The Index Calculus Algorithm
for Discrete Logarithms

Jason 8. Howell

March 31, 1998

A paper submitted to the
Department of Mathematical Sciences
of Clemson University
in partial fulfillment of the
requirements for the Masters Degree

Approved by:

Committee Chairman

Abstract

The intractability of the discrete logarithm problem provides a basis for the security
of many public-key cryptosystems. We provide a survey of various algorithms to attack
the discrete logarithm problem in finite fields. In particular, we study the effectiveness
of the index calculus methods for finding discrete logarithms and different techniques
that improve their performance. We discuss the use of a sieve method for selecting
smooth polynomials from a large set. Gordon and McCurley (1992} developed a sieve
for Coppersmith polynomials using a Gray code. Our new contribution is a general-
ization of their approach to any subspace of polynomials, along with implementation
techniques that improve the efficiency of the sieve. We also present applications of this
sieve to Coppersmith and Semaev polynomials.

Contents

1

Cryptography and the Discrete Logarithm Problem‘

1.1 Imtroduction. o e e e e
1.2 CryptosySteIns v v v b it b e e e e e e e e e e e
1.3 The Discrete Logarithm Problem,
1.4 The Diffie-Hellman Key Exchange System
1.5 The ElGamal Cryptosystem« o v v v i it it e et s e e
1.6 Attacking the ElGamal Cryptosystem

Algorithms for the Discrete Logarithm Problem

2.1 Different Approaches e e
2.2 Shanks’ Algorithm e e
2.3 The Silver-Pohlig-Hellman Algorithm
24 Other Algorithms L e e

The Basic Index Calculus Method

31 Imtroduction. i e e e e e

3.2 The Basic Index Calculus Method in Prime Fields

3.3 The Basic Index Calculus Method in Nonprime Finite Fields
3.3.1 Fieldsoforderp®, pprime,n>1.
3.3.2 Computationalnotes i e
3.3.3 PrimitiveelementsinFpno oo oo

3.4 Factoring Polynomials over Fpfz]

3.5 Implementation of Basic Index Calculusin Fon o . o000 0oL

Improving the Index Calculus Method

4.1 The Search for Smooth Polynomials
42 Coppersmith’s Method
4.3 Semaev's Method e

- 4.4 Other Improvements and Techniques

Polynomial Sieving

11

11
11
12
14
17

18
18
20
22
22
23
24
25
26

32
32
32
38
40

41

5.1 The Sieving Process e e e e e
5.2 Sieving with Coppersmith’s Method
5.21 Approach e e e e e
5.2.2 Stepping throughthearray
5.23 Thealgorithm e
5.3 Computational CompariSons . -t o v v bt i e e e e e
54 Improving Gordon and McCurley’'sSieve oo oo

A General Polynomial Sieve

6.1 Generalizing Gordon and McCurley’sSteve
6.2 The Polynomial Sieve Applied to Coppersmith Polynomials
6.3 The Polynomial Sieve Applied to Semaev Polynomials

Solving Linear Systems over Finite Fields

7.1 Linear Systems Produced By Index Calculus

7.2 Solution Methods o L e e e
7.2.1 Ordinary Gaussian elimination
7.2.2 Structured Gaussian elimination
7.2.3 Iterative and Krylov subspace methods

7.3 Combined Methods i i e

Conclusions
8.1 Relevance to Cryptography e e
8.2 Open QuUestions i . i e e e e e e e e e

primpoly.c
indcal.c
copper.c
gordon.c

Acknowledgements

52
52
59
62

64
64
65
65
65
67
67

68
68
69

75

78

83

89

97

List of Tables

WO ~] O v s W N

o e T e S T S ey
G = O R W N - O

Shanks’ algorithm for discrete logarithms in Z, 12
Ordered pairs for theexample o oo oo 13
The Silver-Pohlig-Hellman algorithm for Z, 15
The index calculus method for findinglog, 8=a 19
Primitive polynomials in F; [z] of selected degrees 25
CanZass factorization times« . i e e 26
Factor base size forselected B o o e 28
Some n < 1000 that satisfy Semaev'sconditions 39
Tuand T, forselectedm,u e 40
Gray code of dimension 5 on binary strings 0000, 45
The Coppersmith polynomial sieve algorithm 46
(u1,ug) pairs that produce a 7-smoothwy andw 49
Factor base logarithms for Fyes i 49
Computation times for someselected n L 0oL 51
Comparisons of relaxed selection criterion for gordon.c 51
The general polynomial sieve algorithm 54
Stepping through the array for Example 6.1 56
Stepping through the array for g =% + 22+ 1. 57

1 Cryptography and the Discrete Logarithm Problem

For centuries it was thought that the purest discipline of mathematics, number theory,
would not be of much use for any practical purposes aside from recreation and sport for
mathematicians. The following passage, by a mathematician, reflects this sentiment.

...both Gauss and lesser mathematicians may be justified in rejoicing that there
is one science [number theory| at any rate, and that their own, whose very re-
moteness from ordinary human activities should keep it gentle and clean.

—G. H. Hardy, A Mathematician’s Apology, 1940

A mere fifty-seven years have passed since Hardy’s remark, and things have changed dra-
matically. Number theory has become a focal point for research in cryptography and com-
putation. As we move into an era dominated by computers, the internet, and electronic
communication, cryptography (and thus number theory) becomes an even more important
part of our society.

1.1 Introduction

Cryptography, the art and science of secure information transfer, is rooted deeply in mathe-
matics. From the earliest shift (permutation) ciphers to the current cutting-edge elliptic
curve cryptosystems, we can find discrete mathematics and probability in each type of
system. The main purpose of cryptography (from Greek xpumrdo, meaning hidden, and
ypadic, meaning writing) is to enable two individuals to communicate privately across an
insecure channel. References to cryptography have been found in the Bible, stories of ancient
Greece, and through countless wars and battles fought all over the globe in man’s history
[54]. Present applications of crytpography extend far beyond national security, as the use
of computers and electronic information transfer become more and more a part of everyday
life.

Figure 1 is (a portion of) the official internet homepage for RSA Data Security, Inc, and
the official logo of RSA can be seen here. At present, this logo can also be found on many
other world wide web pages, as many individuals and businesses employ RSA to secure their
communications, from private e-mail to transferring account numbers over the internet. The
RSA cryptosystem is one of the most widely used cryptosystems today in practice.

The underlying theme in all cryptographic research is essentially to first design and create
seemingly secure cryptosystems, and then to use every tool possible to attack them. This may
seem undesirable, for why would you want to dismantle something you have just created?
The answer is simple: you can only assume that an opponent knows just as much about
the cryptosystem being used as you do and has the same abilities. This is often referred
to as Kerckhoff s principle [55]. Thus we begin our study of the mathematical aspects of
cryptography and cryptosystems.

Look for the Gensine RSA logo on hundreds of hrdware and sofiware prodects.

Wabsite feedback or comments can be sent fo: gwmgm
Copiwright @ 1998 RSA Dala Securiky inc. AN Rl Resenmd.

Figure 1: RSA Data Security, Inc. logo

1.2 Cryptosystems

There are an abundance of different types of crytposystems that have been created and
implemented in the past and present, each one specific to the needs of those who use it. In
the United States, for example, the National Bureau of Standards regulates the most widely
used cryptosystem in the world, known as the Data Encryption Standard (DES). This is
the current standard for electronic funds transfer used by financial institutions. Another
widely used cryptosytem is the aforementioned RSA cryptosystem, which is employed by
the internet browser manufacturer Netscape to promote secure commerce across the world
wide web. We now give a precise definition of what we mean by cryptosystem.

Definition: [55] A cryptosystem is a 5-tuple (P, C, K, £, D) where the following are satisfied:
1. P is a finite set of possible plaintexts (letters, words, messages).

2. C is a finite set of possible ciphertexts (the encrypted message).

3. K is a finite set of possible keys (called the keyspace).

4. Vk € K, 3 an encryption rule e; € £ and a decryption rule di € D such that e, : P — C,
di: C — P and Vz € P, di(er(z)) = z. I

The sets P and C are commonly derived from alphabets, which could be a variety of things,
such as English letters, Greek letters, Chinese characters, or even integers. This definition
allows us to characterize what exactly is needed for a two individuals, most commonly
referred to as Alice and Bob, to communicate over an insecure line, possibly under the

observation of another individual (usually dubbed Oscar). Suppose Alice would like to send
the plaintext message £ € P to Bob. Under the specifics of their mutual cryptosystem,
Alice would choose a key k& € K and encrypt by using ex. Then she would send the
encrypted message ex(x) = m € C to Bob. Upon receipt of m, Bob would then compute
di(m) = di(ex(z)) = 7 to retrieve the original plaintext. During the transfer Oscar has
access to m, and thus the integrity of the cryptosystem depends on how difficult it would
be for Oscar to determine z from m, i.e. how difficult it is for Oscar to find di. Oscar
can attack the system in other ways, such as a known plaintert attack, in which he sends
Alice a selected plaintext, and then observes the ciphertext in hopes to determine the key.
A complete description of the potential attacks and security needs of a cryptosystem can be
found in [55].

Most ciphers developed in the past (up to about twenty years ago) are known as private-key
cryptosystems. Examples of these types of cryptosystems include the Vigenére Cipher, the
Hill Cipher, and the Affine Cipher. Descriptions and analyses of these can found in [55]. In
a private-key system, the sender and recipient must both have prior knowledge of the key k&
for any secure communication to take place. Thus either there must be a secure channel to
communicate the key or some other means of mutual agreement on the key. If a key is set
and then used for a long period of time, there are many opportunities for Oscar to find the
key and compromise the system. And if there is a secure channel for key communication,
do you even need to encrypt your messages? The answer, of course, is yes, for the secure
channel may be expensive or inconvenient to use.

Suppose we had a cryptosystem such that it would be computationally infeasible or impos-
sible to compute the decryption rule d; from e;. Then each user could actually publish their
respective e in some sort of file or directory so that someone else could send them a message
using this e;. The recipient would be the only one who knows d, and thus could be the only
one with the ability to decrypt the message. This is the general idea behind a public-key
cryptosystem. This idea was first introduced in 1976 by Diffie and Hellman [15}, and has
become widely used in many cryptosystems at present.

Although it may be computationally infeasible to determine di from e, a public-key system
is not unconditionally secure. For most practical purposes though, the integrity of a public-
key system is regarded as being equivalent to the infeasibility of finding di. Thus, in order
for a public-key system to be considered appropriate for use, e, must be defined in a way
such that the mapping ez, itself is easy to compute, but its inverse d; is difficult to find. In
other words, e, should be a ‘one-way’ function. However, it must not be entirely one-way,
as the recipient must have a way to compute di(x). Hence the idea of a ‘trapdoor’ is needed
for this one-way function, i.e., some extra information that only the recipient knows that
will help in decrypting the ciphertext.

There are a few different types of one-way functions that are used in current cryptosystems.
One such function is large integer multiplication, as the factorization of large integers is, in
general, a hard problem. This is the basis for the security of the RSA cryptosystem, invented
in 1977 by Rivest, Shamir, and Adleman [50]. Some other public-key cryptosystems include

the Merkle-Hellman Knapsack, the McEliece cryptosystem, the ElGamal cryptosystem, the
Digital Signature Standard (DSS), the Chor-Rivest cryptosystem, and the Elliptic Curve
cryptosystem, each of which exploit the properties of a supposed one-way function. One
particular function that is believed to be one-way is exponentiation in certain cyclic groups.
The next section will describe this function, and present an example of a cryptosystemn that
uses it.

1.3 The Discrete Logarithm Problem

Before we begin to describe the discrete logarithm problem, we must first give a few def-
initions and results relevant to the algebraic setting. Standard references in group theory
include [23], 7], and [17]. Let G be a finite cyclic group with identity e, and let g € G.
The order of g in G is the smallest positive integer m such that g™ = e. We say that g is
primitive in G if m = |G} (here |G| denotes the cardinality of G). Note that g is also called
a generator. We now define the mapping log, : G —+ Z, (the integers modulo m) by, for
a=g"€q,

logg :a > . (1.1)

We call log, a the logarithm of a with base g . Note that the discrete logarithm function log, is
one-to-one and onto if and only if g is a generator. This is analogous to the logarithm function
over the real numbers. The discrete logarithm function shares some of the same properties as
its real counterpart, for example we have that log, g* = z, log, ab = log,a + log, b mod m,
and log, ab-! = log,a — log, & mod m. It is also important to note that our choice of
generator does not matter, for if g, h € G are both generators for G, then we have

log,a =log, h-log,a mod m (1.2)

just as we do in the real case. The discrete logarithm problem is as follows: given a finite
cyclic group G with generator g, and a € G, find log, a.

Note that the description given here is for a group whose operation is multiplicative in nature,
a similar formulation for an additive group would be: find the unique integer such that
z - g = a. This problem is, in general, not so difficult for the additive case, except in the
case of elliptic curve groups, which we will mention later. A good general description of the
discrete logarithm problem as well as many applications of it can be found in [36] (Chapter
6). Often we are interested in the case where G is the group of nonzero elements in a finite
field. Let ¢ = p" be a prime power, and let F, denote the field of g elements. Note that if
n =1, then F, = Z, (the integers modulo p).

1.4 The Diffie-Hellman Key Exchange System

As we mentioned before, in their seminal paper of 1976, Diffie and Hellman [15] introduced
the notion of public-key cryptography. They also introduced a key exchange system that

8

enabled Alice and Bob to agree (publicly) on a key. For a mutually agreed upon group &
and generator g, Alice chooses a random integer a and computes g®. At the same time, Bob
also chooses a random integer b and computes g®>. Then Alice sends g* to Bob, and he sends
g to Alice. Each of them now can compute g* privately (as Alice knows a and Bob knows
b), which they will use as a key. The security of such a key-exchange system is based on the
Diffie-Hellman assumption [27].

Definition: (The Diffie-Hellman Assumption) It is computationally infeasible to compute
9 knowing only g° and ¢*>. B

One can easily see that the Diffie-Hellman assumption implies that the computation of
discrete logarithms in the group is infeasible (i.e., if one can feasibly compute discrete log-
arithms, then the Diffie-Hellman assumption fails). The converse implication is still an
unresolved issue, as there may exist a way to determine ¢®® from g° and g® without needing
to know a or b.

1.5 The ElGamal Cryptosystem

In 1985 T. ElGamal [16] presented a public-key cryptosystem that bears his name based
on the intractibility of the discrete logarithm problem in Z; (here Z; denotes the nonzero
elements of Z,, p a prime). The cryptosystem is defined as follows:

Definition: The ElGamal Cryptosystem: Let p be a prime and let a be primitive in Z;.
Let P =Z;, C = Zj, x Z;, and define

K={(pa,ap):8=a* modp}. (1.3)

The component a of a key in X is to be kept secret and all other components of the key are
public. For a key k = (p, @, a,3), and for a random r € Z,_;, define

ex(z,7) = (11, 32), (1.4)

where 4, = o mod p and ¥, = £6" mod p for £ € P. Then we define di(11,v2) = ¥2(3§) ™!
mod p.

Now the most important component of the key, a, is chosen by the recipient (Bob) and
is unknown to everyone else. In Bob’s public file, he will publish p,«, and 3, so anyone
wishing to send him a message can use this information to do so. In essence, when Alice
wants to send z to Bob, the message is camouflaged by multiplying it by * for the random
k she has chosen. Bob can compute z by first computing 8* from o, and then multiplying
yo by (8F). Oscar only sees (y1,%2), and, if the Diffie-Hellman assumption holds, cannot
determine the plaintext unless he knows the secret exponent a.

We illustrate the use of the ElGamal cryptosystem with a small example. In no way is this
cryptosystem secure, for the field Z,, is far too small.

9

EXAMPLE 1.1: Suppose that Alice wants to send the message "It’s not enough" to Bob.
First, Alice condenses the message and breaks it up into five-letter blocks (the block size
could be any predetermined length, we use five for ease of illustration), appending extra
characters to meet the length specification. Alice gets the plaintext message ITSNO TENQU
GHXXX. Then, using a rule to enumerate the English alphabet given by

A=00, B=01, C=02,...,Y =24, Z=25, (1.5)
she now wishes to encrypt the following numbers:

@, = 0819181314
Ty = 1904131420 (1.6)
g3 = 0607232323

Alice looks up Bob’s public file and finds the information necessary to encrypt z;, ¢ =1,2,3
using Bob’s public key.

