L

PHYSICA &

ELSEVIER Physica D 172 (2002) 49-64

www.elsevier.com/locate/physd

Critical points for random Boolean networks
James F. Lynch

Department of Mathematics and Computer Science, Box 5815, Clarkson University, Potsdam, NY 13699-5815, USA

Received 22 May 2002; accepted 30 July 2002
Communicated by A.C. Newell

Abstract

A model of cellular metabolism due to S. Kauffman is analyzed. It consists of a network of Boolean gates randomly
assembled according to a probability distribution. It is shown that the behavior of the network depends very critically on
certain simple algebraic parameters of the distribution. In some cases, the analytic results support conclusions based on
simulations of random Boolean networks, but in other cases, they do not.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many dynamical systems are modeled by networks of interacting elements. Examples come from diverse areas
of science and engineering and over enormous scales of time and space, from biochemical networks within a cell
[1] to food webd3] and collaboration networks in human organizatiff®. Often, these systems are subjected
to random or unpredictable processes. In this paper, we analyze a class of random networks that Kauffhan
proposed as models of cellular metabolism. These are networks of Boolean gates, where each gate corresponds
a gene or protein, and the network describes the interactions among these chemical compounds. Although Boolean
networks capture at least some of the salient features of the operation of the genome, researchers have been mainl
interested in certain abstract properties of their dynamics. Kauffman'’s thesis is that randomly assembled complex
systems often exhibit “spontaneous order”, i.e., even though they are not constructed according to any plan, their
behavior is often stable and robust.

Kauffman considered several measures of order, based on the limit cycle that the network enters. Since a Boolean
network has a finite number of gates, each of which has two possible states, the network itself has a finite number of
states, and it will eventually return to some state it had visited earlier. Since the network operates deterministically,
it will keep repeating this sequence of states, which is called the limit cycle. Among the measures of order that have
been considered are
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1. The number of stable gates—gates that eventually stop changing state.
2. The number of weak gates—gates that can be perturbed without changing the limit cycle that the network enters.
3. The size of the limit cycle.

The key findings of Kauffman’s experiments were that networks constructed from Boolean gates with more than
two inputs were usually disordered in all three senses: a significant fraction of the gates never stabilized and, when
perturbed, caused the network to enter a different limit cycle, and the size of the limit cycle was exponential in the
number of gates. But networks constructed from gates with two inputs tended to be ordered in all three senses, ir
particular, the average limit cycle size was on the order of the square root of the number of gates.

These results raise many biological and mathematical questions. From the viewpoint of biology, a basic issue is
whether these Boolean networks capture the essential features of cellular metabolism. Genes are generally activ
or inactive, i.e., transcribing their protein or not, and the transition between the two states usually happens on a
short time scale. Each gene tends to be directly affected by a small number of proteins. Thus the Boolean network
model seems to be at least a rough approximation of cellular metabolic networks. Also, genomes are the result
of evolution, which involves random events. However, it would be extremely unlikely that the simple probability
distributions used by Kauffman are realistic. He studied two kinds of random networks constructed from 2-input
gates. In the first kind, all of the 16 Boolean functions of two arguments are equally likely to be assigned to a gate.
This is certainly a reasonable place to start, given the lack of knowledge about the actual distribution of functions
in real genomic networks. Two of these 16 functions are constants, i.e., they ignore their inputs and output only
one value. Such gates exhibit an extreme form of order, and it seemed possible that their presence was the sourc
of order in networks of 2-input gates. However, Kauffman also ran simulations of randomly constructed networks
without constant gates, where the remaining 14 two-argument functions were equally likely, and the results were
similar to those where all 16 functions were used.

Kauffman proposed another category of functions as the source of order. He called these the canalyzing functions
A canalyzing function is a Boolean function for which there exists some argument and some Boolean value such
that the output of the function is determined if the argument has that value. For example, the two-argument OR
functionx; Vv x2 is canalyzing because if either argument has the value 1, then the value’of is 1. Fourteen
out of the 16 two-argument Boolean functions, including the constant functions, are canalyzing, but this proportion
drops rapidly among Boolean functions with more than two arguments. Thus the hypothesis that nets with many
canalyzing gates tend to be ordered, while those with few of them do not, is consistent with the experimental results.

