨ x2, thenP 0

i (z/2, z/2) = z2/4. If it
is ¬x1 ∧ ¬x2, thenP 0

i (z/2, z/2) = z− z2/4. Altogether the type II functions contribute the termbztoG(z).
It is easily seen that the two noncanalyzing functions each haveP 0

i (z/2, z/2) = z2/2, and thereforeG(z) =
a + bz+ cz2. The roots of the equation

z = a + bz+ cz2 (7)

are 1 anda/c. SinceG(z) is positive and increasing on [0,1], the smaller of the two roots is also limt→∞Gt(0).
Therefore byTheorem 5, the probability that a gate is forced inα logn steps is asymptotic to min(1, a/c).

In summary, for almost all Boolean networks, almost all gates areα logn-weak if and only ifλ = b + 2c ≤ 1,
and almost all gates are forced inα logn steps if and only ifa/c ≥ 1. Sincea+ b+ c = 1,b+ 2c ≤ 1 is equivalent
to c ≤ a. Therefore both types of ordered behavior hold if and only ifa ≥ c.1

Kauffman performed extensive simulations on two classes of random networks constructed from two-argument
Boolean functions. In the first class, all 16 of these functions were equally likely to be assigned to a gate. In the
second, no constant functions were used, and the remaining 14 functions were equally likely. In the first case,

1 Papers[11,12]contain proofs thata ≥ c implies these kinds of ordered behavior; it was conjectured in[12] that they fail whena < c.
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a = 1/8, b = 3/4, andc = 1/8, givingλ = 1 andg = 1 as the only solution toEq. (7). Therefore in this case,
almost all gates are weak and stable inα logn steps. But in the second case,a = 0, b = 6/7, andc = 1/7, giving
λ = 8/7 andg = 0 as the smaller root of(7). Thus in this case, a nontrivial fraction of the gates areα logn-strong
and not forced inα logn steps.

8. Conclusions and open problems

Our analysis for the casea ≥ c supports the experimental results for networks of 2-input gates when all 16
two-argument functions are equally likely. In fact, it gives stronger results than the conclusions of the experiments
in three senses. Kauffman’s notion of weakness requires only that the network should eventually return to the same
limit cycle after a perturbation, but we have shown that with high probability, withinα logn steps, the network
will return to exactly the same state it would be in without the perturbation. Also, as mentioned earlier, forcing is
a stronger condition than stability. Lastly, the experiments indicated that almost all gates were weak and stabilized
for almost all inputs, while we have shown that almost all gates are weak and forced forall inputs.

On the other hand, there is a qualitative difference in the behavior of random Boolean networks whena < c, and
networks constructed from only the 14 nonconstant two-argument functions belong to this category. However, this
does not necessarily contradict Kauffman’s claim that these networks also display ordered behavior since he stated
only that, when perturbed they eventually return to the same limit cycle, and eventually almost all gates stabilize.
It is possible that the effects of a perturbation vanish afterα logn steps, and most gates stabilize afterα logn steps.
Thus one open problem is to determine the long-term behavior of nets wherea < c (or more generally, whenλ > 1
or g < 1), to see if the analysis agrees with the simulations.

We have not addressed the third of Kauffman’s notions of order—the size of the limit cycle, which Kauffman
claims is of the order

√
n for 2-input networks. It has been shown that whena > c, not only is the average size of

the limit cycle O(
√
n), it is bounded by a constant with probability asymptotic to 1[11]. However, whena = c, the

average size of the state cycle is superpolynomial inn [12]. To our knowledge, this is the only analytic result that
directly contradicts any of Kauffman’s claims. The size of the limit cycle is not known whena < c. We conjecture
that it is superpolynomial in this case also. More generally, it would be interesting to know if the size of the limit
cycle is determined by theλ or g parameters.

We have shown that one condition,a ≥ c, implies both a large number of weak gates and a large number of
forced gates in networks of 2-input gates. In the general case, two different conditions were used to characterize
these forms of order:λ ≤ 1 for weak gates, andg = 1 for forced gates. Is there a single algebraic condition that
characterizes both kinds of order?

Other questions pertain to the effect of increasing the indegree of gates. If we consider networks where each
gate hasK inputs (using the uniform distribution), then as mentioned in the Introduction, the simulations indicate
that whenK = 2, ordered behavior is very likely, but whenK > 2, the networks tend to be disordered. We have
described the results forK = 2 above. A similar analysis forK > 2 remains to be done. Using a different model
of random Boolean network, Derrida and Pomeau[4] have provided evidence supporting the simulations. In their
version, at each step, each gate is randomly re-assigned its Boolean function and its inputs. They referred to their
model as the “annealed” version and Kauffman’s as the “quenched” version. They showed that, given any two
arbitrary initial states, as the two systems evolved over time, their Hamming distance (the number of gates on which
they differ) is approximated bycKn for some constantcK that depends onK. WhenK = 2, cK = 0, but when
K > 2, cK > 0. Of course, whenK = 2, the quenched model behaves in this way because almost all of the gates
are forced. But it is not known whether it holds for quenched models whenK > 2, and the relationship between
the annealed and quenched models is not well understood.
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Lastly, there is a network model that has some of the properties of both the annealed and quenched models. Here,
the gates and their connections are fixed as in the quenched model, but at each step, a random collection of gates
updates their states. In other words, the gates operate asynchronously. As with the annealed model, an asynchronous
network need not enter a limit cycle, but the other notions of order are still meaningful, and perhaps they can be
studied productively.
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