Bob’s Public File
p = 3000000019
a=23
8 = 1351124895

Note that Bob’s public file does not display his secret exponent a. In this case a = 13007, as
313007 — 1351124895 mod p. Using the ElGamal protocol, she chooses random ry, i = 1,2, 3,
and encrypts the z; as

r) = 42734110 = y; =a"™ mod p = 1314668642
yi2 =1 - f' mod p = 1573841406

Ty = 991431 = 1y =a" mod p = 1956031587
yaz = %2 - 5 mod p = 1371497105

r3 = 2271409788 == ys =a™ mod p= 1731734287
Y2 = T3 - 5* mod p = 1784069351

Thus Alice sends the three ordered pairs, (y11,%12), (21, ¥22), and (ys1,ys2) to Bob., Upon
receipt of the ordered pairs, Bob can decipher the message by calculating z; = i, - (y%) ™}
mod p. He does so and computes

T, = 1573841406 - (1314668642'*7)"1 mod p = 819181314
T3 1371497105 - (1956031587}~ mod p = 1904131420
3 = 1784069351 (17317342879}~ mod p = 607232323.

10

Bob, noticing that z; and z3 are only nine digits in length, prepends a 0 to each and the
translates the plaintext back to English text, recovering the original message. A

In the above example, it is important to note that Alice did not need to know Bob'’s secret
exponent a to encrypt, and that Bob did not need to know any of the random r; generated by
Alice to decipher. Oscar, with only knowledge of Bob’s public file and the ciphertext ordered
pairs, is not at any particular advantage here, as the ; and a are unknown to him. This
provides a measurable amount of security against Oscar as long as it is difficult to determine
a and/or the k;, i.e. as long as the discrete logarithm problem in Z; is computationally
infeasible.

1.6 Attacking the ElGamal Cryptosystem

We see from the definition and example of the ElGamal cryptosystem that its security can
be compromised if Oscar can determine Bob’s key (the secret exponent 2 < a < p— 2) from
the given generator o and the field element 3, or recover the plaintext (find the k;) from the
ciphertext. Perhaps the simplest way to approach this would be to just try each possible
exponent. There are only a finite number of them, so as long as time is not a consideration,
this method is guaranteed to work. In other words, this method, which we will dub ‘brute
force,’ is deterministic.

It is recommended that (as of 1995 in [55]}, for using the ElGamal cryptosystem, our prime
p be at least 150 decimal digits in length. Thus if one had computing resources that could
perform around a billion (10°) operations per second, it would take around 10**! seconds to
find ¢ on average, which translates to about 3 x 103 years. Not exactly realistic. Even if
one had a million such machines, each of which searched different ranges of 2 to p — 2 for
the exponent, it would still take on the order of 10'?7 years to find the correct a. Hence the
search begins for faster and more efficient algorithms than brute force, which requires O(p)
time to determine a single discrete logarithm in Z;.

2 Algorithms for the Discrete Logarithm Problem

2.1 Different Approaches

Obviously we cannot feasibly attack the discrete logarithm problem by brute force in large
groups. Hence we must use a little mathematical finesse to have any chance of finding
logarithms in large fields in our lifetime. Many different types of algorithms to attack the
discrete logarithm problem have been formulated over the last few years, all of which fall
into three classes:

e Algorithms which work for arbitrary groups, regardless of structure.

11

e Algorithms for finite groups in which the order of the group has no significantly large
prime factors.

¢ The index calculus methods.

We will look at an example of each of the first two types, and then study the index calculus
methods in detail, as they are the most powerful algorithms at present.

2.2 Shanks’ Algorithm

This algorithm, due to Shanks [53], gives a basic improvement on the brute force method of
computing logarithms via a time-memory tradeoff. Let G be a finite cyclic group with order
(cardinality) n, and let « be a generator for G. Then for every 3 € G, we have that log, 8 is
an element of Z,, and thus can be written in the form mj+i mod n, where m = [\/n] and
0<i<m-—1and 0 <j<m~—1. Thus to find log, 3, we start by computing a separate
list L; where

Ly = {(j,a™):0<j<m}.

Then for any given 8 € G, we would compute a single (i, 3a™) and then scan the list L,
(using a binary search) for a matching second entry. If we do not find one, then we would
go on to the next 7 and do the same. When we do find one, we can then solve for log, 8. If
(4,7) € L, and we find a pair (i,y) we have

amj =y= ﬁa—i
or
o™it = 3. (2.1)

This simple routine can be implemented in O(+/nlogn) time and O(y/n) memory [34], giving
a significant gain over the brute force run time of O(n). In Table 1 we present Shanks’
algorithm for use in the field Z,:

Table 1: Shanks’ algorithm for discrete logarithms in Z,

1 Letm=[yp—1]

2 Compute ™ mod p,0<j<m—1

3 Sort the m ordered pairs {j,a™ mod p) with respect to their second
coordinates, obtaining a list L,

4 Seti=0

5 While Ba~i # o™ mod p for some j,0<j<m—1

6 i=1+1

7 Define log,8 = mj +1 mod (p —1).

12

We see how the algorithm functions in the following (small) example.

EXAMPLE 2.1: Let p = 541, and let 3 = 370. Now « = 2 is a generator for Z,, so our goal
is to find z = log, . Thus m = [v/540] = 24 and we have

a™ = a®** =265 mod 541.

We now compute the ordered pairs (j,a™) = (5,265 mod p) for 0 < j < 23. We get the
following list:

Table 2: Ordered pairs for the example
(J,a™) (j,a™)
(0,1} (12,241)
(13,27) (1,265)
(6,115) (3,307)
(14,122) | (23,309)
(18,124) | (10,312)
(17,125) | (8,368)
(9,140) | (19,400)
(16,174) | (15,411)
(7,179) (2,436)
(21,198) | (11,448)
(4,205) | (20,505)
(5,225) | (22,534)

We begin computing the pairs (¢, 3a™*) for each ¢ until we find a second coordinate that
matches a second coordinate of the first list. Eventually we arrive at the ordered pair
(12,115), and 115 is also the second coordinate of the list pair when j = 6. Thus we set

log,=mj+i=23-6+12 modp—1=156.

A quick check determines that indeed 2% = 370 mod 541. A

Shanks’ algorithm can be easily implemented, given p, o, and 3 using the number theoretical
computation package GP/Pari with the following code (due to Locke [22]):

m=ceil (sqrt(p-1));

z=matrix(m,3,j,k,0);
for(j=1,m,z[j,1)=j-1;z[j,2]=mod(alpha”(m*(j-1)),p);\
z[j,3]=beta*mod(alpha”(1-j),p));\
for(j=1,m,for(k=1,m,if(zlk,3]1==2[j,2],j1=j-1;k1=k-1,)));\
x=1lift(mod (m*(j1)+(k1) ,p-1)};

13

The output z is the logarithm of 3 in base @. Note that this code does not do the sorting
recommended by the algorithm, instead it just runs through the lists and compares each
element. This could be optimized easily, our purposes do not require it, as we will not
compute any logarithms in a large group using this code.

Shanks’ algorithm is generally studied only for theoretical purposes as it too is not practical
for very large fields. There is a similar algorithm that was developed by Pollard [48] that
actually has the same running time with no storage requirements. A discussion of this
algorithm can be found in [34].

2.3 ‘The Silver-Pohlig-Hellman Algorithm

We now move to finding discrete logarithms in groups that have smooth orders.

Definition: A smooth integer is an integer that has only small prime factors. We say that
an integer is m-smooth if all of its prime factors are less than or equal to m. Il

When G has a smooth order, it may be easier to compute the logarithm of an element modulo
the prime power factors of the order, and then use the Chinese Remainder Theorem to
compute the logarithm modulo the order (see [44] for a discussion of the Chinese Remainder
Theorem). This is the approach in the algorithm developed by Pohlig and Hellman [47] and
independently by R. Silver.

We begin the description of the algorithm for the multiplicative group of the field Z, (the
algorithm is applicable to any group, we use Z, for clarity), with generator a and field
element a* = §. Suppose

k
[1# (22

is the distinct prime factorization of p — 1, and let one of the prime factors and its exponent
be denoted by p®. We wish to find an integer z such that

z=a mod p°. (2.3)
We can write z in a base p representation, i.e.,

e—1
= b, where 0<b;<p-1, j=1,...,e—~1 (2.4)
3=0

Now we can write a = x + p°®t for some integer ¢, hence we have
5(19—1)/9 = gP-Dz/etlp-1)p"1t

P~V E5zo bt
= alP~/e mod p. (2.5)

i

14

We compute by by calculating %1/ and vy = a®~1/p_ Then we compute +* fori =0, 1,...
until we find v* = S®~1/7 and then by = i. To do this, we can use Shanks’ algorithm. Next,
provided e > 2, we can find b, as follows: let h = ™! = of, and set 5 = Bht. We note
that

LN e DI =L T

= 4" mod p. (2.6)
Thus we search through the powers of « until we find the value of ;. Continuing on in this
fashion we can find each &;, 1 =0,1,...,e — 1, finally giving us the base p representation of

z. We now present, this algorithm in a shortened manner.

Table 3: The Silver-Pohlig-Hellman algorithm for Z,,

1 Compute v = a® 1/# mod p

2 Setj=0and ;=0

3 While j <e—1do

4 Compute 6 = [3,-("_1)/ ' nod p

5 Find 0 < j < p such that § =/ (by Shanks’ algorithm}
6 by =]

7 Biv1 = B¢ mod p

8 i=1+1

As stated earlier, the method described only computes log, 5 mod p{*. Then the Chinese
Remainder Theorem can be applied to find the correct exponent a.

EXAMPLE 2.2: Let p = 1009, and let 3 = 891. We have that @ = 11 is primitive, and we
see that p — 1 = 1008 = 2%327. So, proceeding with the first step of the SPH algorithm, if
x = log, 3, then we wish to find z mod 24 (let p* = 2*). We begin by computing v, = 1
and

M= 117" mod p = 1008.

Then we compute § = 891'%" mod p = 1008, and thus we see that ag = 1 (as y; = 1008).
We increment our index, compute 8, = 891- 117! mod p = 81 and now compute & again.

‘We now have
10

d=81"4 modp=1.

Thus a; = 0, and now B, = 3, - (@™®)? = 3, =81. Qurnew § is § = 815 mod p=1, so

again we have a; = 0. Then 53 = 81,804 = 81'% mod p = 1008, thus a3 = 1. Thus we
now have

3
x=2m2i=1+1-2359 mod 16. (2.7)
i=0

15

Now we switch mocllg)ss_zand compute z mod 32. We compute v = 1, 71 = 115" = 374

mod p, and 2 = 1173 =634 mod p. Now we have

§ =891'%" =374 mod P

1008

soay=1. Then 8 =891-11"% = 81 mod p, and then we have
5=81"% =374 mod p
and we have a, = 1 as well. Thus

1
:1:=Za,-3"=1+1~3154 mod 9. (2.8)
i=0

Moving to the final prime factor of p — 1, we wish to find z mod 7. We know 7, = 1, and
we must compute 6 different +;, they are

1008-1

v = 1177 =935 modp
1008-3
vy = 1177 =105 modp

Y2 117" =431 mod P

Y3 1177 =394 modp
1008-4

s 11 =302 mod p

Yo = 11°7° =859 mod .

We only have one § to compute, and it is § = 891°7" = 394 mod p, 50 ag = 3. Thus we
have

0
T = Zcz,-T* =3 meod 7. (2.9)
i=0

Now, using the Chinese Remainder Theorem, we wish to find a unique solution to the
congruences (2.7), {2.8), and (2.9) modulo p — 1. Computing this, we have

=409 mod 1008. (2.10)

A check shows us that 11%%? = 891 mod 1009. A

These calculations seem very cumbersome when carried out by hand, but actually can be
computed rather quickly if p — 1 has only small factors. As with Shanks’ algorithm, we can
implement the Silver-Pohlig-Hellman algorithm using GP/Pari, with following code taken
from [22] (Lemmond).

16

pohlig(p,al,b)=y=p-1;\
v=factor(y);\
w=v;\
for(j=1,omega(y),\
c=v[j,2];\
g=v[j,1];\
z=b;\
k=0;\
x=0;\
while(k-c,gam=1;\
el=(p-1)/q" (k+1);\
del=mod (1ift(z),p)~(el);\
m=0;\
while(gam-del,gam=mod (lift (gam),p)*\
mod (1ift(al),p)~((p-1)/q) ;m=m+1) ;\
x=x+m*q~k;\

ql=-m*q~k;\
z=mod(1ift(z),p)*mod(1ift(al),p)~(q1);\
k=k+1) ;\
Print("a congruent to ",x," mod ",q"c);\
wlj,1]=x;\

wlj,21=q"c);\
ans=mod (w[1,1],w[1,21);\
for(1l=1,omega(y),\
ans=chinese (ans,mod(w[1,1],w[1,21)));\
Print(ans);\
Print("The log of ",lift(b)," to the base ",al,\
" g ",lift(ans)," in GF(",p,")");

An in-depth analysis of the Silver-Pohlig-Hellman algorithm can be found in [55] and [42].
This algorithm has a running time of

k
0 (Z € (log(p -1) +p,y2 logp,-)) (2.11)
i=1

which we can see depends on the size of the largest prime factor of p — 1.

2.4 Other Algorithms

There are other algorithms that can be classified in one of the first and second types listed at
the beginning of this section, including those that attempt to perform a bit-wise computation
- of a discrete logarithm [45]. We will not go into those here, the reader should consult [55],
[42], or [34].

17

3 The Basic Index Calculus Method

3.1 Introduction

We now begin our discussion of the strongest family of algorithms for finding discrete log-
arithms in a cyclic group. The ideas behind the index calculus method, originally thought
to be due to Western and Miller [57], actually can be attributed to Kraitchik [28], [29] and
Cunningham (see [56]). The ideas were implemented into algorithms for the discrete loga-
rithm problem independently by Adleman [1], Merkle [37], and Pollard [48]. The theme is
this: if we can find the discrete logarithms of some small and independent elements, then
we should be able to determine logarithms of almost any element in the group, as most
elements we can express in terms of the small independent elements whose logs are known.
A reader familiar with linear algebra and vector spaces might begin to relate these small,
independent elements as a sort of basis for such a space or subspace, and essentially it is the
same sort of idea. However, we do not intend to consider these elements as a basis, and we
will not be working in the vector space setting nor have any notion of dimension. But we
will say that we intend to be able to express the logarithm of a group element as a linear
combination of the logarithms of the elements in our factor base, which will consist of the
small, independent elements we spoke of earlier.

The index calculus method, in any form, has three basic stages:

1. Generation of smooth relations involving the elements in the factor base.

2. Solving the corresponding linear system of equations to find the logarithms of the factor
base.

3. Using the logarithms of the factor base to determine the discrete logarithm of any
given group element.

It is important to point out one thing here: the first two stages of the index calculus method
do not in any way depend on the element whose logarithm we are trying to find. In the
setting where the field is F, with generator o, if we are trying to find log, 0 for § € F;, we
are not concerned what 3 is until we get to the third stage. For this reason, the first two
stages are often referred to as precomputation stages, as they can be done at any time as
soon as the field in question is known (recall that the generator we use is not so important).

We now begin the description of the basic form of the index calculus method. For our group
G with generator «, we choose a small number of ‘prime’ elements to place in our factor base
B along with &«. When we say prime, we essentially mean that the element does not factor
into a product of elements ‘smaller’ than itself, for instance, if our group is a prime field (a
field with a prime number of elements, like Z,), then we would include elements in our factor
base that are small integer primes. The number of elements chosen for B is minute compared
to the size of the group itself, for if |B| were large, the computation of the logarithms of the

18

factor base would be difficult. Then we try to find powers of the generator a that factor
completely amongst the elements in B. If we are successful, then we have a smooth relation,
i.e., a congruence in the group that relates (linearly) logarithms of the elements of the factor
base. Once we have obtained sufficiently many relations {enough to ensure that we will be
able to solve for the logarithms of the elements in B) we move on to Stage 2. In this stage
we set up the corresponding linear system of equations and solve for the logs of the factor
base. Note that we have to solve this system modulo ¢ — 1, which itself may be composite.
If so, it may be necessary to factor ¢ — 1 and solve the linear system modulo the factors of
g ~ 1 and then employ the Chinese Remainder Theorem to obtain the final solution. Once
the solution is obtained, we move to stage three, and attempt to find the logarithm of a
field element. We multiply the field element by a random power of the generator in hopes
that this product will factor over the factor base. H it does, we take the logarithm of the
congruence and solve the linear equation for log, 3. If not, we discard the product and try
again until we do succeed. To make the method a little clearer, in Table 4 we present the
outline of the index calculus method.