All these definitions and claims have precise mathematical formulations, so a natural question is whether the
experimental results are supported by proofs. Interestingly, at about the same time that Kauffman started investigating
random Boolean networks, the mathematical techniques for dealing with random networks were being developed
by Erdés and Rényb,6] and Gilber{7], but it was about 30 years before any of these techniques were applied to the
analysis of random Boolean networks. The first proofs of any of Kauffman'’s claims appear in an article co-authored
by the mathematical biologist Cohen and the random graph theorist L{@zak

Random graph theory is now a flourishing branch of combinatorics. The most extensively studied version of
random graph is the independent edge model. In this version, there is a probalfilibich may depend on the
number of vertices in the graph) such that for each pair of vertices independently, there is an undirected edge betwee
them with probabilityp. Graph theorists have discovered many deep and interesting results about this kind of random
graph, but it does not seem to be a good model of the random networks studied in biology, communications, and
engineering. A major distinction is that the degree distribution of this kind of graph is Poisson, but the degree
distributions of many real-world networks obey a power law. A better model for these situations may be random
graphs with a specified degree distribution, which are considered in recent papers by Molloy arfd3Re¢d
Some other shortcomings of the standard version of random graph pointed out by Newm@tbéaé that it is
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undirected and has only one type of vertex. They develop some techniques for dealing with random directed graphs
with vertices of several types. However, even this model lacks the structure needed to model the dynamic behavior
of networks.

Kauffman’s Boolean networks are a further extension of the modflSjnhat do include this additional structure.

The gates of a Boolean network are vertices assigned a type corresponding to a Boolean function, and the directed
edges indicate the inputs to each gate. But instead of simply regarding each vertex as a static entity, we are interested
in how the functions of the gates change the state of the network over time. Our random Boolean networks are
specified by a sequence of probabilities p», ... whose sum is 1, where for each gate independeptlis the
probability that it is assigned to thi¢gh Boolean function. (We are assuming some canonical ordering of the finite
Boolean functions.) Once each gate has been assigned its function, its indegree is determined by the number of
arguments of the function, and its input gates are chosen at random using the uniform distribution. Lastly, a random
initial state is chosen.

Our main results are simple algebraic conditions, derived from the distribptiopy, ... that imply ordered
behavior of the first two kinds mentioned above: almost all gates stabilize quickly, and almost all gates can be
perturbed without affecting the long-term behavior of the network. Conversely, if the conditions fail, then the
networks do not behave in such an ordered fashion. Our conditions actually imply forms of ordered behavior
stronger than Kauffman’s. That is, the gates stabilize in time on the order of Wigeren is the number of gates,
and the effect of a perturbation dies out within orderdaieps. Consequently, the failure of our conditions implies
forms of disordered behavior that are weaker than the negations of Kauffman'’s.

We then apply our main results to the two classes of 2-input Boolean networks mentioned above. Here, our
analysis verifies some of Kauffman’s claims for networks in the first class, but it casts doubt on similar claims for
the other class.

2. Définitions
A Boolean networkB is a 3-tuple(V, E, f) whereV is a sef{l, ..., n} for some natural number, E is a set of
directed edges oW, andf = (f1, ..., fu) is a sequence of Boolean functions such that for eaeh’, the number

of arguments off, is indedv), the indegree of in E. The interpretation is thaf is a collection of Boolean gates,
E describes their interconnections andescribes their operation.

The gates update their states synchronously at discrete time st&ps .Q At any timer, each gatev is in
some stater, € {0, 1}. Lettingx = (x1,..., x,), we say thatB is in statex at time¢. Let indegqv) = m and
uy < uz < --- < uy, bethe gates such that;, v) € E fori =1, ..., m. These are referred to as timegatesof v.
Then the state of at timer + 1isy, = f,(xyy, ..., xy,,). Lettingy = (y1, ..., y), we putB(x) = y. Note that
the ordering of the in-gates implicitly associates each one with the corresponding argurfie®ltérnatively, we
could label each edge i with an integer so that if, v) is labeled;, thenu corresponds to argumehof f,. The
next definitions describe the dynamical properties of Boolean networks that we will analyze.

Definition 1. Letx € {0, 1}".
1. Forr =0,1,...,we putB’(x) for the state of3 at timez, given that its state at time O%s That is,
B°x) =x and B'tl(x) = B(B'(x)) forallr.

We also putB! (x) for y, wherey = B (x).
2. Gatev stabilizes ir¢ steps on inpux if B,’J/(x) = BI(x) forall ¢’ > 1.
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3. Forx € {0, 1}* andv € {1, ..., n}, we putx" for the state which is identical toexcept thatk) = 1 — x,,.

4. Letu,v € {1,...,n} andx € {0, 1}". We say thav affectsu at timer on inputx if B/ (x) # B/ (x"). We put
A'(v,X) = {u € V : v affectsu attimer on inputx}.

5. Gatev is t-weak on inpuk if A’(v, x) = @, i.e., B'(X) = B'(x"). Gatev is r-strong ornx if it is not z-weak on
x. If x is understood, we simply sayis ¢-weak orz-strong.

For small intervals of time, the dynamical properties described above are determined by the “local” structure
of the network. That is, the behavior of a gate over the interyal 0 ., ¢ is determined by the portion of the
network consisting of all gates that can reach the gate by a pathahlength at most. Similarly, the gates
affected by a given gate lie in the portion consisting of all gates reachable from the gate by such a path. Of
course, for large enough these portions will be the entire network. The next definitions capture these notions of
locality.

