Surfacing | 4

Surfacing: A Genealogy
of Computer Interfaces and, Sometimes,
Technical Communication

The problem of ‘belonging’ is [a] difficult problem, which automation emphasizes. Pretty speeches about cooperation, communication, and common interests cannot hide the fact that in most companies the people who are doing the actual work do not ‘belong’ or do not feel that they do.

Floyd,
“Let’s Be Honest About Automation.”
Computers and Automation, Sept. 1962, XI.9

Then as now, the goal of working for most of us—the goal of effective, rewarding work—is at least partially related to belonging to a community, to having a stake. However, much of the advances in computer technology over the last thirty years have been diametrically opposed to connecting work up to community. Certainly there have been enormous strides in general at using computers to communicate—but in general, the space of work in the computer has historically been a progressive contraction, a fragmentation of work.

It's not necessarily full jobs that have automated, but portions of jobs—and a general trend toward automating intellective work among many, in particular the temporal, social process of learning new subjects and works. This has taken place through a postmodern flattening of the computer interface—which used to be a deep connection but is now typically a very shallow one.
Surfacing: An Overview

I’m using a history of computer interfaces for a number of reasons, although I could have also drawn on product design or workplace writing.

First, I think computer interfaces represent one of the primary spaces for intellectual labor in the next century. That’s not to say we’ll all be only virtual, but that the computer interface represents an important new workspace.

Second, because of the ways that work is becoming digitized and mediated, quality of work will come to depend in crucial ways on the ways that the interface structures work—it’s no longer a tool, but a foundation, a confounding factor, a substantive effect in our work.

Third—and this is the part that concerns me the most—is that interfaces are tending to structure work in fragmented and decontextualized ways—they automate, but only partially. Along with this, the interface frequently fragments and even removes aspects of technical communication which, if properly designed should be improving work. But current assumptions about how people use computers and how they learn to use computers is tending to marginalize these potentially crucial elements of tech comm. It’s as if we were finally starting to get really good at helping users, only to find out that we’re talking only to ourselves.

My talk today, then, is about making ourselves visible, about surfacing technical communication in computer interfaces without falling apart.
Postmodernist Shift: Time to Space

I’m going to make a very brief detour here into some of the broad conceptual underpinnings of this talk. I’ll keep it brief and avoid slipping into pomospeak, but I wanted to note that these shifts I’m discussing are forecast from a number of disciplines, sometimes with surprising accuracy. Postmodernism in general forecasts a shift from cultures which focus on time and history to those focusing on space.

This is, of course, only a general tendency and not a totalizing shift. But evidence for this shift has been assembled and analyzed by people in fields as diverse as philosophy, literary theory (where most of us see pomo as living), but also management theory and usability studies, among others. I could also add in advertising, graphic design theory, and more, but I won’t because I want to cut this excursion into theory short so I can show some pictures.

Interface and Work Knowledge

As my primary example, I’m going to do a very rough genealogy of interface design to show how computer interfaces construct modes of work, how interfaces position technical communication.

This table here charts the development of computer interfaces and the location of knowledge about how to use the interface. In other words, where and how technical communication is situated.

I’ll go through some extended examples, so let me just say here that as computers have become more interactive, as interfaces have become more graphical, they have tended to remove technical communication, to shrink it, to fragment it. In many cases, the help these interfaces offer users is so de-contextualized that work itself becomes fragmented.

	
	interface
	location of knowledge

	1950s-1960s
	hardwired
	outside interface: education, training (few manuals)

	1960s-1970s
	punch cards
	outside interface: education, training, manuals, courses

	1970s-1980s
	command line interface
	outside interface or at second-level deep in interface: education, training, manuals, courses, man pages

	1980s-1990s
	graphical interface (wimp)
	into interface: shifting toward limited interface (surface)

	1990s-2000s
	spatial (MOO/VR)
	potential hybrid: surface + social (reintroduction of time)

Time-Based Interface

Historically, an interface was the physical connection of two devices, an articulation in the strictest sense of the word—a hardware register interfacing with an output devise such as a teletype. Computers, at the earliest stages, were “programmed” by actual rewiring them.