Table 4: The index calculus method for finding log, = a
Stage 1: Finding logarithms of the factor base

a. Create the factor base B = {p1,p2,... , Pm}

b. Compute the relations o = p;”ps” - + < por”

for1 <j<t

Stage 2: Solving for the logarithms of the factor base

a. Set z; = ayjlog, p1 + ay;log, p2 + ... + amj log, P

b. Solve the linear system

a1 021 " Gl log,, p1 I
Q12 Qz - Qm2 log,, p2 | T
ap Qg - Oy loga Pm Iy

to obtain the logarithms of the factor base
Stage 3: Compute log, 8 = a
a. Choose a random s, 1 < g < ¢ — 2, and compute v = Sa®
b. Then if y = pJ'p3? - - - pim
We have log, S =c1log,p1 +c2log,pa+ ...+ cnlog, pm — s

One important note is that, in practice, we will only store the nonzero entries of the linear
system to be solved in Stage 2. We will discuss this in more detail later when we talk about
techniques for solving linear systems over finite fields. The number of smooth relations is
often chosen to be 2m (twice the cardinality of the factor base). Usually this will guarantee
us m linearly independent relations. Now as long as we have m independent relations, we
should obtain a unique solution modulo ¢ — 1. Again we iterate that we need not know 3
until the third stage.

19

3.2 The Basic Index Calculus Method in Prime Fields

We now present an example that will display the ease and efficiency of the index calculus
method in prime fields. It is particularly effective in these fields, as determining whether
or not an integer is smooth is easy in many cases (the well-known difficulties in integer
factorization are usually only found in integers with an extremely large number of digits
that one is trying to factor completely).

EXAMPLE 3.1: Let ¢ = 14087, and let = 5. We wish to find logg 5872, (i.e. § = 5872). We
begin by choosing our factor base B = {2, 3,5,7, 11,13}, and we begin to search for smooth
relations. After some ‘lucky’ choices for exponents, we have the following relations:

5% = 6776 = 2%.7.11°> mod g
5171 = 9152 = 26.11.13 mod ¢
518 = 2457 = 33.7-13 mod ¢
542 = 567 = 3*.7 modg

548 = 13608 = 2%-3°.7 modg

so Stage 1 is complete. Taking the logarithm in base 5 of both sides and letting Ly =
logs 2, Ly = logs 3, etc., we have the following system of equations modulo-14086:

3L2 + L7 + 2L1]_ = 346
6Lo+Lin+Lis = 171
3Lz + L+ Ly = 153
4L;+ L, = 442

3Ly +5L3+ Ly = 458

Letting A be the coefficient matrix and b the right-hand side vector we now must solve the
matrix equation AL =b or

30120 L, 346
6 0011 Ly 171
03101 Ly | = 153 mod 14086.
04100 Ly 442
35100 Ly 458

However, since the ring Z408 = Z2 X Zr7a contains zero divisors, we run into a difficult
problem when performing Gaussian elimination on the augmented matrix. In fact, the
element 2 has no inverse modulo 14086. Thus, we solve the linear system AL = b twice,

20

first modulo 2, then modulo 7043. We get the solutions

[0] [3028
0 5018
L=1]0 mod 2 and L= 1499 mod 7043.
0 5446
| 1| | 4729 |

Then applying the Chinese Remainder Theorem yields the logarithms

L, = 3028
L3 = 5018
L7 = 8542
L11 = 5446
L3 = 4729

which completes Stage 2.

Stage three begins with choosing some random exponents s, calculating Sa®, i.e. 5872 . 5°
mod q, and factoring the result. After a few tries, we find that

5872 5'° = 1404 = 2. 3. 13 mod 14087
and thus taking the log; of the equivalence gives

log; 5872 = 2L,43Ls+ L3 —145
= 2(3028) + 3(5018) + 4729 — 145 = 11608 mod 14086

A quick check determines that indeed 5'16% = 5872 mod 14087. A

The above example seems to require an excessive number of computations in comparison
to the size of the field. This is not true of the index calculus method in general, and a
small example like the one above does not adequately illustrate the improvement that index
calculus brings. As we move into much larger fields, the computations needed for index
calculus pale in comparison to those required by Shanks’ algorithm and the Silver-Pohlig-
Hellman algorithm. McCurley [34] describes how the running time of the index calculus
algorithm is found. Define the function

L{q) = exp(+/log gloglog g) (3.1)

for a prime ¢q. Pomerance [49] shows that the running time for stages one and two of the
index calculus method in F, is given by

L(q)2+o(x) (3.2)

21

and the third stage complexity is L(q)s/ 2+e(1) There are variants of the basic index calculus
method due to Pomerance [49] as well as Coppersmith, Odlyzko, and Schroeppel [13], the
latter including a method that uses an isomorphism between F, and the ring of Gaussian
integers modulo a maximal ideal. One can consult [51] or [42] for resources on these and
other types of algorithms not discussed in detail here.

3.3 The Basic Index Calculus Method in Nonprime Finite Fields

Although we have previously discussed a few different algorithms for finding discrete loga-
rithms in a finite field, we now digress a little and cover some more involved fundamentals
of finite field theory. The seminal reference of Lidl and Niederreiter {32] is recommended
for the reader who wishes to see more background than we present here, and [36] provides
elaboration and many applications of finite fields.

3.3.1 Fields of order p*, p prime, n > 1

It is well known that for every prime number p and every positive integer n, there exists
a unique field of p" elements [32]. In fact, the elements of the field are the roots of the
polynomial 7" — z in the algebraic closure of Fj.

Now Fpn & F,[z]/(f(x)), where Fy[z] is the ring of polynomials with coefficients in K, and
(f(x)) is the ideal generated by the irreducible polynomial f(z) (irreducible in Fy[z]). Let
w € Fpn be a root of f(z) (i.e.,, w=z mod f(x)). Then all elements of Fyn are of the form
n—1

Z a;w', where a; € F,. We can represent these elements as polynomials of degree less than
=0

n with coefficients in F,. We now illustrate the elements of a nonprime finite field with the
following example.

EXAMPLE 3.2: Consider the field Fg = F32 where Fy = F3[x]/(f(z)) and f(z) = 2% + 2z +2.
Then all of the elements of this field are represented by polynomials of degrees less than 2
with coefficients in F3. Let w be the residue class corresponding to z mod f(z). Then these
elements are 0, 1, 2, w, 2w, w+1, 2w+ 1, w + 2, and 2w + 2.

Using the fact that w? = w + 1, we can find any product of elements in this field. For
example, we have that

Qw+Dw+2)=2"+2w+2=2w+ 1) +2w+2=w+1.
Other products and inverses can be found similarly. A

For the remainder of this paper, we will consider elements of nonprime finite fields as polyno-
mials in Fy [z] of degree less than n. Doing so allows for easy representation and manipulation

22

of these elements.

There are other ways to represent a finite field. One way is to find an algebraic number
field K of degree n over @@ such that p remains a prime in the ring O of integers in K.
Then O/(p) = Fyn. Also, there have been algorithms to find discrete logarithms designed
specifically for use in alternate field representations ([3] and [33]). We will not discuss those
here, as they are generally more difficult to understand and analyze.

3.3.2 Computational notes

Up to this point in this paper, any of the computations involved in computing discrete log-
arithms could be done by using a computation package that included routines for modular
arithmetic, such as GP/Pari or Maple. As we move into computations involving polynomials
over finite fields, a more efficient method of computation may be necessary, as well as more
predefined routines related to polynomials over finite fields. For this we will employ a C++
class library by the name of NTL (Number Theory Library). This package was developed
especially for computations involving finite fields, polynomials, and arbitrary length inte-
gers. It includes various routines and structures such as polynomial factorization routines,
polynomial modular arithmetic, and more. NTL is developed by Victor Shoup, and can be
found at the internet address http://www.cs.wisc.edu/ shoup/ntl/.

Also it is important to point out that the main focus of our study of the index calculus method
will be in fields of order 2". These fields are commonly used in practice, for their ease of
computer representation and arithmetic. For example, an element of F;» can be represented
as a binary string of length n, as the element is actually a polynomial with coeflicients in F;
of degree less than n. NTL has a special class structure for these polynomials by the name
of BB. The appendix contains many of the routines used in computations relevant to our
work. Another class that was used quite often is the class ZZ, and variables of this type are
arbitrary-length integers. This is quite useful when an integer you are trying to represent
has more binary digits than the length of your particular computer’s word size.

Throughout the rest of this paper we will present many computational results, and some of
these results will have an actual computation time associated with it. 'The times are presented
merely for comparison purposes, for more reasons than one. First, the computations were
done on a variety of machines, including Sun SparcStation 5s, Sun Ultras, and even an IBM
PC running Linux. Also, the resources available were adequate at best when compared to the
high-performance computing power available today to those who wish (and have the means)
to have it. We should also point out that we do not claim to present the most efficient code
possible for these routines, it is almost certain that their performance could be improved in
some way.

23

3.3.3 Primitive elements in Fy»

Just as in the case where the cardinality of a finite field is prime, using the representation
described in the previous section we would like to determine conditions on an element in Fyn
being primitive. In particular, for use in the index calculus method for discrete logarithms,
we wish to find out when the field element z is primitive. We have that z generates the
field if and only if the monic irreducible polynomial f(z} is a primitive polynomial. In the
example field in the section 5.1, it turns out that f(z) = z® + 2z + 2 € F3[z] is primitive,
and thus z is a generator for the group of nonzero elements of the field.

In each field we work in, we want to be able to determine whether or not an irreducible
polynomial is primitive. If it is, and z is a generator for the field, then the order ¢ of z is
t = p" — 1. A theorem of Lagrange gives way to the fact that any element of a finite group
has order that divides the order of the group. When we are working in a finite field of order
p™, the nonzero elements of the field form a cyclic group of order p" — 1. So if the order of
z is p* — 1, then z* # 1 for any ¢t < p” — 1. Thus we test primitivity of f(z) by raising z
to a distinct prime factor of p" — 1, reduce it modulo f, and then check to see if it is 1. If
it is not for all primes dividing p™ — 1, then f(z) is primitive. In Appendix A we present
a routine (called primpoly.c) for computing the ‘smallest’ primitive polynomial for fields
of order 2". Into this subroutine, we must input the exponent of 2 as well as the distinct
prime factors of 2" -1 in each implementation. This factorization is not always easy to come
by. However, we have access to many precomputed factorizations of the form 2™ — 1 for n
odd, 2" + 1 for n odd, and other forms involving even exponents that are not divisible by 4.
We only need those such factorizations, for if we wish to factor 2® — 1 for even n, then we
factor this as 22 — 1 = (2% — 1)(2* + 1). These tables can be found at the internet address
ftp://wuw.cs.purdue.edu/pub/ssw/.

We should clarify what we mean by ‘smallest.” Consider the coefficient vector of the poly-
nomial as the binary representation of an integer. To illustrate, we see that 28 + 23+ 2% + =z
corresponds to 1001110, = 78. We will use this correspondence between polynomials and
integers often in work to come, especially when we deal with output and vectors of polyno-
mials. The ‘smallest’ primitive polynomial of degree n is the polynomial with the smallest
coefficient vector (when viewed as an integer) such that the polynomial is primitive. Table
5 presents a brief list of the smallest polynomials fi(z) € Fy[z] such that f(z) =z + fi(x)
is primitive, along with the computation time needed to find f(z). It has been argued (but
not yet proven) that, for any degree n, there exists a primitive polynomial f(z) = " + f(z)
where the degree of f) is smaller than logn + ¢ for some constant ¢. Now using the smallest
possible primitive polynomial to define the field will result in faster finite field arithmetic,
especially exponentiation and multiplication. Thus it is to our advantage to use the smallest
primitive polynomial in our computations. We are at liberty to use this particular primitive,
as it does not matter much which polynomial defines our field. For example, suppose we can
compute discrete logarithms in a field we define by the smallest primitive polynomial. Then
if the finite field being used in a cryptosystem we wish to attack is defined by a different
polynomial, we can construct an isomorphism between our field and the field being used,

24

Table 5: Primitive polynomials in F,[z] of selected degrees

| Degree | fi(z) | Time (sec.) |
10]2°+1 0.002621
15| z+1 0.001669
20 [z +1 0.003324
25 [28 +1 0.002874
30 z+1 0.002507
35|z +1 0.001128
0 | z°+ 28+ 2% +1 0.006378
a5 lt+ 22+ 41 0.003739
50 | ¥+ 25+ 22+ 1 0.003908
60 [z+1 0.001539
0|25 +285+z+1 0.00799
80|z +z°+° 4+ +z+1 | 0.027109
90 |+ +22 41 0.009555
100 [+ 22 +2° + 1 0.018834
120 [2* + 2+ 2+ 1 0.013652
140 |2+ z* +z + 1 0.020329
160 [2°+2° +z° +1 0.02042
180 | 2° + 1 0.01039
200 | z® +2° + 2% +1 0.022712
225 l e+ 28 +2° +2° + 2% + 1 | 0.122697
250 28+ 25+ 23+ 22+ x+ 1 | 0.040233
300 [z°+ 1 0.037401
350 [z + 2% + 22 +1 0.075309
400 [2° + 23 + 22 +1 0.069271
500 | 2 + 2+ 2 + 22+ + 1 | 0.93002
600 |z' +2°+2°+ 24+ 2%+ 1| 1.13752

which will allow us to compute discrete logarithms in that field as well [42].

3.4 Factoring Polynomials over F,[z]

As we see from example 4.1, the most time-consuming portions of the index calculus method
are a) generating smooth relations and b) solving the system of congruences. We will speak
later on the solution of linear systems over finite fields, at present we focus on Stage 1, the
acquisition of smooth relations. In the case of a nonprime finite field, our smooth relations
are polynomial equivalences, and we must factor these polynomials in order to proceed on
to Stage 2. Thus we must be able to factor polynomials over a finite field efficiently.

There are {at present) many well-known algorithms for polynomial factorization over a fi-

25

nite field, the most famous of which is due to Berlekamp [6]. Other algorithms have been
discovered by Niederreiter {39], [40], Cantor and Zassenhaus [9], von zur Gathen and Shoup
[19], Kaltofen and Shoup, and others. New ones are constantly being developed, [24] and
[25] are survey sources for polynomial factorization. Many of these algorithms involve a
‘linearization’ idea, as we attempt to express the polynomial to be factored in terms of
smaller irreducibles via the Chinese Remainder Theorem for Polynomials. [32] provides a
good explanation of how Berlekamp’s algorithm and others use this approach to factoring.

The computation package NTL provides the routine CanZass, based on the Cantor and
Zassenhaus approach, for factoring polynomials in F;[z]. Table 6 gives factorization time
statistics for polynomials in F;[z]. For each degree, we select 1000 random (pseudorandom,
as they are generated by the computer) and record the time necessary for CanZass to factor
each one. This routine performs well for polynomials of relatively low degrees, but as n tends

Table 6: CanZass factorization times
Degree [factorization time (sec)

Mean Min Max
100 003 .0024 0224
200 .092 .0058 .0289
300 0214 012 .0363
400 .0425 .0218 071
500 .0701 0327 .1181
600 1146 0534 .2086
700 1761 0736 3087
800 3421 1347 .7629
900 371 .1536 .6857
1000 4899 1616 .8081
1500 1.604 5878 7.3323
2000 2.9162 | 1.2151 | 4.8602
2500 58771 | 2.3788 | 11.0257
3000 9.459 3.8595 | 20.5516
4000 17.5136 | 6.7097 | 28.5565
5000 34.7737 | 65.3569 | 13.6171

to infinity, the mean computation time increases rapidly. Thus, it would be computationally
infeasible (at present) to factor a large number of polynomials of fairly large degree, say
n > 10000 with this routine. However, other algorithms may be able to do such factorizations
in reasonable time.

3.5 Implementation of Basic Index Calculus in Fs»

We are now ready to apply the index calculus method to a field of cardinality 2". We must
first determine our factor base B. It is recommended that B should consist of all irreducible

26

polynomials in IF';_) [x] of degree up to some specified namber B. It is known [35] that the
formula

I = %Zu(d)rf" 4 (3.3)

dln

gives the number of irreducible polynomials in F,[z] of degree n. Here u(d) is the Mdebius
p-function. Thus, for a selected degree B, we have that our factor base size will be

LEDVES I OIS (3.4

J<B J<B* d|j

Upon examination of this quantity for selected B, we see that the base size grows rapidly as
n gets larger (see Table 7).