Definition 2.
1. Forany subsat C V,

SE(I) =7 and Sﬂjl(l) ={u: (v,u) € Eforsomev € S;(I)} fortr > 0.

Thatis,S’, (1) is the set of gates at the ends of paths of lemgttat start in/. Similarly, S’ (1) is the set of gates
at the beginning of paths of lengthhat end in/.
2. Then

t t
Ny =]Jsi() and N =S ()
s=0 s=0

are the out- and in-neighborhoods, respectively, of radius:.

We putS’, (v) for S ({v}) and similarly for the other notations. Thus the state of gadétimer is determined
by the states of the gates §i (v) at time 0 and the functions assigned to the gateg'int (v).

As we will show, for sufficiently small andr, the “typical” N’ (1) and N’ (1) induce a forest onV, E), i.e.,
there are no directed or undirected cycles among their gates. If this is the ca8g(for then we can give a simple
recursive definition ofA’ (v, X).

Definition 3. Let f(x1, ..., x,) be a Boolean function ofi arguments, and = (x1, ..., x,) € {0, 1} be an
assignment of 0's and 1's to its arguments. Far{1, ..., m}, we say that argumentdirectly affectsf on inputx

if £(x) # f(x'). We extend this notion to gates in a Boolean network in the obvious way. Given a Boolean network
B where gate has in-gates; < --- < u,, and statex € {0, 1}", fori =1, ..., m, u; directly affectsv on inputx

if By(X) # By (X").

Lemma 1. AssumeV’ (v) induces a tree orE. Then for anys < ¢, anyx € {0, 1}", and any gate: € S’ (v), v
affectsu at times on inputx if and only if

1. s=0andu =v,or
2. s > 0and lettingw be the unique gate such thate Sf[l(v) N SL(u), v affectsw at times — 1 on inputx, and
w directly affects: on inputB*~1(x).
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3. Random Boolean networks

We will be examining randomly constructed Boolean networks. The random model we use appears to be suf-
ficiently general to capture the particular classes of random Boolean networks in the literatupe, ¢et. . .
be some ordering of all the finite Boolean functions, andpletp, ... be a sequence of probabilities such that
Y721 pi = 1. The selection of a random Boolean network withates is a three-stage process. First, each gate is
independently assigned a Boolean function using the distribytiopo, . ... That is, for eachh = 1,...,n and
j =12, ..., the probability that gate is assigned; is p;. The probabilities may depend anthe number of
gates in the network; i.e., each probability is actually a funcpgt). For examplep; (n) = 0 for any¢; with
more tham arguments. For simplicity of notation, we suppress the functional notation. Next, the in-gates for each
gate are selected. If the gate has been assignedangument function, then its in-gates are chosen from the

n

m

equally likely possibilities. Finally, a random initial state is chosen from thedially likely possibilities.

If 6 is a property of Boolean nets then@y denotes the probability that a random Boolean network wiglates
satisfied. If ¢ is also a property then @#|¢) is the probability o over random Boolean networks withgates,
conditioned onp.

We make several restrictions on the distributien po, ... still consistent with the random networks in the
literature. Since we are assuming that all orderings of the in-gates to a gate are equally likely, f@maitysuch
that¢; and¢; are identical except for the ordering of their argumepis= pi. Also, for any;j andk such that
¢j = —¢r, pj = pk. This implies that, for any gate ands > 0, B/ (x) is equally likely to be 0 or 1. Lastly,
we assume that the average and variance of the number of arguments of a randomly selected Boolean function, or
equivalently, the average and variance of the indegree of a gate, are finite. That is, lettingremaw:; arguments,
321 pim? € [0, c0).

4. Branching processes

As will be shown, forr not large compared te, the typicalN’, (v) induces a tree in a Boolean network with
gates. A perturbation of the state of suclmay cause perturbations to the state:§b(v) in the next step, then
S?r(v), and so on, in a “wave” that propagates through(v). It is possible that this wave dies out and the effects
of the perturbation are transient, i.e., gatis r-weak. We will show that this behavior can be approximated by a
branching process. Then, by applying basic results about branching processes, we will derive our results about weak
gates. We will summarize the results that we need. For more information on branching processes, sg3.Harris

A branching process can be identified with a rooted labeled tree. The tree may have infinite branches. Each node
will be labeled with the unique path from the root to that node. That is, the root is labeled with the null sequence.
If the root hask children, they are labeled with the sequent®s(2), ..., (k). If the second child of the root has
[ children, then they are labeled with the sequeri@e$), (2, 2), ..., (2,1), and so on. Generatiarconsists of all
nodes labeled with a sequence of lengtffthe number of children of any node is independent of the number of
children of any other node, but the probability of having a certain number of children is the same for all nodes.
Thus the probability space of a branching process is determined by a sedgenge= 0, 1, ...) whereg; is the
probability that a node hdschildren. The probability measure on this space will be denoted by bpr. In describing
events in this space;, will denote a branching process.fis a property of branching process®&sk x meansy
holds for P, and bpt P = x) is the probability thay holds.