The key aspect here for our discussion is the location of knowledge about how to use the computer—in other words, the location and structuring of technical communication. In these devices, users learned to program and work with the computers based on apprentice-type relations: you worked with an expert person, who, over time, taught you functional skills. Importantly, that knowledge and use was also embedded in real social contexts.

I’m being nostalgic about apprenticeships here, obviously—I’m not calling for a return this situation, but instead a reflection on how it relates to other situations.
Space-Based Interface: CLI

As we move to a more spatial (more complex) interface, knowledge about using the computer becomes more embedded in the computer. Technical communication here is taken out of a social context and put, at least a little bit, into the interface.

Thanks to the wonders of the open source revolution, we can relive the heyday of command-line interfaces via Linux, which we’re running on a server in our usability lab.

[image: image4.png]Notebook 12-05

e e e i

Figure 1: Linux Prompt

When I said that some knowledge about using the computer became embedded in the computer, I didn’t mean that using the computer suddenly became obvious. For example, on our linux server the command prompt gives me precious little information about how to use the system.

But if I know enough about how unix and linux operate, I’ll know I can type in “man” page command to get help on system commands. From an expert users standpoint, this is great because if I have a general working knowledge of how the operating system works, I can bootstrap that knowledge by reading online help. But I have to know (a) what the man command is, and (2) the name of a command to connect up to—in this case, the “chmod” command, which is it’s own little technological hell.

[image: image1.png]=]

Fed Hat Linux relesss 5.0 (Hedwia)
Kernat 2.2.13 on an 1586
jonndan

linnell.english.purdue. edu (2)

Lozt Toain: Hon Feb 14 08199145 fron sch-or-001 inlafoP281 .dialsprint.net
limetl: 1

N

Figure 2: Linux Man Page on CHMOD command

Of course, I have to have something to bootstrap with, which typically meant doing something outside the computer interface—taking a course, working with another expert user, buying a book, etc.

Graphical Interface: GUI

As we move toward more graphical interfaces, the technical communication begins to shift; it’s still at depth (as with a man page), buried under the interface. But importantly, it’s also surfacing. Information about how to use the computer is no longer always buried or outside the computer, but now also on the surface in a way it wasn’t in the strikingly spartan command-line prompt.

Here, users are given literally thousands of cultural and technical cues that suggest to them how to work.

[image: image2.jpg]O

linnell.english. purdue. edu (1

o) = cHon(1) =
e
chnod - changs file access permissions
senorsis
[OETION). .. HODE[,HORE]... FILE...
[QFTION) |- OCTAL 0 FilE
[GFTION] |\ =-refarsnsesbFILE FILE ...

nanual page documents the GNU version of chmed.
Ehanges e permi <z ione of sach given i e accarding
% mode, hich can be el ther a suibol ic representation of
Ghanges ko Mok, or on octal rumber representing e bit
Pattarn far the nen perm issions.

The format of @ sumbolic mode is *[ugoa. ..][[+-=](rwXs=
fuge.. 1o [y..] - Tultiple symboli sparations can be
Given, stporatid by connas.

£ conbination of the letters “ugoa’ controls which users

fLine 1 |
|

ST

Figure 3: Macromedia Dreamweaver Interface

In this Dreamweaver interface, I’m working on the main page of my own website. Although there’s a great deal of other tech comm available—in manuals, on the web, in users groups, etc.—most users build web pages in Dreamweaver without doing a lot of that outside work. Instead, based on their experiences of other computer programs and on experiences seeing other web pages, they muddle through the procedure based on surfaced information: palettes that offer them a range of often-used commands, menus that, by their very names suggest certain types of actions as more common than others, windows in which information that can be acted and, interacted with. In other words, the interface strongly suggests actions.

On one hand, this is a wonderful opportunity—the ease of use here provides important cues that put an immense amount of design power in the hands of people wouldn’t normally have it. Although I think HTML codes are pretty straightforward, I also know they frighten many people. So this is, in one sense A Good Thing, a democratization of technology.