For even larger B, we can estimate the quantity (3.4) by

=L
as the dominant term in (3.4) occurs when d = 1. Thus we can estimate {B| by
g
DY 5 (3.6)

j<B

This leads us to an important question: How should we choose B to minimize the overall
running time of the index calculus algorithm? On one hand, a smaller B will require less
computation time for Stage 2 (as the linear system will have |B| columns and usually around
2|B| rows) but it may be more difficult to find B-smooth relations. On the other hand, a
larger B will make stage one much quicker (as smooth relations will be easier to come by),
but the corresponding linear system becomes more difficult to solve. A first impression tells
us to make B smaller, as it seems that solving a larger linear system will be more time and
space requiring than finding relations that are one degree smoother, as one more element in
|B| means one extra column, which will require two more rows, thus adding a total of around
4|B| entries. This is discussed in detail in [42], and for the basic index calculus method it is
recommended that we choose B to be

B ~ c¢(nlogn)'/? (3.7)

where ¢ = (4log2)™1/2. The best way to illustrate how the method works is by examining a
(large but small) example.

27

Table 7: Factor base size for selected B
B | |B| B | |B

3 |5 31 | 143522117

4 |8 32 | 277737797

5 |14 33 | 538038783

6 |23 34 | 1043325198

7 141 35 | 2025032004

8 |71 36 | 3933898964

9 | 127 37 | 7648465274

10 | 226 38 | 14882080607

11 | 412 30 | 28978383317

12 | 747 40 | 56466147791

13 | 1377 41 | 110100861341

14 | 2538 42 | 214816204142

15 | 4720 43 | 419376506984

16 | 8800 44 | 819198821759

17 | 16510 45 | 1601073756327

18 | 31042 46 | 3130828882176

19 | 58636 47 | 6125243528034

20| 111013 48 1 11989305191954
21 | 210871 49 | 23478079751570
22 | 401428 50 | 45996077217314
23 | 766150 51 | 90149014737984
24 | 1465020 || 52 | 176756698589169
25 | 2807196 | 53 | 346703854338999
26 | 5387991 || 54 | 680303824246455
27 | 10358999 || 55 | 1335372860954853
28 | 19945394 || 56 | 2622115606838643
29 | 38458184 i 57 | 5150452239739197
30 | 74248451 || 58 | 10119941474477832

EXAMPLE 3.3: Let ¢ = 2!7, and let Fyir = F;[z]/(f{z)) where f(z) is the primitive polyno-
mial 2! + 23 + 1 in Iy [z] (generated by primpoly.c). We see that ¢ — 1 = 131071 is prime
and we let ¢ be our chosen generator for the field. Our goal is to find log, 8 where
B=x%+ 28 +a® + M+ 20+ 2% + 25 + 2t + 2 (3.8)
We begin by choosing our factor base to be all irreducible polynomials in F; [z] of degree less
than 5, so we have |B| = 14 and
B = {r,z+1,2°4+z+1,2%+z+ 1,2 +22 + L,z +z+ 1,20 + 23 + 1,
2+ e+, 428+ 1,28+ 2+ LS 2t a0,
ettt L, bt bt e+ Lt et R 1) (3.9)

28

For Stage 1, we are interested in determining the logarithms in base z of the elements in B.
Let Ly, Ly, ..., Liz be the logarithms in base z of the elements in the factor base (in the
above order}. Note that L; = log, z = 1, so we need only find the other 13 logarithms. We
begin generating smooth relations by raising x to random powers 0 < r < 131070. After
doing so and checking for smoothness (actually 0.340847 seconds computation time), we
arrive at the following 35 5-smooth relations:

£88750 ()P + et + 23+ 22+ D +1)7 mod f(z)
(2 4+t + 2%+ 22 + 24 1)z +1)2z? mod f(x)

z(z® + z* + 1)z + 1)* mod f(z)

(gt +z+DY2? + 2+ 1)%2* mod fz)

M = @l e+ DEP 4R+)R+t 2 e+ 12 mod f(z)
2358 = e 2 L) + 2 + 1)zt mod f(x)
9862 = (4 p 4 12?28 + 22 +1)° mod f(z)

355833 = P4+ 1)E +2+1)2 med f(z)

2 = @ o'+l D 2t 42?2+ D22 mod f(x)
z121864 = (zﬂ +z+ 1)(15 + $3 + 1)_,:3 mod f(.'l:)

270908 = (B2t +z+)t + 2P +2f + o+ 1)z med f(z)
217 = (DB +z+D)e¥z+ 1D (=2 +2+1)% med f(z)

214 = (@ rz+ 1) e+ D22 + 22+ D2 med f(z)

2127028 = gt et el b+ NP+ 2 e+ D+ 12 (@2 + 2+ 1) mod f(z)

3330 = 2l et 2 e+)i+ 1) mod flx)

3 = gtz D+ e+ D2+ 1) mod f(z)

BB = gzt 1z Fr+)P+ ¥ 2+ 1) + 27+ 1) mod f(2)
#3870 = (22 x4+ 1)t + 22+ 1)z +1)°2% med f(z)

2758 = ¥4+ 1)2+1)° mod flx)

4462 = P i NP+ B+)EP P b2+)2 +1)2 mod flz)
2 = @+t Fr+)+t e+)P +2+1)7 mod f(z)
273 = E+D)ET e+ DEE 2) s+)+ 22 428 +1) mod f(z)

189 = (3?2 NP4zt b4z 12 2 +1)° mod f(z)

2107594 = oSt +e+1)2'% mod f(z)

299817 = (b 4 2?4 1) (27 + 2 4+ 1) mod f(z)
294781 = e+t ¥z + D' 2 4+1)? med flx)
10885 = (g 1) (2? + 2+ 1)% mod f(z)
g1%006 = (2 i)zt 42+ Frz+ 1zt +23 +1)2 mod f(z)
170 = g p e+)2 + 2 + Dzt + 2+ 1) mod f(z)
291 = g+ + 1) e+ 1)z +2+1)* mod f(z)
B8 = (L 4+1) (et +2° +1)2® mod f(x)
2T = it B2)EP x4+ 102(z 4+ 1) mod f(z)
27808 = (3l L Dt at 42 2P (1) mod f(z)
2209 = e e+ 1)@+ 2+ D2 (et + 2+ 2t + 2 +1)?7 mod f(z)
22840 = a4+ 13 (e +2+1)* mod f(z)
TET05

Moving on to Stage 2, we now wish to take the logarithm in base x of each relation. For

29

example when we take log, of the first relation, we get the congruence

69750log, = = Tlog (z + 1) + log, (z* + 2° + 1) + log,(z° + 2® + z* +2+1) mod g — 1.
(3.10)

Then, using the correspondence we mentioned earlier and the fact that log, z = 1, we now
have

TLy + L7+ L4 = 69750 mod 131071. (3.11)

Doing this for each of the 35 relations we can set up the corresponding linear system AL =b
mod 131071. Taking a look at the augmented coefficient matrix we have

69750
4602
73416
38577
36860
35533
729
121861
70503
17764
1251
127025
33528
37869
87317
43703
73530
114461 mod 131071
12391
73399
118239
107584
58816
64780
130653
130045
81704
19102
43200
79146
73868
29091
121839
75704
8865

[A}b] =

WO RHFCSCOOAOMAMRMWKOWRENODRHEMNONDODNOEREOOOOO MO
OO MHEHQOOHEFOOOOOHOOODCOODCOMNO-HDODOOHOOO
HOoOOOCOFOFOMRNOODOHFEFOQQLOODDOHFOHoDOoODORFROoOOOO
D CCOCOHKOHFNODOOODODOOOOHOOOoOODODOoOOORODODO QO -
CCOoO0OCOoOOOOOooOoO =00 oUROLOLOLOLSLLOOOOC
OCOoCROCOLLOLOLOHFOLOOOOLOHNOHMOILODOLLDODOQOQE@
oL LOOOLOFRFHFOFEFOLQOLDOCOOLORLOHODODOOOO
[B e e e B e e I e e e Y e B e e B Y e i = = = N o o ol B leNe NN - E-
[=JR = — I i — = Y~ = — —I— — — — — J — -0 N -~

QR WFER AMAOOOOOCOO OO MOMNAHDNDAENNNODOCOOOON-]
COCOCNODHOOCOOOODOORF OO0 0OHOORRNOOOOOQ
o ONCOOOOFOLOOOOOLOLOQLELLOROOHODODOOOREFO
oI - e e Y oo e Y o e R o Y o B o i o B Y o i o e Y o = B B o o B T = B e O L A o —]

We need only perform Gaussian elimination once, as ¢ — 1 is prime. Doing so with the soft-
ware package Maple, after about one second of computation time we arrive at the following
solutions.

30

[L2 7 [9300
L3 121788
Ly 17730
Lg 38504
Lg 36714
Lz 6486
Lg = | 126356
Ly 86665

Lo 73
L1 635
Lia 107584
Liz 78508

| Lis | 129235 |

We then verify that we do indeed have the correct solutions by computing £ mod f(z) for
2 < ¢ < 14, and we are done with Stage 2.

Recall that our goal was to find log, @ where 8 is given in (5.6), so we will choose a random
exponent 0 < r < 131070 and compute the product z'3 mod f(z). If the product is B-
smooth, then we can take the logarithm of the congruence to get a linear equation of log, §
in terms of the L;. After a few different tries (13 to be exact) we arrive at the following
relation.

258 = (2* + x4+ 1)(z +1)°(@* + z + 1)*2z? mod f(z) (3.12)
Then we take the logarithm of both sides of the relation modulo ¢ — 1 and we have
195+ log, 8= Ly + 5Ly +2L3 +4 mod 131071 (3.13)
or

log, 8 =17730+5- 9300+ 2 - 121788 — 191 = 45473 mod 131071. (3.14)

We check to ensure that z%4 = § mod f(z). A

The generation of smooth relations in the above example and placing them into matrix form
was accomplished by the routine indcal.c, and can be found in the appendix. The routine
incorporates many subroutines, as well as many built-in functions of the library NTL. This
routine is also used in comparisons, which we will discuss later.

For this field of over 100,000 elements, it took almost no computation time at all to determine
the logarithms of the factor base B. This illustrates the power of the index calculus method
somewhat better than example 4.1 does. We also see a decided advantage over previous
algorithms: once the first two stages are complete, the entire field can essentially be deemed
insecure for crytpographic purposes. This is because the running time of the third stage is
small compared to the first two stages and the first two stages in no way depend on the
element #. Thus, we can attempt to increase the performance of the index calculus method
even further by improving stages one and two. For the remainder of this paper, we will look
at various improvements that affect Stages 1 and 2 of the algorithm.

31

4 Improving the Index Calculus Method

4.1 The Search for Smooth Polynomials

Our quest for improving Stage 1 of the Index Calculus method begins with finding ways to
get B-smooth relations more efficiently. First, we will present some results regarding the
probability that a random polynomial in ¥, [x] of degree k is B-smooth. Let p(k, B) denote
this probability. From [42], we have that

where N{k, B} denotes the number of polynomials in F;[x] of degree k that are B-smooth.
Trivially we have N(k,k) = 2¥, as there are 2* polynomials of degree k, and they are
all k-smooth. In the general index calculus method, we are essentially generating random
polynomials of degrees less than n and hoping that they are smooth. The probability that
a random polynomial of degree less than n is B-smooth is given by

> N(k,B) > N(k,B)

k<n k<n

= . 4.2
> Nk, k) 2n—1 “2
k<n

Odlyzko [42] derives recurrences that N(k, B) satisfies, and determines the estimate for the
probability (6.2) as

exp ((1 + 0(1))% log g) (4.3)

where k17190 < B < k99/100 Tables of numerical estimates of these probabilities can be found
appended to [42]. These probabilities are, in general, not very large, for example, we have
p(100,10) = 1.71395 x 1071°, Thus we would expect to have to factor around six billion
polynomials (in Fz[z]) of degree 100 before we would find one that factored completely over
a factor base that contained all irreducibles of degrees less than or equal to 10. Hence care
must be taken in deciding on the size of the factor base, as well as the types of polynomials
to test for smoothness. {5] and [43] provide further discussions on smooth polynomials and
their distributions.

4.2 Coppersmith’s Method

In 1984 D. Coppersmith [11} developed a variant of the index calculus method that improved
the asymptotic running time of the algorithm in Fon. Instead of raising x to random power

32

which will be congruent to a polynomial of degree less than n (which about half of the time
will be a polynomial of degree n — 1), Coppersmith sought a different way to generate equiv-
alences that would force the congruent polynomials to be of smaller degrees, thus increasing
their respective probabilities of smoothness. Working with ideas of generating ‘systematic
equations’ that were introduced by Blake, et al. {8], and the property that squaring is a linear
operator in Fy ((a +)% = a? + b%), Coppersmith developed this method for finding smooth
relations. Assume that our field Fon 22 Fo{z]/(f(z)) where f(z) = 2+ fi(z) is primitive and
deg(f,) is small. Let u;(z),us(x) be two random polynomials in F;[z] of degrees less some
specified degree d (we will determine this parameter later) such that ged(u,(z), us(z)) = 1
(uy and wuy are relatively prime). This condition can be checked easily by applying the
Euclidean algorithm for polynomials. Then we define, for some integer A, the polynomial

wy(z) = uy (2)z® + ua(z). (4.4)
Then we have, for any integer 2*,
(W (@) = (u@)e"+u(2))” mod f(a)
= u () 2" +w(2)” mod f(z)
= w(2)® filz)z" ™ + up(z)? mod f(z) (4.5)

and we will let wy(z) denote the right-hand side of (4.5). Thus we have the congruence

wo(z) = wi(z)¥ mod f(z). (4.6)

The coprime condition imposed on the u;{x} and u,(z) polynomials prevents us from arriving
at redundant relations, for if ged{u,(x), us(z)) = e(z) for some nontrivial e(z), then e(z)®*
is a nontrivial factor of both wy(z)** and w,(z), and thus we would get the same relation as
we would by choosing u, (z)/e(x) and uz(x)/e(x) as our random seeds.

The parameters h, 2*, d, and B are chosen so that the degrees of w; and w; are on the order of
n?/3 and the degree of our factor base is on the order of nl/3. Derivation of these parameters
can be found in [42] and [14], and they are defined as follows:

d ~ ni(logn)?

2w (lorgtn)%
ho= |5 |+1

B =~ n3 (log n)%

Extensive tables of these parameters can be found in [14]. We will now examine briefly what
these polynomials look like with a specific case.

33

EXAMPLE 4.1: Let ¢ = 2%, and let F, = Fy[z]/(f{z)) where f(z) = z®® + 2* + 1. Then
B=d=17, h=13, and 2*¥ = 2. We start by picking random) (z) and u»(z} and checking
to see if ged(uy, uz) = 1. We choose uy(z) = 2° + z* + 2® +z+ 1 and up(z) = 25 + 23 + 1.
Applying the Euclidean algorithm shows us that ged(z® + 2t + 2 +z+ 1,25+ 23 +1) =1,
so we can use these to define our wy(z) and wq(z). Now we construct

w(z) = wy(z)z® + uy(x)
= P+t ++r+ DB+ (2B + 22 +1)
P18 4 1T L g6 4 14 g 13 4 06 L 03

and since we will want w;(z)** mod f(z), we have

236 4 734 4 432 4 228 L 026 L 12 4 6 4
= g+l + 24+ + 5T+ 42+ 2+ 1 mod f(z).

wy (x) 2*

Then we create the wa(x) polynomial, and we see that

wy(z) = () fi(x)e"? " + ua(z)®

(®+ '+ 2+ 2+ 1)2¥ BB+ 1) + (2f + 2% +1)?
(e + 2+ 2"+)P+ D)+ (@ + 28+ 1)
A oAt o L S S |

wl(m)zk mod f(z).

nn

Hence we have a relation of polynomials in Fa[z] modulo f(z). A

With the choices of parameters defined above, Coppersmith’s variant has a heuristic (not
rigorously proven) running time of

exp ((1 + o(1))n}? log?® n) (4.7)

which we see is a significant improvement over the time of L(g)2**Y for the general method.
We will illustrate how Coppersmith’s method works with an example, this one for a field of
size a little larger than the previous example of index calculus in a nonprime field, and we
will only complete Stages 1 and 2.

EXAMPLE 4.2: Let ¢ = 219, and let F, & F,[z]/(f(z)) where f(z) is the primitive polynomial
2%+ 23 +z2+z+1. By the definition of the Coppersmith parameters, we have that B = d = 6,
h = 10, and 2% = 2. So our factor base B consists of all irreducibles in F; [z] of degrees up to
6. We have already (in example 5.2) noted the irreducibles of degrees less than 6, the ones
of degree 6are 28 + x4+ 1,28+ + 1,28 + 2 + 2’ + s+ 1,28 + ' + 2* + 2+ 1,28 + 25 +

34

Lzl +20+ 2l +z+ 1,25+ 28+ 23+ 22+ 1, 28+ 25+ 2 + 2+ 1, and 28+ 25 + 2t + 22 + 1. We
begin finding smooth relations by choosing random polynomials of degrees less than or equal
to d to be our uy(z) and ue(z). The C++ routine copper.c (see appendix) was used to
accomplish this, and after about six seconds of computation time we arrive at the following

55 6-smooth relations {we omit the mod f(z) for space):

2 2P+ + 12 @ P+ e+ 1P b2t 2 e 1)
st + 2 2l + I+t 2P 42+ 1)

2(z3 + 2+ 1)z + 1)?