54 J.F. Lynch/Physica D 172 (2002) 49-64

Fort > 0, P | ¢ will be the finite labeled tree which iB restricted to its first generationsz; will be the random
variable which is the size of generatiori.e., the number of nodes of depth
The generating function of the branching process is the series

o0
F(z) = Z qkzk.
k=0

That is, F(z) is the probability generating function @f; sinceqx = bpr(Z1 = k). A basic result is that theth
iterate of F(z) is the probability generating function & . The iterates of (z) are defined by

Fo(z) =z and F,+1(z) = F(F;(z))fort > 0. Q)
Then

Theorem 1. The probability generating function &f; is F;(z), i.e,

Fi(z) =) bpr(z, = k).
k=0

This enables us to express the momentsZpfin terms of the moments af;, which in turn have simple
representations in terms of the derivativeski). Let 1 ando? be the first and second moments 2, i.e.,
w = E(Zy) ando? = var(Zy).

Theorem 2. We have
w=F(Q) and o?=F'(1)+ F'Q) — (F'(1)>
More generallyfor all # > 0, the first and second momersZ; are
o?ul(u' — 1)
E(Z)=u" and var(Z; = 12— p
to? if w=1

if w1,

5. Weak gates

We putlog forlog. In this sectiong andg will be positive constants satisfying2og5+28 < 1andxlogé < 8,
wheres = E(m;).
Lemma2. LetS C {1,...,n},|S| < nP, andr < «logn. The following events have probability— o(1):
1. For everyv € S, N’ (v) induces a tree iV, E).
2. For every distinctz, v € S, N' (u) N N’ (v) = 4.

Proof. We show that each of these events fails with probabil{t}) oThe calculations are similar for both events,
and we show the work only for event 1.
If event 1 fails, then there exist distinct gatgs. . ., vy such that

s < alogn,
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fori =1,...,s — 1,v; is an in-gate ob; 1, and
vy €8,
and distinct gatess, ..., w, such that
r <alogn,
fori =1,...,r — 1, w; is an in-gate ofw; 41,

w1 = V1, and

forsomen € {1, ..., s}, w, = vy,.
Eithers above is 1 or greater than 1. The two cases are similar, and we will describe only the second. Therefore,
we can assume > 2. Nows, r, ands can be chosen in (aogn)3) ways. The gatesy, ..., vy andwy, ..., w,—1
can be chosen in @*+"~3t#) ways. For eachi € {1, ...,s — 1} — {h — 1}, the probability thab; is an in-gate of
Uj+]_ is
n—1

> mi —1 > mp 8

Y pm =Yt = ]

i=1 n i=1

m;

Similarly, the probability that eacty; is an in-gate ofv; 1 for j = 1,...,r — 2is$/n. The probability that both
vp—1 andw,_1 are in-gates oby, is

n—2
o0 o
S Z i (’"’ —~ —on?.
i=1 n =1
mi

Altogether, the probability that event 1 fails is

s+r—4
o} ((Iogn)3 x pStr A (ﬁ) x n2> = O((logn)3s21097, A1)

n

= O((logn)3n2109+F-1y — o(1). O

We will use the branching process defined as follows. Let

S |{x € {0, 1} : argument; directly affectsp; on inputx}|
= Z i Z g yzm,- y p . @)
i=1 j=1

Thusi may be regarded as the average number of arguments that directly affect a random Boolean function with a
random input. The branching process is defined by

Ak
gk = k'e
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fork =0, 1,.... Therefore F(z) = €<~*. FromTheorem 2
A =1 .
2 ' all Gl if w1,

n=A, oc =, E(Z) =) and vafZ,) = A—1
A if w=1

Definition 4. Let T be alabeled tree of heightB = (V, E, f) be a Boolean network, ande {0, 1}" be its state.
Forv € {1,...,n}, we putT = v if N’ (A’(v, X)) induces a tree inV, E), and there is an isomorphism frof
onto (A’ (v, X), E).

Lemma3. If |T| < nf and the height of ist < « logn, then for allx € {0, 1}", pr(T = v) = bpr(P [t = T)
(14 o(D)).

Proof. By Lemma 2 if there is an isomorphism from 7 onto (A’ (v, X), E), then almost surelyw’ (A’ (v, X))
induces a tree iV, E). Thus we need only to analyze the probability thaxists. Letuq, ..., u; be the nonleaf
nodes ofT, in lexicographic order. The constructionwois recursive and proceeds in stages.1, 4. At each stage
s, T(ug) has been defined at some previous stage, and it is extended to the childgeifAifstage 1 (1) = v
has already been defined.) Also, the Boolean functions assigned to these children are selected.