On the other hand, it also worries me, because it’s now much more likely people will create web pages without a broader context—without understanding anything about interactivity, about screen layout, about information design. What has happened is that the interface has surfaced a very small fraction of the tech comm—the education—at the expense of broader thinking and learning. And we know from experience that if a user can “get by” with what’s present, they’re less likely to go further. In fact, as Zuboff and other workplace automation theorists have pointed out, trying to learn higher-level skills is frequently seen as wasting company time, as dissatisfaction with one’s stage in life. It’s the Great Chain of Online Being: Hope No Higher.
Contracting Spaces and Times

What’s happened here is that the space of work has collapsed: work is no longer something visibly socially situated in a large space (an office, a classroom, etc.) but now has condensed, in many ways, into a 17-inch (diagonally measured) glass window. In addition, as that workspace has collapsed it’s sucked tech comm right down with it. But because the pace of work has accelerated, the information space has flattened and surfaced, with users increasingly unlikely to look outside their immediate interface for assistance on using the computer—assistance that used to frequently position the technical, fucntional aspects of their work within a broader, richer framework.

So where previously work was enmeshed in a social context—and learning how to work involved a process of education over time—work now is increasingly fragmented and flattened—and learning how to work is shrunk, decontextualized so that only the very most functional aspects are visible at the surface. In effect, the interface is not simply a tool but a structure for work.

Feenberg’s Primary and Secondary Moments of Instrumentalization

The work of Andrew Feenberg, a marxist technology theorist, offers us some useful categories for thinking about technology development and use. Feenberg’s model relies on “primary” and “secondary moments of instrumentalization.” Our culture has, in general, relied heavily on primary moments of instrumentalization, which extract surplus value from resources by removing objects from their natural contexts.

Primary Moments of Instrumentalization

	Instrumentalization
	Force
	Example

	Decontextualization
	Separation of object from context
	Text discussed without acknowledging purpose, context, audience, etc.

	Autonomization
	Separation of subject from object
	Writing processes seen as one-way (readers portrayed as passive or invisible)

	Reduction
	Separation of primary from secondary qualities
	Text portrayed primarily in terms of specifiable surface characteristics

	Positioning
	Supervisor/Owner situates himself or herself strategically in relation to objects (technological or natural)
	At local level: Writers shown how to manage reader’s feedback

At broader level: Writers in need of assistance in using program are thrust into support marketplace as potential customers

As you can see from the table here, primary moments of instrumentalization can act on natural resources (a term that resonates for Heidegger similarly) as well as people, who are often extracted from their natural context—community, family, etc.—and placed in a decontextualized situation. The stereotypical example—the one that was referred to in the 1962 article about automation—is a factory worker put on an assembly line and integrated, in Tayloristic fashion, as a part of a machine, unthinking and mute. But in contemporary culture, w see similar primary instrumentalizations in terms of communicative work, where the broader context of work is fragmented in ways that prevent people from addressing complex issues. In wizards used commonly in programs like Microsoft Word, for example, the complex rhetorical situation involved in designing a resume is fragmented and decontextualized. Rather than issues of audience, ethos, usability, etc., users are encouraged to think of a resume as a set of a-rhetorical, a-contextual surface-level features (fonts, table cells and rows, etc.). This primary instrumentalization operates by bracketing out social situations and disciplinary knowledge in order to simpify—partially automate—the production of the resume.

Feenberg, those, also offers an additional set of characteristics for secondary instrumentalizations, which recontextualize work.
Secondary Moments of Instrumentalization

	Instrumentalization
	Force
	Recuperation
	Example

	Concretization
	Technology adapts to environmental forces
	Recuperates decontextualization

	Support a broader range of writing and communication processes

	Vocation
	Technical skills learned as crafts
	Recuperates autonomization
	Educate users rather than only train them

	Aesthetic Investment
	Considers primary and secondary qualities
	Recuperates reduction

	Discuss font, layout, etc. in a substantive rather than purely formal way

	Collegiality
	Subjects act within communities
	Recuperates positioning
	Design system around communication as a social, collaborative activity

This set of categories provides us with some starting points for thinking of ways to recuperate interface design.

Social Interface: ProNoun MOO

As I mentioned briefly at the beginning, I see the possibility for re-contextualizing work through interfaces. The internet (WWW, MOO, email, etc.) is both a cause of the problem—because it collapses space—but also a possible remediation, because it may provide us ways for resituating work into a social context, by thinking of work as a process that goes on over time, as fundamentally communicative.