2z + 2% + 2% + 2% +)z + 1)?

(@@ +e+1)E8 +25+ et +22 + D2+ 1)

(P +z+D)(E + 25 +xt 2 + 1)z +1)°

ez +z+ Dt +2t+ 2t e+ Dz +1)°

(@ +z+D)EF+e?+)+ +2i 2+ Dz +1)°
2(x® + 2% + 1)}z +1)*

szt b+ Iz + ¥+ 2P+ 22 4 1)

z(z? +x+ 1}z + 24+ 1)

(B +22+ 1)zt +r+)% + 24+ 22 + 22 4+ 1)

(@ +z+0)E+ 2+ 222+ 1)+ 2t 2 22+ 1)
4+ +22+ D5+t + 2t + 22+ 1)
ez + 2% + 1)(2% + 25 + Dz +1)?

{(z% + x4+ 1)(z® + 2% + 22 + 2+ 1)(z + 1)2

(2 +z+ ¥+ 28+ Dz +1)3

(&% +2® + 2% + x + L)z + 1)?

(2f b o+ Dt +23+1)

s+ + N+ D+ 28 +22 + 2+ 1)

z(zt + 28 + 22 b+ D)z +1)°

z(z? + =+ D(2® + 2z + 1)(=* + 2% + 1)(x + 1)°

szt +r+ 2P+t 2+ 2+) 42 24 1)
(2% + 2? + 1)(=® + = 4+ 1)(2® + 2% + 1)

s+ F et e+ D+ 22+ Dt 2t 2 2+)
o(e® 4 2+ 1)(z* + 2% + 22 + 2+ D + 2 + 1)(x +1)°
CTCAE T L N LRy W, [TE LN L L S)

(2 +z+ 1)z + 22+ D)+ 2t 422+ 2+)

et + + DNt + 22+ D e+ 1)

z(z? + 23 +1)

z(zd bz 1)zt + 2P 422 L2 4 1)
Erz+DE+22+D)E 2R+

z(z® +22 +1)

@+t +aet + 2+) 2 e 2?2+ D)+ 2B 1)
(®+z® +2¥+ 2%+ 1)

2z’ + 2t + 2% + 2% + 1)(x + 1)}

(2 +z+D)E+at +28 +2+ D +1)°

2(e® + a2 + 2% + 2+ 1) (=% + 28 + 1)(z + 1)2

z(@ +at + 22 + 22 +)P+ 2+ 2+ z 1)z +1)0
gz e+t + 2 + Dl + 2P+ 2 o+ D)+ 12
e+ e+t + S+ o+ D bz WY LB 4P 1)

g+ 2 +2¥ 42+ 1)(2® + oz +1)(z +1)2

22(2® + 2+ 1)2 (2% + 2% + 1)%(z + 1)°
20
x

2@+ +1P2 (B + 2t + 2 2 4+ 1)?

@+t +f 2 + D2+ 2+ 2 2+ 1)

(P + 2t + 2 + 22 + 1) (= + 25 + ¥ 2 +1)2
(#t+ 23+ 1%+ 2+ 22 + 2+)%
EE+at+22+2+ D205+t + 2 2 +1)2

(2® + =+ 1)%(2® + 23 + 2% + 2 + 1)%2?

(z+ 1D2(? + z + 1)z + 2* +1)%z"2

22(35 +:l:2+1)2(:l:5+m4+1:2 +z+1)2

B+ +2? +a+ 1% (2 + 2%+ 2 + 22 4132
(x+1)2% (=% +22 +12 @8+ 25+ 2t 2+ 1)2

(2% + 2% + 1) + 2 + 1)%(z +1)*

e 4z + 122 +at 2 e+ 12 (20 + 2?4102
(22 +z+1)®

(= +22 + 1%z + 2 + 1)2(z% 4 2 + 22 + 2 +1)2
(P +r+ 1%t e+ D2+t 22 42 4+2)2
(@2 + 2+ 1% + 2 + D22 + 2% + D3z + 1)¢
(z* +2? + 2%+ + 1% (2% + 2 + 2% 4+ 2% +1)%2°
29(13 + 3 + 1)2(3:6 +z.5 +m4 +:!:2 + 1)2

23z + 2% + 1)% (2% + 25 + 2t + 2 4-1)°

24z + D3 22 1 2t 2 4 1) (2 4 1)8
(x + 1) {z* + 2% + 1)*

ez + 142 + 2® +2® + 2% + 1)t

fr* o+ 1)@ + o +2? + o+ D224 2?42+ 14
e + 14 (2% + 22 + 14

(@ +z+ 1% @ + 2 + D@+ 2® b2 r 4 1)?
(? +z + D)3(=® + o + 1P (z + 1)%z*

23zt + 2+ 1)3(2® + 2 +1)°

(22 + 2+ 13 (2% 4 2t + 2% 4 £ 4+ 1)22°

(25 +z4+13+$2 +1)2(I+ 1)10

22z + 1% (2% + 2 + 1) (=% + 2® + 1)°

(2t + 2 + 1)8

(z+1)2(® +2° +1)*(z° +z + 1)*

{z¢ + 2+ 1)%(2® + 2t + 22 + 2 4+ 1)%28
e+ + 23+ D% + 2t + 22 + 2 +1)°
(2% + 2 + 1%(2® + 2% + 1) (2 + 2 + 1)%°

?(z® +z+ 1)%(z? + 2 + 1°(2® + 2% + 2% + ¢ +1)?
(Id +z+ 1)2210(13 + x2 + 1)4

2z +1P P+ 22+ DB+t 22+ 1)

L1 T 1 1 (| (¢ (/11 | T 1 1 (1 O T 1 [

35

(2 + 2 + 1)*(z? + 2 +1)% (2 + 23 +1)%2*

(2% + z* + 2% + 2 + 1)22%(x + 1)8

(2% + 2% + 1)%(@® + £+ 1)%(z + 1)°

{x+ D4 + 2% + 22 + 4+ 1)

z2($6 + :L‘5 + 1)2(1.3 +:!:2 + 1)4

a?(x® + 2% + 1) (2% +z + 1)

(2% + 2% + 1) 2 +o+1)4

@+ +rt+z+ 12 @+ D8 vz 1)t

(z* + 2 + 2% + o+ 1)% (2 + 22 + 1)%28

¥ {r? bz 12t b 2® b2? +z +1)2(xt + 2 1)t
22z’ 4+ 2% + 22 + 2+ 1)*(z + 1)8

2@ + e+ 1% 2P e+ D2 et + ¥+ 22+ 2 +1)°
(z% + z + 1)

(@ +2+ 22 +2+1)% (2% + 2% 4+ 24 + 22 +1)?

11 | | 1 1 1 B ([T

(et + 2+ 22 4z +) (2® + 22+ 1)

sz +z+DEP+ 2+)P+ 2t + 2P+ 2)
E+z+DE 2+ et 42 22 2 4+1)
(+z+ 1)z + 2%+ 1)

s+ e+ 1)+ +2? 2+ 1)

(2 4+ 1)(=® + 22 4+ 1)(z + 1)°

e@d+e?+ D@+ + D +1)°

(P +z+ 1=t + 2t + 22+ 4+1)

z(z® + 28 + 23 + 2% 4+ 1)(z +1)°

23+ + D e+ 1P+ 2t 4 2P o+ Lz + 1)
o+ + 1)t + 2t + 22+ +1)

z(2z% + 2° + 1)z + 1)?

sttt + 2 e+ DES + 2t 2 122 1)z +1)2
(28 + 22 + 1)z + o+ 1){ef + 2 +2¥ + 2% +1)

As copper.c executes, once it finds a smooth relation, it ‘takes the logarithm’ of the relation by

recording the exponents and places the proper values in a row vector, with log_ = on the right-hand

36

side (last column). We then wish to solve the corresponding linear system modulo 524287.

" W=t 3 e A0 - - WY el e B
[B B T I T I R

CooD | 0o o0 ENOOO D000 ONOODO0UDDe0C00 0000000000000 000000N
CCODCOOCOODONODCODCOONODO00000000C0000000000000AC000DO00

ccafoococoooccoocoooncooeoorTa|ococoo | oococoooooooocefooooo
cocoonnoesoccson|ene | oecocopcococpeceon oceooeccoecONReS
coocoocoo|ocosooooconeoTocoooootonNoo | coo0oDONORCCRODOS
e L L L R e - T
00000000000UUDDDOOODDOODDUOD000000022000000000004000000
UG 00CCOO00a0o000ADC0000000000a0N [COD00000000D00ROCO00d

4002000000000000000000000000000000000000000200004000000

cooccnmcooTe] Tococconoo o oecocronoaon oo (oaceccoooocoea

cloococoncosocooncooOoCODOCD oo oPooooo | ToooenoconooonooQ0

OO OO OO NOONOOOOCON | CCO0OCND 00000000000 Yo00000R0O0 (000D
Tooooovoanacafooonoooccosccovnavoonoosoe o foocooToonoocacan
CNOODCO000 000000 | 0 00C0De | oNCOC | 0000 D000000O000NMNODRD OO
D0000000002021_.200Dnd0000D.I_.DDono001_.0000000040000000200000

wnToococmToocecocooocooon onoeToococo oocooooco (o TvoocamnonTo

cofooCNOONOROoROONOCOO (avoooo | coneooaanocnonococoovoo0O

cocoocooo o enooennoeo o (aonTacoocononcsa | acoecacoa Tooe’

socooceecooaToacocanaa] TaeT Ty

4

cooconcyna e

caTe

-1

ToomoToocoowono o TaToonnoccoocoononoca oo
| | 3 | | 1 |

cococe | Tene coovaTuunTacvo e oo TevevcaTace

5]
60‘&_01_01_......%41_...20026 3444406001@202

After about a second and a half of running time in Maple, we get unique solutions for the

logarithms of the factor base

107199
22128

200140 L, = 519005 Ls =

264794 L,
Le = 211481 L,

Ly, =

104942 Lg = 75870 Lo =

513495
396705
450193

341944 L5

83211 L6 = 323560 Ly;

328453 Loy

42411 Ly,

= 29869 Ly

Ly
L1y

421995 Lis

267590 Ly =

406679 ng =

Lig =

65783

49851 L3

Loy =

We perform a check to see that these are the correct logarithms of the elements of B. A

37

Coppersmith also gives an improvement on the third stage that reduces the running time of
that particular stage. In brief, he suggests that we compute log, 3 by first forming a product
that may include one prime factor not in the factor base, and then computing the logarithms
of a sequence of such polynomials of decreasing degrees. A description of this approach can
be found in [14].

One important assumption in the running time analysis is that the Coppersmith polynomials
will behave like random independent polynomials of the same degrees. If this is so, then
these Coppersmith polynomials should have a larger probability of being smooth over ones
generated by the basic index calculus method as the degrees of the Coppersmith polynomials
are generally smaller than those generated by the basic approach. Cuneaz [14] found that, for
a majority of n < 300, there was sufficient statistical evidence to support the conclusion that
the proportion of w; polynomials that are B-smooth is greater than the proportion of random
polynomials of the same degree being B-smooth. However, there was also sufficient statistical
evidence to conclude that the proportion of w, polynomials that are B-smooth is less than
the proportion of random polynomials that are B-smooth. Cuneaz was also able to deduce
that there did not exist sufficient statistical evidence to conclude that the Coppersmith
polynomials behaved as dependent polynomials, which gives us a significant reason to think
that Coppersmith’s method is a drastic improvement over the original algorithm.

It is also worthwhile to point out that when Coppersmith first developed this algorithm in
1984, he focused on the case g = 2'%7. This field was actually intended for use in cryp-
tosystems being developed by Hewlett-Packard and Mitre at the time, but Coppersmith’s
successful computation of the logarithms of the factor base for this field have rendered it to-
tally insecure for cryptographic purposes. In 1985 Odlyzko [42] conjectured that logarithms
for fields of order 2™ for n up to 520 would be feasible to compute with a supercomputer.
It seems that this bound should be much larger today with twelve years of technological
advancements.

4.3 Semaev’s Method

In a 1994 1. A. Semaev [52] presented two different ways to arrive at polynomial relations that,
heuristically, improved the running time of the first stage of the index calculus method for
certain fields, including 5= for some specific n. We will present only one of these at present.
The other involves linear combinations of Dickson polynomials, and a good description of
this version can be found in [18].

For the type of Semaev polynomials we are interested in, we will form congruences, similar
to congruences of Coppersmith’s method, of the form

C(z)* = D(z) mod f(z) (4.8)

where f(z) is the monic irreducible polynomial used to define the field. These congruences
will be applicable in Fy» when 2" —1 has a small primitive factor r (i.e., r | (2°—1),7{ (2*—1)
for £ < n). Now these conditions are satisfied if » = n + 1 is prime and 2 is a primitive

38

element in Z, (note that these conditions are not necessarily equivalent to 2" — 1 having a
small primitive factor). E. Artin conjectured that there are infinitely many such values of
n. The following is a listing of n < 1000 that satisfy » = n + 1 is prime and 2 is a primitive
element in Z,. For such an n, the polynomial f(z) = 2" + 2" ! + - -+ + 1 is irreducible.

Table 8: Some n < 1000 that satisfy Semaev’s conditions
2 4 10 12 18 28 36 52 58 60 66 82
100 106 130 138 148 162 172 178 180 196 210 226
268 292 316 346 348 372 378 388 418 420 442 460
466 490 508 522 540 546 556 562 586 612 618 652
658 660 676 700 708 756 772 TB6 796 820 826 828
852 858 B76 882 906 940 946

Now for a given n that satisfies these conditions, let u = 2% mod 7 be an integer, and let
m ~ n?3. Define the ordered sets

T, = {0<f<r:f<m,(fu modr)<m} (4.9)
T; {ui modr:ieT,}. (4.10)

Let w € F3» be a primitive 7-th root of unity. Now let C = Z aw’ for a; € Fy, and set
ieT,

iy = ut mod r. Then, if D = E a;w'™, we have
ieT,

= D. (4.11)

Letting C(z) and D(x) be the corresponding polynomials in IF; [z], we now have the relation

C(z)* = D(z) mod f(z) (4.12)

where f(z) is the n+ 1-st cyclotomic polynomial in F»{z]. Now C(z) and D(z) are of degree
at most m, and thus will be more likely to be B-smooth than random polynomials of degrees
less than n (B is defined as before in the Coppersmith case). Now the number of such
pairs we have is 2/7u!, as there are two choices for each a;. Semaev goes on to show that for

39

Table 9: T, and T;, for selected n,u

[n [m[u | Tu I Ty
18 10| 2 {0,1,2,3,4,5,10} {0,2,4,6,8, 10,1}
18 |10 | 4 '0,1,2,5,6,7,10} {0,4,8,1,5,9,2}
18 [10] 8 0,1,3,5,.6,8,10 {0,8,5,2,10,7,4}
28 [137} 2 {0,1,2,3,4,5,6} 0,2, 4, 6,8, 10,12}
28 |13 | 4 {0,1,2,3,8,9, 10} 0,4,8,12,3,7,11}
28 [13 | 8 {0,1,4,5,8,11,12} {0,8,3,11,6,1,9}
60 | 24 [2 {0,1,2,3,4,5,6,7,8,9,10,11,12} {0,2,4,6,8,10,12, 14,16, 18, 20, 22, 24}
60 [24 [4 {0,1,2,3,4,5,6,16,17,18,19,20, 21} {0,4,8,12,16,20,24,3,7,11,15,19, 23}
60 | 24 | & {0,1,2,3,8,9,10,16,17, 18, 23, 24} {0,8,16,24,3,11,19,6,14, 22, 1,9}
100 [35 [2 {0,1,2,8,4,5,6,7,8,9,10,11,12,13,14,15,16,17} | {0,2,4,6,8,10,12, 14,16, 18, 20, 22, 24, 26, 28, 30, 32, 34}
10 [35 [4 | {0,1,2,3,4,5,6, 7,8, 26, 27, 28, 29, 30, 31, 32,33,34} [{0,4,8,12,16, 20, 24, 28, 32,3, 7, 11, 15,19, 23, 27, 31, 35}
100 | 35 | 8 {0,1,2,3,4,13,14,15, 16, 17, 26, 27, 28, 20} 0,8, 16, 24, 32, 3,11, 19, 27, 35, 6, 14, 22, 30
100 | 35 [16 {0,1,2,7,8,13,14, 19, 20, 21, 26, 27, 32, 33} 0,16,32,11,27,6,22,1,17, 33,12, 28,7, 23

almost all choices of u, |T,,| = m?/r{1 +o(1)). Now if these polynomials behave like random
independent polynomials, then we should obtain a sufficient number of smooth relations for
Stage 1. Table 9 is a brief list of the ordered sets T, and T;,, = T;, for selected n and u.