Thus, assume that at stage (1), . . ., T(uk,) have already been defined, where K. Letu, havek, children.
Then there are

)

ways of selecting the children afu;) in A’ (v, X). Having chosen these children, we next assign Boolean functions
to them. Independently, for each childof 7 (uy), let ¢; be assigned to it. This event has probabifity and the
probability thatr (i) is an in-gate ofv is

n—1
m; —1 m;

)

Summing over ali, we get the probability that(u) directly affectsw

o
Z Di Z pr(z (uy) isthe jth in-gate ofw and; directly affectsp; on inputBl(x)| indeg(w) = m;),

i=1  j=1
wherel is the depth ofi; in T
o0 m;
= > pi Y pr(z(us)isthejthin-gate ofw| indeg(w) = m;)
i=1 j=1
[{x € {0, 1}'" . argumentj directly affectsp; on inputx}|
X

2mi

o0 m
=Y Y pi)_pr(z(uy)isthejthin-gate ofwlindegw) = m)
m=11<i<oco j=1
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[{x € {0, 1}'* : argument; directly affectsp; on inputx}|
X

2m
o0 m
= Z Z pr(z (us) isthejthin-gate ofw|indegw) = m)
m=1j=1
[{x € {0, 1} : argumentj directly affectsp; on inputx}|
X Z pi X
1<i<oo 2"

(Z pr(t (uy) is the jth in-gate ofw|indeg(w) = m))

j=1

|{x € {0, 1} . argument 1 directly affecty on inputx }|
2m

l<z<oo
mij=m

m Z [{x € {0, 1}'" : argument 1 directly affects on inputx}|
— pi X
T n 2m

1<i<oo
mi=m

.[ME? ||M8 .[Mg

i [{x € {0, 1} : argumentj directly affectsp; oninputx}| A
2mi o

Therefore, the probability that thekegates are directly affected byu,) is (1 /n)*s.
Since the events of assigning Boolean functions to all the gates are independent, the probability that the selected
gates belong tal’ (v, X) is

h(n—kK (A)kS (’1 ,\ks)< O(nﬁ))o("ﬁ) (h ,\k~>
S (L) = 1— = (1—0m*~1hy).

s=1

The probability that no other gates aredf(v, X) is

n—|T|
(1 - ﬂ) = e M (1L+0m? ).

n
Therefore
h kg

[1 %e*) (1+0(1) =bpr(P | 1 = T)(1+0(1)). O

s=1

pr(T = v) = (

We say that a property of branching processes depends only on theffigeinerations if, for any two branching
processe®; and P, suchthatP; [t = P | t, eitherPy = x and P |= x, or PL ¥ xy and P2 ¥ x. Thusy can be
identified with a set of labeled trees of depth at most/e will also use the notatiotd! (v, X), E) = x to mean
(A'(v,Xx), E) induces a tree iiV, E) whose corresponding branching process satigfies

Theorem 3. Let x be a property of branching processes that depends only on the fiogtn generations. Then
forallx € {0,1}"

Pr((A' (v, x), E) = x) = bpr(P k= x) + o(1).
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Proof. By the previous lemma, it suffices to show that@pr | « logn| > n#) = o(1).
If |P | alogn| > nf, thenZ, > nf/(alogn) for somer = 1, ..., alogn. SinceE(Z,) = A' < §' < n®109% «
nf /(o logn),
or <Z, > nﬁ> - var(Z;)
alogn (nP /(logn) — E(Z,))2
)LZt—l + Az:-z R Y

by Chebyshev’sinequality

| TeFi@iogn —amz - A
A .
(nP/(alogn) — A1)2 Ta=1
=0(1/logn) in either case |

A gatev such thatN“ I‘Jg"(A" logn (y, x)) is acyclic is« logn-weak if and only if its corresponding branch-

ing process is extinct withia logn generations. Clearly this depends only on the firsdgr generations, so
Theorem &applies. By basic results from branching process theory, the probability of extinctiganerations is bpr
(Z; = 0) = F;(0), and lim_,  F;(0) = r, wherer is the smallest nonnegative root &= F(z). Further, when
un<1r=1andwhemn > 1,r < 1. Therefore

Theorem 4. There is a constant such that for allx € {0, 1}"
lim pr(visa logn-weak = r.
n—oo
Whenh <1,r =1,andwhem. > 1,r < 1.
Corollary 1. The expected number @logr-weak gates in a random Boolean network is asymptotic to rn
A stronger result is
Corallary 2. The number of logn-weak gates in almost all Boolean networks is asymptotic to rn

That is, there is a functioa(n) such thats(n) — 0 and, letting the random variablg, be the number of
a logn-weak gates in a random Boolean network witbates,

lim pr(|X,, —m| < ne(n)) = 1.

n—oo

Proof. By the previous corollary,
E(X,) =rm+ nen),

wheres(n) isafunction suchthatlim., e(n) = 0. Whem. < 1,r = 1, so, letting the random variabtg = n—X,,,
by Markov’s inequality

pr(Y, = nylem|) = O/ le(n))).