There are many ways to do this—email and newsgroups and chat spaces only begin to touch on the possibilities. Right now, I'd like to discuss the ViEW project at Purdue. ViEW, which stands for Virtual Environments for Writing [we hacked an "i" in there for legibility]; the ViEW project attempts to enter *into* this flattened space rather than resist it, to take control over what happens in the interface by constructing large, relatively complicated realtime discussion spaces using MOO technologies.

If you're not familiar with MOOs, they're virtual environments in which users move around and interact with objects in a metaphoric space—you can type commands like "go north" and as you move north, you'll see textual or visual descriptions of a new place, just north of where you previously were. The earliest MOOs and MUDS were developed and used by Dungeons and Dragons types to enter into fantasy worlds and do virtual battles with monsters and, later, each other. The old Zork software is a starting point.

Currently, though, MOOs are much more complex and generalized and have been used extensively in computers and writing as well as law, second language learning, and more. The version of the MOO software we're using is Cynthia Haynes and Jan Holmevick's enCore exPress, an open source MOO core that includes extensions that give it a graphical interface rather than a command-line interface.

In this example, if you squint very hard, you can see the MOO we’re using this semester in online professional writing courses at Purdue,about 30 sections of tech writing and business writing classes. This is a mocked-up example because I’m still working with our Human Subjects Review Board to get permission to use student work in our research (I blame Paul Anderson for this), but the example’s pretty typical. Here, students are discussing the drafting of a recommendation report for a client who wants their website upgraded.

[image: image3.jpg]& _Fle Edit View Insert Modify Text Commands 131PM
f Site - tempest =]
) (@it) (s501) (sra) (Zoheskon) (@t n] @
SRR e
J|f» g ol § e |
(- ol b QL wstatan ol
= g | s
& bog f
© I b8 s
el b Qs o
% [i E
® . - ::
= T 1 P p
sp E g Frontie Supert Fo L3
8200 Ditancs £4 E g Gesphies o
premwel | o o =
Rt Teoh Witng LI = o
amoumcr |
et e
=
»]
[} 54
e e TR 00> 6 OOTE
12009 W Comapy. 12005 Ofce Hours SO0 v hone. N
n mage, 3K wis e oo mages /st pog @ (] Atgn [Browser et~ @)
- | D T —] O
vapr L — G
—— B] ‘ .

Figure 4: ProNoun MOO at Purdue University

In this example, users are meeting in a virtual classroom and discussing their plans for a recommendation report written to a realworld client who wants a revised website. During their discussion, they’re both talking (or typing) back and forth but also entering text onto a virtual blackboard that will act as the starting point to their actual report.

We're not doing anything radically new here—I'm sure more than a few of you have used MOOs for your classes and for interacting with colleagues in far-flung locations. But what interests me about the MOO here is the way that it recontexualizes writing instruction and computer use in the physical, social, concrete act of writing. The technical communication in this interface is both on the surface and in a larger social realm. The inclusion of the social dimension beyond the two-dimensional interface provides the potential—if carefully constructed—to make technical communication and computer use in general a recontextualized activity.

 Students are simultaneously discussing how to draft the document while they’re drafting the document. Although we’re currently seeing some slight move toward interaction like this in more mainstream programs like Microsoft Word, because the designers of these programs continue to think of communication as artifact production, they lack a strong sense of how to integrate social communication into the product design, into the fundamental use of the program.

Communication as the Future of Work

I'm going to lay out four suggestions for ways that technical communication researchers and teachers can begin taking control of the interface to help resocialize work and action. This won't be an easy task, because the interface, as people like Cindy and Dickie Selfe among other have noted, is a terrain of struggle; programmers don't want to give up control over it.