However, some things have changed. Note that z is a primitive r-th root of unity, and thus
we have z"*1 — 1 = 0. Hence our z is no longer a primitive element in the field. So we must
find a different element of our factor base to serve as our logarithmic base. We can do so by
applying the primitive element test to z + 1, z2 + z + 1, and so on until we do find one that
survives the test.

Implementation of Semaev’s method in Stage 1 of the index calculus method would proceed

as follows:

1. Determine the size of the factor base and a primitive element in the factor base.
2. Select an integer u = 2* such that T, and T;, are large.

3. For all choices of the a;, construct and factor C(z) and D(x), check to see if both are
B-smooth, and add the relation to the collection if so. Stop when 2|B| relations are
obtained or all choices for the a; have been exhausted.

4, If there are not 2|Bj relations, go to step 2 and select a different k.

An NTL routine that uses this method had not been constructed at the time of writing, and
it is yet to be seen whether the use of these relations can improve the performance of stage
one. One potential downfall of this approach is that it is applicable only in certain fields.
Some future research will focus on the applicability of this approach to other fields, as well
as ways to choose u such that T, is large.

4.4 Other Improvements and Techniques

There are other improvements to the traditional index calculus method, including one in
particular due to Adleman [2] that implements a function field sieve. Also, there are many

40

different techniques [21] that one can implement into Coppersmith’s or Semaev’s variants.
These include forcing a small degree factor into the w4 and w, Coppersmith polynomials to
increase the probability of smoothness, using equations that involve a prime factor of degree
slightly larger than B, and testing a polynomial for smoothness before performing the actual
factorization. There are at least two known methods for applying the latter technique,
they are outlined in [42]. One of these, found by Coppersmith, tests a polynomial i(z) for
B-smoothness by computing

B
h'(x) H (z¥ +z) mod h(z). (4.13)
i=[B/2

and checking whether the resulting polynomial is zero or not. This method can fail occa-
sionally (as mentioned in [42]) but is still of use as it can reduce the number of unsuccessful
factorizations we must compute.

5 Polynomial Sieving

This leads us to consider the question of being able to ‘predict’ if a polynomial of a given form
will be smooth or not, even before we know the specific polynomial itself. Along the same
lines, we would like a method, preferably simpler and faster than factoring, to determine
which polynomials are factors of a polynomial of a given form

5.1 The Sieving Process

Before we attempt to answer some of these questions, we will again stop and digress a little to
describe the ideas we will implement in this section. A peek in Webster’s gives the definition
of a sieve as

a device with meshes or perforations through which finer particles of a mixture
(as of ashes, flour, or sand) of various sizes are passed to separate them from
coarser ones, through which the liquid is drained from liquid-containing material,
or through which soft materials are forced for reduction to fine particles.

At first the above passage seems hardly mathematical, one is likely to conjure up thoughts
of a prospector panning away for gold in the local creek. But implicit in the definition is
an important idea: look at a large number or space of something that you are interested in
and figure out a way to easily select the elements you want without having to pick through
everything piece by piece. The first (and probably most well-known) application of the sieve
idea in mathematics was the Sieve of Fratosthenes [44]. The sieve of Eratosthenes was
developed to find prime numbers, and it uses a simple procedure to do so. The numbers

41

from 2 to, say 100, are written down in order. Then one strikes through the number 2, then
4, 6, 8, and all multiples of 2 in the list. We do the same for 3 and its multiples, 5, 7 and so
on until we get to a prime that is larger than the square root of the last number in our list.
Upon examination of the list now, the numbers that have not been struck through are the
primes less than the last number that were not used to sieve with.

We are interested in using a similar approach, but we want different results. We wish to
find elements that are smooth (factor completely over a small set), or that have a sufficient
number of small factors. Let us illustrate what we are looking for with the following example,
which is presented with a computational flavor.

EXAMPLE 5.1: Consider the integers from 41308 to 41349. We wish to determine which of
these integers will factor smoothly among primes less than 20. To begin, we initialize an
array with 0’s for each of these 45 numbers, the first position corresponding to 41308, the
second to 41309, and so on. The figure below could be a possible computer representation
of this array. Note that the actual numbers (above the lines) would not be stored.

41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321

41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335

41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349

It’s pretty easy to see that the first integer in the list is divisible by 2. So now we will mark
off every second number in our array by placing a 2 in each number’s respective position.

41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321
2 2 2 2 2 2 2

41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335
2 2 2 2 2 2 2

41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349
2 2 2 2 2 2 2

Now, by inspection, we see that 41310 is divisible by 3 (using that old trick of summing the
digits) so we mark off the positions that are divisible by three by simply starting at 41310
and pausing at every third position to place a 3. If a position already has another factor, we
simply multiply the factors together.

41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321
2 2.3 2 3 2 23 2 3 2

41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335
23 2 3 2 2:3 2 3 2 2.3

41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349
2 3 2 2.3 2 3 2 2.3 2 3

42

We continue in this fashion for each prime p up to 19. For each p, note that we only need
to find one number in the array that is divisible by p, for then we can just step along the
array and mark every pth place. As we go along, we will compute the products of the primes
placed in our array. Doing so, we arrive at the following array.

41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321
2 510 2 3 132 5 66 2 3 10 7

41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335
6 2 285 2 2431 42 10 3 2 6 35

41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349
2 3 22 390 14 3 646 5 6 2 231

Now, we will select those integers j whose positions contain values greater than /7. This
value was chosen to ‘weed out’ the j that do not appear to be 19-smooth. Thus the integers
we select to test for 19-smoothness are 41310, 41325, 41327, 41340, 41344, and 41349. We

now factor these integers, and we have

41310 = 2.35.5.17
41325 3.52.19.29
41327 = 11-13-17°
41340 = 2%2.3-5-13-53
41344 = 27.17-19
41349 = 3-7-11-179

So we see that the integers 41310, 41327, and 41344 are 19-smooth. A

The approach used in the above example is due to Pomerance, and it describes the type
of sieving we want to do, only with polynomials instead of integers. This sieve has its
good aspects as well as bad. Undesirable is the fact that we selected and factored three
integers that were not smooth, and (even though we did find all in this particular range)
the possibility of overlooking a 19-smooth integer exists. On the contrary, the benefits are
numerous. First we should note that we did find some smooth integers, so our method was
fruitful. Also, the number and type of operations necessary to do this were simple machine
operations {multiplications and index incrementing), aside from a few divisibility checks. In
doing this we avoid the expensive factoring of each integer, and thus our computation time
was reduced considerably.

Thus our motivation for using a sieve to find smooth polynomial relations is clear: we want
to determine which individual polynomials have a greater probability of being smooth and
thus taking part in a smooth relation. Once we can find these polynomials, we will factor
those (and only those) in efforts to make Stage 1 of the index calculus method faster.

43

5.2 Sieving with Coppersmith’s Method
5.2.1 Approach

In their paper presented at the Crypto '92 conference, Gordon and McCurley [21] describe
a sieving process they used to determine which pairs of relatively prime u;, us will produce
a B-smooth w;, where the polynomials are the ones described by Coppersmith’s method.
The main idea was to fix u#; and set up an array of the u; polynomials. Note that we
would not actually store these polynomials, but we need a way to know exactly which u;
corresponds to which position in the array. The seemingly ‘natural’ way to do this is to map
each u; polynomial to an integer by the mapping ux(x) — u2(2). We mentioned this sort
of correspondence before, as this is essentially mapping a vector of coefficients, which one
can view as the binary representation of an integer, to the integer itself.

Now consider such an array whose #th position corresponds to the u; polynomial where
u2(2) = i. Then, as u; is fixed, we wish to determine which u; (coupled with the fixed
1) produce a B-smooth w; polynomial. To do this, we will use an approach similar to the
example in the previous section. What we will do is see if the w, is divisible by an irreducible
polynomial of degree j. If so, then we will add the integer j to the ug polynomial’s position
in the array. Once we do this for all irreducibles of degree 7 < B, we will have an array of
integers. The value of position ¢ in this array, call it z, gives the total degree of irreducible
factors {of degrees up to B) of the wy polynomial that is constructed by the fixed u; and
the uy corresponding to ¢. If this value 2 is greater than or equal to the degree of w; minus
B, we know that this w; is B-smooth, for if not, then w; would have an irreducible factor
of degree D larger than B and thus deg(w;) — B > 2. Thus for each u,;, we can sift through
all possible u; and pick out some particular ones that make wy B-smooth. Doing this for
a range of u; should give us a sufficient number of smooth w;. Then we will construct and
factor the corresponding w; polynomial and check to see if it is B-smooth also. If so, we
have a relation to add to our stockpile. This process should drastically reduce computation
time, as we now are factoring only the w; and w; that we know w; to be smooth, compared
with Coppersmith’s method of factoring all w; and w, that are generated.

There are a few loose ends to tie up, the first being the fact that our sieve may not find
all 43 such that wy(z) = u;(z)z® + uz(z) is B-smooth. One case when this can occur is if
wy has a repeated factor of some degree, say d; < B, coupled with another repeated factor
of degree dy < B such that d; + d; > B. Another problem we have not yet addressed is
that, in Coppersmith’s method, we require that u; and wu, are relatively prime. We will
accommodate this by checking for the coprime condition after we have sieved and before we
construct and factor, as ged’s are relatively easy to compute.

5.2.2 Stepping through the array

Now we must consider ways to go about this ‘marking off’ process. We want to minimize the
number of divisibility checks we must perform, so once we find a polynomial that is divisible

44

by an irreducible, we want to be able to step through the array to the next polynomial that
is divisible by the same irreducible, as we did in the earlier example. In their search for such
a method, Gordon and McCurley note that there seems to be no obvious way to represent
the polynomials so that representatives of a given residue class lie a fixed distance apart, as
in the integer case. However, it is not necessary that we step a fixed distance, what matters
is that we are able to step through all of the polynomials that are divisible by the fixed
irreducible. They also noted that all of the polynomials in Fs[z] of degree less than some d
can be thought of as the the vertices of a d-dimensional hypercube. Thus the idea of using
a Gray code [41] was introduced. A Gray code is a sequence of bit strings that have some
special properties. This sequence gives an efficient way to step through all of these vertices
(polynomials), as well as a way to step through all polynomials that are divisible by some
fixed irreducible. The way a Gray code does so can be thought of as ‘toggling bits.” Let
G4, Gy, ... ,G.4 be the binary Gray code of dimension d. For any integer z we have that G,
differs from G,; by I{z), where I(z) is the position of the lowest true bit of 2. We give a
brief illustration of how this is done with binary strings of 5 digits in Table 10 (note that
0<l(z) <4).

Table 10: Gray code of dimension 5 on binary strings

[z[l(z)]| G. z|[U2)| G,
1 0 | 00000 (17| 0 |00011
2 1 [10000 |18 | 1 |10011
3(0 |[11000| 19| 0 | 11011
4 2 [01000 (20] 2 |01011
5(0 |[01100 | 21| O |O1111
6| 1 (11100 22| 1 | 11111
7| ¢ [10100 (23| O |10111
8 3 (00100 (24| 3 |00111
9(0 (00110 25| O | 00101

10| 1 (1011026 | 1 |10101
11| 0 (11110 27| O | 11101
12 2 | 01110 28| 2 | 01101
13| 0 (01010 (22| O | 01001
14| 1 (11010 (30| 1 | 11001
15(0 (10010 31| 0 | 10001
16 | 4 | 00010 | 32 00001

It is interesting to note the reflected structure of this code. For example, if we look in Table
10, we can see that the first 4 bits of each word are reflected across the line between 2* and
2' + 1. We reiterate that the Gray code is one of the most efficient ways to step through
these bit strings, as we only toggle one bit each step.

45

5.2.3 The algorithm

We will now present the algorithm developed by Gordon and McCurley to sieve over ua(x)
for a fixed u;(z). Here h and B are as defined in Coppersmith’s method, and the parameter
t denotes one more than the largest degree of the u, polynomials we will sieve over. Note
that u, will have dual meaning here, alone as a polynomial in F;[z], and in brackets (as an
index of an array) as the integer that corresponds to the polynomial u(z).

Table 11: The Coppersmith polynomial sieve algorithm
Step 1: Determining which w, are divisible by each irreducible in B
fori=0to2'~1
sfi] =10
ford=1to B
dim := max(t — d,0)
for each irreducible g of degree d
Uy = wz" mod g
if deg(ua) < ¢ then
for i =1 to 2%m™
s[ug) i= sua] +d
Uy = uy + gz'®
Step 2: Finding the u; that produce B-smooth w;
fori=0to 2t -1
if s[i] > (deg(u1) + b — B) then
print ug, uz

There are some things we need to point out here, the first of which being the fact that we
must have stored all of the irreducibles in F; [z] of up to degree B in some file so they can be
accessed for use in the algorithm. This is not too great a task, as for most of the computation
that we are currently available to do, we will not need to store irreducibles of degree greater
than around 20 {at present, a file containing the all the irreducibles of degrees up to 20 takes
up a little less than 5 Mb of storage). Also, we must have some sort of method of converting
a polynomial to an integer quickly, and vice versa. To summarize step one, we must find all
uy such that w, is divisible by an irreducible g (for each g). We can do this by finding an
initial u; and then stepping through the array to find all other u,. Step two gives us a way
of determining which of these u, give a smooth wy, for if the value in the u; position in the
array is greater than deg(w;) — B = deg{u,(x)z") — B, then we know w; is B-smooth.

Perhaps the most important piece of the algorithm is the initial computation u; = wzh

mod g. What this does is fundamental to our sieving approach: this sets u; as the smallest
polynomial such that w; = u;2"+u; is divisible by g. This is so because if u; = w1z mod g,
then w, 2" + uy = 0 mod g. After recording the degree of g in the position corresponding to
this %, in our array, we then step through all of the u; that give w; divisible by g. These u;
are just all multiples of g times the initial us (found by up = us + gz'®) that are of degree
less than ¢. The conditional that tests the degree of the initial u, to see if it is less than ¢ is

46

merely a safeguard to protect against sieving over g that are of degree larger than t. In the
selection of the Coppersmith parameters, it turns out that we will select ¢ = B, as both are
on the order of n!/3.

We can demonstrate what the algorithm does by looking at an example.

EXAMPLE 5.2: Let B =6 and h = 8. We fix u;(z) = z° + 1, and we wish to find all uy(z)
of degrees less than or equal to 6 such that w;(z) = u(z)z" + us(z) is B-smooth. Thus
t = 7 (the array covers all 27 polynomials of degree less than 7), and we begin proceeding
through the algorithm. We first set d = 1 and thus dim = 6, and now wish to sieve with
each irreducible of degree 1 (namely = and z+1). So we let g = z, and thus uy = (2% +1)z®
mod z, or uy = 0. Then, since deg(u;) < 6, we begin to place a 1 (d} in each position of the
array that corresponds to a u where w; is divisible by z. We do so by going through the
loop, beginning with ¢z = 1.

s[0] = s[0)+1
O0+z -7V =z.2=¢

Uy =
32 = s[2]+1

u, = z4+z- P =z+z-2l=s’+2
o6] = s[6]+1

u = *+z+z -0 =24+ =2
ofd] = s{4]+1

Uy = 4z =gt 2 =242

s[12] = s[12]+1

And we continue until ¢ = 26 = 64. Then we set g(z) = = + 1, and we begin the loop again.