Therefore, the corollary holds far < 1.
Wheni > 1,r < 1, and we need to estimate V&r,). Using methods similar to those in the proofd.einma 2
andTheorems 3 and # can be shown that, for any two distinct gateandv, almost surelyvflog"(A“ ogn (4 x))
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andN“ IOg"(AO‘ logn (1, x)) are acyclic, their intersection is empty, and
nli_)moopr(u andv arex logn-weak) = r2.

Therefore
var(X,) = r(1 — r)n + n%¢ (n)

for some functiory’(n) — 0. By Chebyshev’s inequality

r(1 = r)n + n2' (n)

A/ o
pr(|X, —m —nen)| > ny|e'(n)]) < PN — 0,
and the corollary also holds far> 1. O

Whenx > 1, itis also true that most of thelogn-strong gates affect many other gates when perturbed.

Corollary 3. Letx > 1.For almost all random Boolean networkigatev is « log n-strong then there is a positive
W such that for < a logn, the number of gates affected byt timer is asymptotic tav A’.

Proof. Fort > 0, letW, = Z, /' (= Z,/A" in our case). Again by basic results from branching process theory,
there is a random variabM such that

bpr(timooW, = W) =1 and t_lircpobpr(zt # 0andw =0) = 0. 3)

From this the corollary follows. O

6. Forced gates

Instead of analyzing the stable gates in a Boolean network, we will study the forced gates. Since a gate stabilizes
if it is forced, this is a stronger condition, but it seems to be more amenable to combinatorial analysis.
For the remainder of this sectionwill represent a natural number in the range .0, « logn, andy will be a
variable taking on the values 0 and 1. Given a Boolean fundion, . . ., x,,) andx = (x1, ..., x,) € {0, 1, x}™,
we say thak forcese to y if, for all X’ € {0, 1} such that; = x] wheneven; # x, ¢ (X') = y. Thex’s are “do not
care” values, meaning their value does not affect the valuewhenever the remaining arguments agree with
For example¢ is forced by everyx e {0, 1}"; if ¢ is a constant function, then it is forced by evarg {0, 1, }";
if ¢(x1,x2) = x1V x2,thenitis forced to 0 by (0, 0) and to 1 by (0, 1), (1, 0), (1,(X),x) and(x, 1). We can now
give a recursive definition of forcing for the gates of a Boolean network.

Definition 5. A gatev is forced toy in O steps iff, is the constant function. Fors > 0, v is forced toy inz + 1 steps
if, lettinguy, .. ., u,, be itsin-gates, thereise {0, 1, x}"™ such thak forcesf, toy andforeach = 1, ..., m such
thatx; # «, f,, is forced tox; in r steps. We say thatis forced (in some number of steps) if it is forced to O or 1.

It is clear that forcing is a stronger condition than stability.
Lemma4. If a gate in a Boolean network is forced dn ¢ stepsthen it stabilizes to in ¢ steps

Further, conditioning on the event thsit (v) induces a tree, the probabilities that the in-gates arfe forced in
t — 1 steps are independent, and there is a recursive formula for computing the probabilitisttoaited inz steps.
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SinceN’ (v) is almost surely a tree for the valuesrdfeing considered here, the conditional probability given by
the recursive formula will be asymptotic to the unconditional probability of being forcedteps.
For any natural number andx € {0, 1, x}", let |x|g be the number of coordinatesxthat are 0, and similarly

for |x|1 and|x|«. Fori = 1,2, ... let Piy(zo, z1) be the polynomial ing andz; defined by
Pl(z0.z1)= Y. 251001 (1 — 79 — 2.
xe{0,1,%}mi
x forcesp; toy
Let
o0
G’ (z0,21) = Y pi P (z0. 21) (4)

i=1

Recursively, define

Gy(z0.21) = G”(z0.21),  G) 4(z0,21) = G’ (G{(z0, 21), Gi(z0, 21)) fort > 0.
Lemma’. If N’ (v) induces a tregthen the probability thab is forced toy in ¢ steps isG; (0, 0).

From the definition ofG” and the symmetry conditiop; = p; wheneverg, = —¢;, we haveGO(a, b) =
G(a, b) for all « andb, and thereforeS?(O, 0) = G}(O, 0) for all t > 0. Therefore letting
—269(% %
G2 =26°(3.5) (5)
and defining

Go(z) = G(2), G:i11(z) = G(G,(z)) for t > 0.
Lemma®. If N (v) induces a tregthen the probability that is forced inr steps isG,(0).

Theorem 5. There existg < [0, 1] such that
lim pr(visforcedinx logn stepg = g.
n—oo

Further,
lim G,(0) = g
—>0o0

andg is a root of the equation
g=0G(9).

Proof. For nonnegative andb such thatt + 5 < 1,

P2a, b) + PX(a, b) < Z aXopXliq — g — pyX¥ =1 (6)
X€{0,1, %}

and therefore

x
G <) pi=1 fora<i.
i=1
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This implies thatG (z) is a continuous function on [@] and allG,(0) are bounded above by 1. We will show that
G,(0) is a strictly increasing sequencerinThen, takingg = sup(G;(0) : ¢ > 1), the theorem follows.