Take Control of the Interface

MOO spaces such as ProNoun provide starting point. In these spaces, constructing new rooms and objects is relatively simple; both teachers and students arealready doing it in our classes. As we keep telling them, “This ain’t rocket science.” But we also need—as educators—to think about a curriculum that will support this sort of work, both in our classes and for our students after graduating. In particular, it seems to me that we need to work harder at getting students comfortable with constructing interfaces, both at the level of this MOO as well as in terms of prototyping languages like Visual Basic. We need to be careful about this—we probably can’t put our students in computer science classes, because they tend to also marginalize these skills, to teach down to our students and to refuse to take a rhetorical stance. I’m not interested in teaching efficient algorithm design; that’s a technical skill left best to technicians. Instead, I’m arguing that we need to position our students in ways that let them—as they say—design the “user experience” out of their skills as technical communicators. This will require us to teach—and to increase our teaching—of technical skills, but only in a rhetorical context, because otherwise, we’re not going to do a better job of it than is currently done.

Make Technical Communication the Focus, not Technology

In addition, need to be able to refuse the supporting role. We need to be adamant—in our classes, in our discussions with recruiters, in our students' slowing forming self-perceptions—that technical communication—learning—structures work and action. We can find a parallel here with architecture, which has been able to set itself up as a coherent way of orchestrating functional, technical things like engineering. Architects are expected to understand how civil engineering works, but their primary work takes place as an orchestration of the work of others; they’ve managed to invert the situation we’re in, where we—specialists in communication and education—have ended up supporting the technologists.

Make Technology Equivalent to Rhetoric

I can’t offer an easy way to effect this change—the move toward symbolic-analytic work that I’ve discussed elsewhere is one start—but it’s something we need to set as a goal.

We're already doing this (johnson, hart-davidson, others)—need to show that interfaces are about much more than usability in the limited sense (efficiency, automation, etc.) but much broader—they are acts of communication, scenes of communication. In addition, the reverse is true—we have to get people over the sense that technology is anti-humanist; done rightly, it takes control over primary instrumentalizations and *humanizes* them.

This is a difficult argument to make, as many of us have found, at educational institutions, who sometimes tend to see us humanists, still. For example, about a month ago I came back from a conference and, when I got off the plane, my wife handed me that day's student newspaper and said, "Remember, there's no such thing as bad press coverage." The article on the front page and the editorial inside ranted about the ViEW project, noting that Purdue students pay a lot of money for classes and they should haven't to spend their time looking at a computer screen instead of a real professor. Aside from the fact that they had ignored all the face-to-face time integrated into the syllabus and that the goal of ViEW was to get students learning to write text *in* textual environments (the reporter had refused to wait two days for me to return to interview me, and after no one would give him much in the way of commentary, he wrote the story anyway). This is always a danger at these boundary areas, where we've managed to piss off the engineers and computer people because we're not geeky enough and to piss off everyone else for not knowing our proper place as humanists. But it's a battle we have to fight, because if we stay *out* of the interface we're literally marginalizing ourselves and our students.

Improve Our Public and Corporate Image

Finally, and on a related note. we need to work hard to make the public aware of the primacy of communication as a form of work, as perhaps the priumary form of work—and by "public" I mean just about everyone, from managers in corporations to deans in schools to endusers at home and in the workplace and to technical communicators in the workplace, and even ourselves and our students, because we tend to embrace, at times, a rhetoric of support and subordination to the greater good (without ever asking the question, What is the Greater Good? Always More, Faster for the User?)

As a last example, I want to mention the work of the Tech Comm Summit, which met here earlier today. The Summit is composed of representatives from most of the large tech comm groups in North America; I’m going to rattle off acronyms for the member organizations, some of which you’ll probably recognize—STC, ATTW, CPTSC, ACM SIGDOC, IEEE PCS, and more. One of the primary goals of the summit is public education and PR. Projects like “Information Works.,” for example, are designed to help the general public understand technology use in richer ways, to understand that they need to demand better, richer, more complete technical communication by making the implications of bad doc clearer.

A lot of this seemed critical and pessimistic, I think, but I truly believe this is an exciting time because it’s rife with possibilities—but only if we move quickly and vocally, visibly to change how we think about technical communication, how we position ourselves in relation to people in the workplace, how we portray ourselves to the public, how we work with students to give them both the skills and the possibilities to make the world a better place—not just a faster one, a quicker one, but a better one.

A previous version of this talk was presented at the 1999 Conference of the Council for Programs in Technical and Scientific Communication, Santa Fe, NM, October 12-13, 1999.