We find

4y = wmz® modg==z"+2%® mod (z+1)=0
sf0] = s[0]+1

w = 0+ (z+1)2'W=x4+1

s[3] = s[3]+1

Uy = c+1+(@+1)@P =z +14+224+z=2°+1
s[5] = s[b]+1

uy = +1+@E@+10)e'® =414z +1=2"+2

sl6] = s[6]+1

Again we continue until i = 64. We have exhausted all of the irreducibles of degree 4, so we

47

set d = 2, and thus dim = 5. Now we start with ¢ = z? + z + 1, and we proceed as

up = wz® mod g=z"+2® mod (a:2+x+1)=0
s[0] = s[0]+2

uy = 0+ (@ +z+ 1)V =2+ 41
s[7] = s[7]+2

g Prz+1+@+2+ 1) P = x4+ 1+ +28+z=2°+1
s9] = s[9]+2

We continue until # = 32. Then we move on to d = 3, dim = 4, and ¢ = 23+ z + 1, and
continue in the same fashion until we have covered all irreducibles of degree less than 7. We
then run through our array, and any entry that is larger than 3 + 8 — 6 = 5 will correspond
to a ug that makes w, 6-smooth. A

A first glance at the algorithm and the above example indicates that we should see a dramatic
improvement in the performance of Stage 1 of the Index Calculus method, and not only
because of our newfound method of selectivity. The operations that we perform in this sieve
loop are relatively simple operations, most of which are moving through an array and integer
addition. There are a few modular multiplications, all of which are of small degree. Gordon
and McCurley note that the actual operation counts come close to the operation counts
for the original Coppersmith method, but the fact that many of the operations are much
sitnpler reduces the actual running time. Gordon and McCurley give operation counts for
the number of steps to sieve a range of (u;, u;) pairs in [21], and conclude that the advantage
sieving has over Coppersmith’s method is immense as n (and thus B, k) tend to infinity.

EXAMPLE 5.3: Let ¢ = 2% and let f(z) be the primitive polynomial % + z° + 1. Then
B=d=17 h =13, and 2¢ = 2. We will employ the Gordon and McCurley sieve to
determine which (u,u,) pairs give a 7-smooth wy. Then we will construct and factor the
ws to check if it is 7-smooth as well. Table 12 is a list of (%1, u2) pairs (in integer form) that
produced a 7-smooth w; and w,.

Note that the largest u; needed to find 2|B| smooth relations was the polynomial corre-
sponding to the integer 11, which is z® + z + 1. Thus our sieve loop only executed 11 times,
and the routine finished in a little less than a second. After these relations were constructed
and factored, the linear system was solved modulo 2%° — 1 = 31-601 - 1801 by Maple, which
required around six seconds of computation time. Table 13 is a list of the logarithms of the
41 elements of the factor base, excluding log, z = 1. The irreducibles in the factor base are
represented by their corresponding integer.

For example, the polynomial corresponding to the integer 117 is the factor base element
25 + 25 + 24 + 2 4+ 1. From Table 13, we have that log, 26 + 2° + z* + 2% + 1 = 19365177,
50 190177 mod f=20+ 25+t + 22+ 1. A

43

Table 12: (u,ug) pairs that produce a 7-smooth w; and w;

1,6 (1,8 (1,9 (1,10 (I,11) @,13) @15 (1,16
(1,19) (1,21) (1,23) (1,24) (1,28) (1,29) (1, 30) (1, 36)
(1,42) (1,52) (1,56) (1,63) (1,64) (1,78) (1,96 (1, 107)
(1,109) (1,110) (1,112) (1,115) (1,117) (2, 1) (2, 3) (2, 5)
(2,17) (2,21) (2,35) (2,65) (2,81) (2,87) (2,105) (2,107)

31 (849 (B7 (3,16 (3,37 (3,56) (3,69 (3,84)
(3,122) (4,1) (4,9 (4,21) (4,31) (4,61) (4,125) (5,2)
))
))

(5,8) (5,19) (531) (542) (564) (573) (6,100) (7,6)
(7,16) (7,26) (7,31) (7,48) (7,50) (7,61) (7,88) (7, 96)
(7,111) (8,21) (8,27) (8,35) (8,65) (8,69) (8, 121) (8, 123)
(9,25) (9,32) (9,104) (10,19) (10,31) (10,37) (10,49) (11,8)
(11,28) (11,32) (11,45) (11,50) (11,51) (11,102) (11,107) (11,124)

Table 13: Factor base logarithms for Fozs
K L; i L;
3| 1364812 || 115 | 25781272
7 | 32189644 || 117 | 19365177
11 201 131 | 4202914
13 | 2471824 | 137 | 30694753
19 | 18937161 || 143 | 4413727
25 | 10398293 || 145 | 20687632
31| 589486 | 157 | 23774069
37 | 18413215 || 167 | 4880112
41 | 7817197 | 171 | 22866545
47 | 4589504 | 185 | 20800206
55 | 15446844 || 191 | 23251895
59 | 17769309 || 193 | 9153935
61 | 23823675 || 203 | 12909424
67 | 2940776 | 211 | 10006282
73 | 15347348 || 213 | 1455443
87 | 22115493 || 229 | 19891866
91 | 10302649 || 239 | 30988832
97 | 13588658 || 241 | 2053121
103 | 6681576 || 247 | 25363113
109 | 11993222 || 253 | 8447931

At first it seems that a sieve to determine if the wy polynomials would work similarly. Gordon
and McCurley [21] note this, the only difficulty being that, to initialize the u; in the loop,
it would be necessary to take roots (the 2*th root to be precise}. They also mention that
doing so may not necessarily increase the performance, as only a small number of u;,u;

49

pairs survive the original sieve and even fewer survive the coprime test. However, a simple
method to sieve over the w. polynomials may improve Stage 1 even further, we will discuss
this more in section 8.2.

Another thing to note from the above example is that, if we start with the smallest possible u,
and uy, our polynomials to be factored will be of relatively lower degree than those generated
by random choices of u; and u;. This will, in general, decrease the amount of time necessary
to factor each polynomial, thereby reducing the overall running time of the first stage even
further.

5.3 Computational Comparisons

With three different ways to approach Stage 1 of the index calculus algorithm, we are ready
to do some actual computations with these methods and compare the results. The routines
used were

e indcal.c - the basic index calculus method, raising the generator z to random powers,
and then test for smoothness.

e copper.c - select relatively prime u,, u; and compute w;, w;, and then test for smooth-
ness.

¢ gordon.c - sieve over all possible u;, u; pairs to determine which will give smooth w,
check for coprime and then compute w; and test for smoothness.

We asked each routine to find 2|B| smooth relations for some selected n. To adequately
assess the quickness of each method relative to the others, we stipulate the same parameters
B,n, h, 2 for each routine (indcal.c requires only n and B). Table 14 presents a sample of
the results of these computations.

We see that the Gordon and McCurley sieve gives us an incredible improvement in the actual
computation time of Stage 1 for the selected n. We have every reason to believe that this
trend would continue as n goes to infinity. However, our computational resources place a
limit on the size of our experiments.

5.4 Improving Gordon and McCurley’s Sieve

There are ways to perhaps increase the performance of the sieve even further. One suggestion
is to relax our selection criterion for the {u;,u;) pairs in hopes of arriving at some valid
(u1,u2) pairs that did not survive the original sieve. As we noted earlier in our the integer
sieve and the discussion of the polynomial sieve, we may unknowingly omit a w; that is
actually B-smooth if the w; has repeated smooth factors whose degrees sum to more than
B. By relaxing the selection constraint by 1 or 2, we may come across more smooth w, (as

50

Table 14: Computation times for some selected n

Degree Computation Time (hh:mm:ss)

n| B 2|B| | indcal.c | copper.c | gordon.c
15| 5 28 0.171 1.411 0.256
18] 6 46 0.061 4.205 0.591
28 7 82 5.876 21.119 1.562
36| 8 142 45.188 1:28.278 4.042
52 | 10 452 22:36.97 5:24.70 13.857
o8 | 10 452 | 2:07:13.02 14:47.36 29.65
60 | 11 824 | 1:33:07.46 | 13:25.09 37.00
66 | 11 824 | 1:19:20.11 22:30.04 59.11
82112 1494 >200h | 1:36:50.95 3:28.97
100 § 13 2754 >200h | 8:18:03.70 19:12.72
130 1 15 9440 >200h | 36:45:33 | 2:12:53.62
148 1 16 | 17600 >200h >200h | 5:58:00.9
172 17| 33020 >200h >200h | 22:07:34.7
180) 17 | 33020 >200h >200h 28:58:21
210 | 19 | 117272 >200h >200h | 180:58:56

many w,; will have many factors of z)
present a table of the results below.

Table 15: Comparisons of relaxed selection criterion for gordon.c

. We implemented this change for some chosen n and

Degree Time (sec.) for criterion
n| B| 2|B]|deg(u;)+h— B |deg(u1)+h—-B—1|deg{uy) +h—B—2
15| 5 28 0.255 0.258 0.243
18| 6 46 (.591 0.608 0.634
28| 7 82 1.562 1.619 1.579
36| 8 142 4.042 4.217 4.181
52 | 10 452 13.857 14.407 13.925
58 1 10 452 29.65 31.38 28.95
60 | 11 824 37.00 37.73 36.42
66 | 11 824 59.11 60.69 58.73
82112 | 1494 208.97 206.08 207.11
100 | 13§ 2754 1152.72 1152.14 1136.93
130 | 15 | 9440 7973.62 7603.16 7421.29
148 | 16 | 17600 21480.9 20910.7 21703.8
172 | 17 | 33020 79654.7 78438.6 78682.7
180 | 17 | 33020 104301 100260 101109

We see that changing the selection criterion seems to have a small effect on the overall

21

running time for small n, but our real interests lie as n — co. We notice the beginning of a
trend as n passes 100, as the routines with the relaxed criterion do seem to run a little faster.
Our only real gain will be realized if we can reduce the number of times the sieving loop is
executed. Future experiments will likely determine whether or not changing the selection
criterion actually reduces the number of loops necessary, as well as the ratio of the number
of pairs that actually produce smooth relations to the number of pairs selected.

Another aspect of the sieve that impacts its performance is the choice of fi(z), where fi(x) =
f(z) — z™. Gordon and McCurley discuss how the selection of this polynomial can affect
the smoothness probability for w, and w, (for a random (u;,u;)). For the particular case
n = 593, they determine the probability that a random (u;,u;) pair will produce a smooth
ws for all possible f; of degree less than 11.

It is noted in [21] that the memory-access patterns for the Gordon and McCurley sieve are
seemingly random and chaotic. For example, in the ‘marking off’ process, we may mark an
entry in the array, then have to go back a large number of positions for the next entry to mark,
then perhaps jump forward to get to the next one, almost like an irregular oscillation of some
sorts. Computational studies have not been done to investigate this problem thoroughly, but
this type of behavior could affect the performance of the sieve on processors that rely on using
memory caches. At present there seems to be no obvious way to ‘straighten out’ this flaw;
more research could possibly determine a better way to step through the array. However,
as we will see in the next section, we can construct a different sieve that could step through
the array smoothly, in fact always to the right (increasing indices).

6 A General Polynomial Sieve

6.1 Generalizing Gordon and McCurley’s Sieve

Coupled with the dramatic increase in performance, the ideas that motivated Gordon and
McCurley spark our interest even further. In particular, we wish to develop a sieving method
that will work for polynomials in general, not just Coppersmith polynomials.

We begin this discussion by letting ¢;(z), ¢ = 1,...,b denote fixed polynomials in F,[z].
Consider the polynomial

b
A(@) = a11(2) + axga(z) + -+ au(a) =) aidi(e). (6.1)

for some a; € F,, 1 <14 < b. Our goal is to determine what sort of A(z) are divisible by
a fixed monic irreducible g(z) € F,[z] of degree ¢. Essentially, we wish to determine the
conditions on the a; such that

A(z) =0 mod g(z) (6.2)

52

or
b
Zaiﬁbi(x) =0 mod g(z)
i=0
or
a141(z) + agda(z) + - + appp(z) =0 mod g(z).

Now we can reduce each ¢;(z) modulo g(z). Thus we will let, for each i,
t—1
¢i(x) = Z gi;z mod g,

=0

and then

-1 t-1
adi(z) = Y gyr’ = Zczggij:cj mod g.

Then we can write

t—1 t—1
Alz) = o Zgljwj +- "+szgbj$j
=0 3=0

1-1 t—1
= Zalgljl‘j +-et Zabgbjmj
J=0 §=0

Il

-1 /b
Z (Z a,-g,-j) z' mod g.

j=0 \i=1

Now if A(z) =0 mod g, then we would have

b
D ag; =0, 0<j<t—1,

i=1

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

and since we know each of the g;; (as the ¢; are fixed), we can find all A(z) that are divisible
by g by solving the linear system given by (6.8) for 0 < j < t — 1. Note that this system
has ¢ equations and b unknowns. In cases where ¢ < b this system will be underdetermined,
so the solutions can be expressed in terms of arbitrary parameters, say ay,...,o,. Thus
there are g" such polynomials A(x) that are divisible by g. Running through all of the

93

Table 16: The general polynomial sieve algorithm
Step One: Determine which polynomials are divisible by each irreducible
fori=0t02°—1 ‘

sff) :==0
fort=1to B
for each irreducible g of degree t
fori=1tobd
t-1
compute ¢; = Z g,-j:vj mod g
=0

b
solve Zaigﬁ =0, 0<j<t—-1
i=1
for all values of the arbitrary parameters
determine A(x)

s[A(z)] == s[A(z)] + ¢

choices for o, ... ,a, will give us these polynomials. Then, as before, we can add ¢ to the
position in the array corresponding to these polynomials. This array would be ¢* elements
long, and positions would correspond to the base g representation of the integer given by

(05ap-1 - - - a201)q-

Table 16 gives the general form of this new polynomial sieve. Some of the steps listed in
the table would involve many substeps, such as the solve step as well as determine A(z).
These processes are best illustrated by an example.

EXAMPLE 6.1: Let ¢;(z) = z¢, 0 < i < 6, and let g € F;[z] be the irreducible z° + = + 1.
Essentially we wish to find all polynomials in Fafz} of degree up to 6 (inclusive) that are
divisible by g. We begin by calculating the powers of = (up to 6) mod g.

T =
22 = g2

2 = z+1

! = :1:2+:z:

5 _ .2

" = z2°+zx+1
¥ = 2241

Now a polynomial of degree up to 6 is of the form
A(z) = ag + a1x + a27% + 037° + a4z + a5z® + a6z’ (6.9)
and thus
Alx) = ao+ax+apz? +az(z+1) + as(2® + 7) + as(z® + z + 1) + ag(z® + 1)
= (ap+az+as+ag)+(a1+as+a+as)z
+ (ag + a4 + as +ag)x®* mod g. (6.10)

54

We want all solutions to A{(z) =0 mod g, or

Qo
5]
a3
mod 2 (6.11)

QO
o= O
- oo
[PSRN
H 2 O
i
_ O
g
il
oo o

a4
a5
Qg

This has a solution of the form

ay = az+as+ag
as + ay + as (612)
ax = a4+ as+ as.

a1

Letting oy = a3,z = a4,003 = a5, 4 = ag be arbitrary parameters, we have that all
A(z) € F;[z] of degree up to 6 that are divisible by g are given by

(o + a3 +) + (a1 + g + as)z + (o + 03 +)2 + 02’ + agz? + 032® + 0u®. (6.13)
These 16 polynomials are the zero polynomial and

P rz+1 2+ 2’z A L |
P rzitz+1l P4+t Pt
2ty at4+r 4241 2+ i+
B +rt+z+1l B4t Pf+iftz
B +b 42241 482t +2? P+t 1

Thus we would add a 3 to each position in the array corresponding to these polynomials.
These positions are 0, 11, 22, 29, 39, 44, 49, 58, 69, 78, 83, 88, 98, 105, 116, and 127. A

At first it seems like this sort of sieve may be too costly operation-wise; a closer look suggests
the opposite. The reductions modulo g are not too costly, as this is done only once for each
g, and g is of relatively low degree. Also, many powers of £ mod g can be computed by
a repeated-squaring method. Further, the resulting system of equations will consist of only
deg(g) rows, and will not require many operations to find the solution in the form of arbitrary
parameters.

This brings us to an important note about the implementation of this sieve. In example
6.1, we let the a; with the largest indices be the arbitrary parameters. One might ask why
one of ag, ay, or az were not allowed to be arbitrary. Recall that these a; are really bits
in the binary representation of a position in the array, with ag corresponding to the least
significant bit and ag the most significant. Letting the arbitrary parameters correspond to

59

the most significant bits in this integer ensures that our walk through the array is a smooth
one. In fact we will always increase the integer value of the position in the array (move to
the right). Hence we avoid the somewhat chaotic memory-access patterns characteristic of
the Gordon and McCurley sieve. It is useful to examine how this is so, we will employ the
previous example to illustrate. We have four arbitrary parameters, so we can run through
all possibilities by examining the binary representation of the integers 0 through 15. We will
let agasasas be this representation. For example, 13 = 1101; would correspond to a3 = 1,
aq =0, as = 1, and ag = 1. The following table shows how we step through the array by
adding 1 to the integer corresponding to the previous position. Recall that ap = a3+ as +as,
a1 = a3 + a4+ a5, and ay = a4+ a5 + ag. Using the same approach in each application of the

Table 17: Stepping through the array for Example 6.1
integer agasza40s 0Oeasa403020109 position

0 0000 (000000 0

1 0001 0001011 11
2 0010 0010110 22
3 0011 0011101 29
4 0100 0100111 39
5 0101 0101100 44
6 0110 0110001 49
7 0111 0111010 28
8 1000 1000101 69
9 1001 1001110 78
10 1010 1010011 83
11 1011 1011000 38
12 1100 1100010 98
13 1101 1101001 106
14 1110 1110100 116
15 1111 1111111 127

polynomial sieve will minimize the computation time spent on stepping through the array.
For example, Table 18 lists the positions to step through the array for g = z° + 2% + 1, the
next irreducible we would use.