To showG,(0) < G,+1(0), again assuming thal&’f'og"(v) is a tree, note that the event thais forced toy in
t steps is characterized by a collectionf rooted trees of height at mastvhose nodes are labeled with Boolean
functions. Each of these trees is contained in the colledfi@f rooted labeled trees that characterizes the event
thatv is forced toy in r + 1 steps. Further, some of these tree€ are of height, and their only leaves that are
labeled with constant functions have deptfiake any such tree and replace each leaf that is labeled with a constant
with a subtree consisting of a node labeled with a nonconstant function and new in-gates all labeled with constants
such that the state of the leaf remains unchanged. The new tree beldddmitanotC because will be forced in
t + 1 steps but not steps. Therefore is strictly larger thar€, andG,(0) < G;+1(0). O

Corollary 4. The expected number of gates that are forced limg» steps is asymptotic to gn

Corollary 5. The number of gates that are forceddanogn steps in almost all Boolean networks is asymptotic
togn

7. Networksof 2-input gates

We now apply the general results of the previous two sections to some networks studied by Kauffman. As
mentioned irSection 1 he suggested that networks with a large proportion of canalyzing gates tend to be stable with
high probability. A Boolean functiorf (x1, .. ., x,;) is canalyzing ifitis forced by somee {0, 1, %} wherex; # %
for exactly ong € {1, ..., m}. Kauffman’s claim seems to be supported by experiments indicating that networks
constructed from two-argument Boolean functions usually exhibit stable behavior, while those constructed from
Boolean functions with more than two arguments do not. Fourteen out of the sixteen two-argument Boolean functions
are canalyzing, but this proportion drops rapidly among Boolean functions with more than two arguments. However,
our analysis does not support the experimental findings. To explain these results, we classify the two-argument
Boolean functions into three categories.

|. The two constant functions are:
flx,x2) =0 and f(x1,x2) =1

Il. The twelve nonconstant canalyzing functions, consisting of
A. The four functions that depend on one argument are:

f(x1,x2) =x1 and  f(x1, x2) = =1, f(x1,x2) =x2 and  f(x1, x2) = —x2
B. The eight canalyzing functions that depend on both arguments are:

X1V X2 and —X1 A\ X2, —X1V X2 and X1 N\ TX2,

x1V —x2 and X1 A X2, —x1V—x2 and x1Ax2
lll. The two noncanalyzing functions exclusive or and equivalence are:

x1®x2 and x1=x2

Note that each function is paired with its negation. keb andc be the respective sums of the probabilities of
the functions of type I, Il and Ill, i.e.q is the probability that a gate is assigned a function of type I, and so
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on. We can now express theparameter ofSection 5(seeEq. (2) in terms ofa, b andc. Clearly, if ¢; is of
type |,
2
Z l{x € {0, 1}%: argumeny directly affectsp; oninputx}| = 0.
j=1

If ¢; is of type I.A., sayg; (x1, x2) = x1, then

I{x € {0, 1}2 : argument; directly affectsp; on inputx}| = 4.

ISk

Il
N

J

If ¢; is of type 11.B., saywp; (x1, x2) = x1 V x2, then

I{x € {0, 1}2 . argument, j directly affectsp; oninputx}| = 4.

ISk

~
Il
N

Altogether, the type Il functions contribubeto A. Lastly, it is easily seen that #; is a type Il function, then

I{x € {0, 1}2 . argument; directly affectsp; on inputx}| = 8,

IR

~
I
N

and therefore the type Ill functions contributetd A, giving
A=b+2c.

To analyze the forced gates, note thdt) (seeEgs. (4) and (9)is a weighted sum of the 16 term%’lQ(z/Z, 2/2)
corresponding to the two-argument Boolean functions. This sum can be simplified by using the above classification
and pairing of these functions.

If ¢; is the constant functiog; (x1, x2) = 0, thenPl.O(z/Z, z/2) = 1, butifitis the constant functiog; (x1, x2) =
1, thenPl.o(z/Z, z/2) = 0. Therefore the type | functions contribute the terto G(z).

If ¢; is a type Il.A. function, sayp; (x1, x2) = x1, then Pio(z/Z, 7/2) = z/2. If ¢;j(x1,x2) = —x1, then
P2(z/2,2/2) = z/2 again. If$;(x1, x2) is a type II.B. function, say1 V xz, then P2(z/2,z/2) = z2/4. If it
IS —x1 A —x, thenPiO(z/Z, z/2) = z — z2/4. Altogether the type Il functions contribute the telbato G (z).

It is easily seen that the two noncanalyzing functions each h;?‘(e/z, 7/2) = z%/2, and therefores (z) =
a + bz+ cZ. The roots of the equation

z=a+bz+c? (1)

are 1 andi/c. SinceG(z) is positive and increasing on,[@], the smaller of the two roots is also ljm. G, (0).
Therefore byTheorem 5the probability that a gate is forceddriogn steps is asymptotic to mif, a/c).

In summary, for almost all Boolean networks, almost all gatesvdogn-weak if and only ifA = b +2¢ < 1,
and almost all gates are forceduhogn stepsifand only ifi/c > 1. Sincea +b + ¢ = 1,b+ 2¢ < 1is equivalent
to ¢ < a. Therefore both types of ordered behavior hold if and only i ¢.!

Kauffman performed extensive simulations on two classes of random networks constructed from two-argument
Boolean functions. In the first class, all 16 of these functions were equally likely to be assigned to a gate. In the
second, no constant functions were used, and the remaining 14 functions were equally likely. In the first case,

1 paperg11,12]contain proofs that > ¢ implies these kinds of ordered behavior; it was conjecturddi2hthat they fail wher: < c.
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a=1/8,b = 3/4, andc = 1/8, givingA = 1 andg = 1 as the only solution t&q. (7) Therefore in this case,
almost all gates are weak and stablevilogn steps. But in the second cage= 0,b = 6/7, andc = 1/7, giving
A = 8/7 andg = 0 as the smaller root @f). Thus in this case, a nontrivial fraction of the gatescalegn-strong
and not forced inx logn steps.

8. Conclusionsand open problems

Our analysis for the case > ¢ supports the experimental results for networks of 2-input gates when all 16
two-argument functions are equally likely. In fact, it gives stronger results than the conclusions of the experiments
in three senses. Kauffman’s notion of weakness requires only that the network should eventually return to the same
limit cycle after a perturbation, but we have shown that with high probability, witHimg n steps, the network
will return to exactly the same state it would be in without the perturbation. Also, as mentioned earlier, forcing is
a stronger condition than stability. Lastly, the experiments indicated that almost all gates were weak and stabilized
for almost all inputs, while we have shown that almost all gates are weak and forcifgouts.

On the other hand, there is a qualitative difference in the behavior of random Boolean networks wheand
networks constructed from only the 14 nonconstant two-argument functions belong to this category. However, this
does not necessarily contradict Kauffman’s claim that these networks also display ordered behavior since he stated
only that, when perturbed they eventually return to the same limit cycle, and eventually almost all gates stabilize.
It is possible that the effects of a perturbation vanish aftelg n steps, and most gates stabilize afiéogn steps.

Thus one open problem is to determine the long-term behavior of nets where(or more generally, wheh > 1
or g < 1), to see if the analysis agrees with the simulations.

We have not addressed the third of Kauffman’s notions of order—the size of the limit cycle, which Kauffman
claims is of the ordet/n for 2-input networks. It has been shown that wlhes c, not only is the average size of
the limit cycle Q\/n), it is bounded by a constant with probability asymptotic {@1]. However, whem = c, the
average size of the state cycle is superpolynomial [h2]. To our knowledge, this is the only analytic result that
directly contradicts any of Kauffman'’s claims. The size of the limit cycle is not known wherr. We conjecture
that it is superpolynomial in this case also. More generally, it would be interesting to know if the size of the limit
cycle is determined by theor g parameters.

We have shown that one conditian,> ¢, implies both a large number of weak gates and a large number of
forced gates in networks of 2-input gates. In the general case, two different conditions were used to characterize
these forms of ordetk < 1 for weak gates, ang = 1 for forced gates. Is there a single algebraic condition that
characterizes both kinds of order?

Other questions pertain to the effect of increasing the indegree of gates. If we consider networks where each
gate hask inputs (using the uniform distribution), then as mentioned in the Introduction, the simulations indicate
that whenK = 2, ordered behavior is very likely, but whéh > 2, the networks tend to be disordered. We have
described the results f& = 2 above. A similar analysis fak > 2 remains to be done. Using a different model
of random Boolean network, Derrida and Pomg§uhave provided evidence supporting the simulations. In their
version, at each step, each gate is randomly re-assigned its Boolean function and its inputs. They referred to their
model as the “annealed” version and Kauffman’s as the “quenched” version. They showed that, given any two
arbitrary initial states, as the two systems evolved over time, their Hamming distance (the number of gates on which
they differ) is approximated byxn for some constanty that depends ok. WhenK = 2, cx = 0, but when
K > 2,cx > 0. Of course, whelk = 2, the quenched model behaves in this way because almost all of the gates
are forced. But it is not known whether it holds for quenched models vihen 2, and the relationship between
the annealed and quenched models is not well understood.
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Lastly, there is a network model that has some of the properties of both the annealed and quenched models. Here
the gates and their connections are fixed as in the quenched model, but at each step, a random collection of gate
updates their states. In other words, the gates operate asynchronously. As with the annealed model, an asynchrono
network need not enter a limit cycle, but the other notions of order are still meaningful, and perhaps they can be
studied productively.
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