56

Table 18: Stepping through the array for g = 23 + 2% + 1.
integer agosa4a3 GgA504Q3G2G109 Pposition

0 0000 0000000 0

1 (001 0001101 13
2 0010 0010111 23
3 0011 0011010 26
4 (0100 (0100011 35
5 0101 0101110 46
6 0110 0110100 52
7 (0111 0111001 a7
3 1000 1000110 70
9 1001 1001011 75
10 1010 1010001 81
11 1011 1011100 92
12 1100 1100101 101
13 1101 1101000 104
14 1110 1110010 114
15 1111 1111111 127

Another thing stands out from the previous example that could reduce computation time.
When the field we are working in is Fyn, we can use an easy way to arrive at the a; that
are determined by linear combinations of the arbitrary parameters. Note that we can write
(6.12) as the matrix equation

ao 1011 ;‘3
am|=1(1110f/[™ (6.14)
a 011 1]1|%
as
or as
Qg 1 0 1 1
a1l =a3 |1| +as 11| +a5 |1]| +ag (O] . (6.15)
(15/] 0 1 1 1

Thus when we are ready to determine the vector v = [ay, a1, az]T, we can do so by adding
scalar multiples of the vectors in (6.15). Since everything is binary, adding vectors is equiv-
alent to the XOR. operation (denote this operation by @). The XOR operation, sometimes
termed symmetric difference, is basically the bit-wise exclusive or comparison on binary
strings. For example, 11011 & 10110 = 01101. Thus, when we increment the integer that
corresponds to our selection of arbitrary parameters, we need only XOR v with the vectors
whose coefficients have changed from the previous integer, i.e., the vectors whose coefficients

57

are bits that get toggled in the incrementing of the integer. For example, note that if we

start at the integer is 5, we have

bits aad1Qg

Qel50403
o 0101
6 0110
7 0111

100

a3, ag 1009011 110 =001

az

0014 011 =010

As the XOR operation is quick and easy to compute, this makes the determination of the

next position efficient.

Perhaps the biggest advantage of the application of the general polynomial sieve in Example
6.1 over the one presented by Gordon and McCurley is that we sieve over all polynomials
of degree d and below in one fell swoop whereas their sieve loop must be executed for each
fixed u;. Another advantage is that there are basically no restrictions on the forms of the
¢:(x) polynomials, only that they are fixed.

EXAMPLE 6.2: Let the polynomials ¢;(z) € F»[z] be given by

¢1(z)
$a2(x)
$3(z)
®a(
#s(
de(x

A
T

)
)
)

2 +1
'+ +t 41
$22+$19+$2

275

23 4 g3 4 % g
P+l

6
For A(z) = Z a;¢i(z), we wish to determine which choices for the g; will produce a poly-

i=1

nomial that is divisible by g(z) = z* + 2% + 1. We first compute the necessary powers of z

58

modulo g:

= 2241

P = P4z

P = P+ +2+1
z = z+z+1

2 = 2241

¥ = 2241

2 = 4z+1

2 = £ +4+1

¥ = B +z+1

% = P4l +1
2 = P4+l

Now we can compute ¢;(z) mod g for each ¢ by substituting these powers of x into the
proper places for the ¢; and combining like terms. Thus we have that

A(:l:) = (a,1 -+ 0,4) + (ag +a3 + a4+ a5)I + 0% + (al +az+a4+ 0,5)1173 mod g (616)

and solving for the a; gives way to the binary linear system

a1
1 0010 0 |a 0
01111 0{|ag] |0
00000 0f |lag| |[0O]"° (6.17)
1 0111 0| ias 0
-alG-
The row-reduced form of the coefficient matrix is
1 00100
010100
001010 (6.18)
000 0O00

and thus we have that a; = a; = a4, a3 = as, and ag are arbitrary (in F;). Running through
all possibilities for a4, a5, and ag, we add 4 to positions 0, 11, 20, 31, 32, 43, 52, and 63. A

6.2 The Polynomial Sieve Applied to Coppersmith Polynomials

A different strategy for Coppersmith polynomials would be to let u;(z) = Z?:o a;z* and u; =

Z?iﬁl a;z8~@+1) | Then we would run the polynomial sieve for the w; and w, polynomials

59

simultaneously for all irreducibles of degrees up to a given f, marking one array with two
entries in each position. After this was completed, we would search through the array looking
for positions with both entries large enough to ensure that w; and w; were smooth. Then
we would construct and factor those w; and ws.

Yet another strategy could be developed by constructing a sieve that would determine which
uy produced a B-smooth w; for a fixed u;. In Section 5.2 we mentioned that Gordon
and McCurley did not develop such a sieve as it could be difficult to take 2*th roots of
polynomials. The general polynomial sieve developed in the previous section can be applied
to sieve over the w; polynomials efficiently, without the need for square roots. We will now
describe this approach with a little detail and an example.

Given f(r) = 2™+ fi(z), k, 2F, and an irreducible g{z), let u; be fixed. We wish to determine
if the polynomial

wa(x) = w1 (2)2* fu(@)z" 2™ + ua(z) (6.19)
is divisible by g(z). We can do so by first forming the product uy(z)?" fi(x)z"2" =", and then
adding to that product the polynomial

up(2)® = ap + a1z + az*® + - - - + agz®. (6.20)

Then we will have an expression for w; in terms of z and the a;, so we can apply our general
sieving technique to this expression. We can best illustrate this with an example.

EXAMPLE 6.3: Let f(z) =2 +2%+1, h = 11, and 2F = 2. We will fix uy(2) =2 +z+1,
and we wish to determine all u; of degrees up to 6 such that w, is divisible by the irreducible
g(z) = 7° + 2* + 1. Now uy will be of the form

ap + a1 T + asx® + asz® + agz* + asz® + aga’® (6.21)
and thus we will have
uz(z)? = ag + 017% + axx? + azz® + ayz® + agz'® + asz™. (6.22)
We begin by constructing the product

w ()’ fi(z)e*® = (2% +2* +1)(z° + 1)z?
e i S S L (6.23)

So a w, constructed with this u; and a u; of degree less than 7 will be of the form

ag + (a1 + Da? + (ag + D2t + 2° + a3z’ + 27 + (a4 + 1)2° + a5z’ + ' + agx'®. (6.24)

60

We wish to determine conditions on the a; such that ws = 0 mod g. We see that we need
to compute the powers of z up to 12 mod g in order to find the form of w, mod g.

2 = 2241

2 = l+z

o= P4+l

2 = 24242
= 242t
2 = t4z+1

B o= 24224241
™ = gy

Using these we now arrive at an expression for we, mod g.

wy = ap+ (@ +)2 + (e + D)a* + (2° + 1) +as(z? + 2) + (2® +2° + 1)
+ (a+ D)+ +2)+as(z* +a+)+ (@ + 2 +z+1)
+ as(z* +2* +2*+7) modg. (6.25)

Collecting like terms and simplifying we have

wy = (ag+as+ 1)+ (az + a4 + as + ag)z + (a3 + ag + 1)2?
+ (a4 +ag)x® + (a3 + a3 + ag + as + ag)z* mod g. (6.26)

Recall that we want w; = 0 mod g, so we equate each coefficient in (8.21) to 0 and now
must find all solutions to the linear system

Qo
100001 0] |a 1]
0001111} |a 0
010000 1f|a|=|1 mod2. (6.27)
000010 1] |ay 0
0011111 |a| |0
[G6 |

We solve the system in terms of a5 and ag, and let @; = ag, @2 = a5 be arbitrary parameters.
Then all u; that yield a w, that is divisible by g are of the form

g = (a2 + 1) + (o + 1)z + aox? + 012 + agz® + ay2® (6.28)

where o, ap € F;. These u; are the polynomials 1 + z,z + 2 + 7°,1 + z* + 2°, and
z® + 2% + 2% + 28 Thus we would increase the entry in positions 3, 42, 81, and 120 by 5,
and move on to the next irreducible g. A

61

A similar sieve could be developed to fix the u; and find all u; that give a smooth ws, a bit
more arithmetic may be necessary for that approach. As we mentioned before the example,
this sieve could be used in conjunction with the Gordon and McCurley approach. This can
be accomplished by setting up two different arrays for each u;, one that contains the degrees
of irreducible factors of the w; and the other for w;. Once both sieves have been executed,
simply determine which entries give a B-smooth polynomial in both lists.

As we see from our discussion and examples, there are numerous other configurations of this
sieve alone or together with the sieve of Gordon and McCurley that can be developed to find
smooth relations of Coppersmith polynomials. The applications of this sieve are in no way
limited to Coppersmith polynomials, as we will see in the next section.

6.3 The Polynomial Sieve Applied to Semaev Polynomials

As we have already mentioned, we can apply the general polynomial sieve to polynomials of
any given form. One such form is the Semaev polynomials we discussed in section 4.3. For
a given field and integer u = 2*, we have that

C(z)” =D(z) mod f(z) (6.29)

n .
where C(z) = Za,;a:", D(z) = Z a;z', and f(z) = in where 2" is the cardinality of
€Ty i€y, i=0

the field. We can implement this sieve easily for the C(z) polynomials. We illustrate this
with the following example.

EXAMPLE 6.4: We consider the case where n = 28, B = 7, and u = 8. Then the corre-
sponding ordered Semaev sets are

T, = {0,1,4,5,8,11,12}

T.. = {0,8,3,11,6,1,9}.

We are interested in finding all the polynomials C(x) that are divisible by g(z) = z° + 2% +1.
We begin by computing the powers of z mod g. We have

= 2+1

2 = 4z

z = $4+$2

2 = PP+t =2+22+1
22 = s+t +r

% = ()P =gz"+1

! = P+ =c+2+1
2 = Byl 4z

62

Now a polynomial C(z) of this particular form can be written as
C(z) = ap + oy + agz’ + asz® + agx® + an 't + a1z’ (6.30)
and thus we have C(z) mod g is given by

ap + a2 + agx? + as(2® + 1) + as(z® + 2 + 1) + an(z? + £ + 1) + app(2® + 2° +).

(6.31)
Collecting like terms we see that
C(z) = (ap+as+asg+an)+ (e +an+ap)z
+(as + ag + a1 + a12)z* + (as + a12)7® + a4z* mod g (6.32)
and if we want to find the a; that give C(z) =0 mod ¢ we must solve the system
N
1 00111 0] |
0100011 a4 0
0 006111 1ftas]|=|0] mod?2 (6.33)
0 000101 ag 0
_0 0 1 0 0 0 0 an
The row-reduced form of the coefficient matrix is
1 0 0 0 0 0 1]
01000011
001 00O0O¢O0 (6.34)
0001010
0000101

and thus we let a;5 = o; and a;; = ay be arbitrary parameters. Then all polynomials of the
form (8.15) that are divisible by ¢ are given by

o + (o + @)z + ao2® + 7t + apz™ + ayz'? (6.35)

where a; € F,. These polynomials are the zero polynomial and ' + 2% +z, 22+ 28 + 2+ 1,
and z'2 + 21 + 28 + 2% + 1, and we would continue on to the next irreducible of degree 5. A

Note that our array will only need to be 2/T4! elements in length, as we can require that the
kth bit of the integer corresponding to the C(z)} polynomial is equivalent to the coefficient
of the z** term in C(z), where % is the k + 1st element in T,,. For instance, if Ty, is as in the
above example, then we would increase positions 2! + 23 4- 25 = 42, 2° 4 21 4 2% 4 26 = 83,

63

and 2% + 23 + 2% + 25 4 26 = 121 in our array by 5, as ay corresponds to the Oth bit, a5 to
the 3rd bit, and so on.

Just as with Coppersmith polynomials, there are numerous ways to set up this sieve to aid
in the acquisition of smooth relations. Perhaps the most powerful and practical way of doing
so would be to sieve the C(z) and D(z)} simultaneously, using an array with two entries in
each position.

We now conclude our discussion of Stage 1 of the index calculus method for finding discrete
logarithms in a finite field. We have seen that there are many ways to increase the perfor-
mance of this stage, and we hope to have presented a method to aid the search for smooth
relations even further. More work and computational experiments are needed to determine
how these developments will affect the running time of Stage 1.

7 Solving Linear Systems over Finite Fields

7.1 Linear Systems Produced By Index Calculus

We now move on to ways to improve the running time of Stage 2 of the index calculus
algorithm. We will neglect the first step of this stage, which involves taking the logarithm
in base a of both sides of each congruence and placing these into matrix form, as this can be
done in virtually no time at all with minimal computational considerations.. The difficult
part of the stage is the obvious: solving the very large (and sparse) system of congruences
modulo g—1. First we will note that we must be careful in our techniques, as many methods
developed for use over the real numbers may cause some problems when we apply them to
the modular system. One significant (and possibly often encountered) problem is division by
zero: if our modulus is not prime, not every integer will have a multiplicative inverse with
respect to the modulus. In the examples we presented here, each of the linear systems were
solved either with ¢ — 1 being prime or modulo each prime factor of ¢ — 1, then the final
solution was obtained by applying the Chinese Remainder Theorem. In practice, we may run
into situations where ¢ — 1 is prime (or so large that primality is unknown) where we will not
need to worry about division by zero. However it is probable that ¢ —1 will factor into many
primes, some of which may be small (if all were small then we could use the Silver-Pohlig-
Hellman approach). In this case it is actually not recommended that we solve the system
modulo each prime factor, but attempt to solve the system modulo ¢ — 1. If we are to use
Gaussian elimination as our solution method, when we run into an integer that has no inverse,
we simply pivot to another row whose leading nonzero term is invertible. This can break
down if we happen upon a column that has no invertible elements modulo g — 1. McCurley
[34] suggests a approach to recover from this breakdown using the Euclidean algorithm to
introduce zeros into columns under a nonzero element (not necessarily invertible). This
approach will require O{|B|?) operations for the elimination and around O(|B|?) calls to the
extended Euclidean algorithm, which is comparable to ordinary Gaussian elimination.

64

A

One advantage that the discrete linear solver has above solving real systems is that, as
long as our computation allows for integers of arbitrary length, we will always attain an
exact solution, there is no such thing as roundoff error. This is the first indicator to one
of the puzzling questions regarding solving linear system over finite fields (or rings). These
questions include: what sort of methods developed for real methods can we use for discrete
systems? What sort of modifications are necessary to these methods? Why do these methods
work in discrete settings?

7.2 Solution Methods

7.2.1 Ordinary Gaussian elimination

As we already know, we can use Gaussian elimination in just about any setting, continuous
or discrete. However, for use in the index calculus method, this may not be most practical
approach to solving these systems. The size of the system is always an important factor. For
example, suppose we are trying to compute logarithms in a field of order around 25°. Then
an appropriate-sized factor base would consist of all irreducibles of degrees up to 26, which
means that |[B| = 5,387,991. If we are successful in obtaining 2|B| smooth relations, then
we are now faced with the problem of solving a linear system with about 5 x 103 entries.
The ability to store such a system is immediately questioned, for if each entry could be
represented by only one byte, then we would need about 5000 gigabytes to do so. Luckily,
the linear systems produced by Stage 1 have few nonzero entries (especially in the last few
columns) and the storage is no longer infeasible as we need only store those nonzero entries.
This can be shown by examining the sparsity plot of a matrix generated by Matlab (figure
2). The plot is dark wherever there are nonzero entries in the matrix. This particular matrix
was the one produced by the routine gordon. ¢ for n = 66. The matrix has 852 rows and 452
columns, giving a total of 351,024 entries. But only 6484 (2%) of these entries are nonzero.

However, applying our traditional Gaussian elimination to these systems will produce what
is commonly referred to as fill-in, which occurs when many previously zero entries become
nonzero, and the space requirements increase. Also, Gaussian elimination requires on the
order of |B}?® operations, and on a hypothetical computer that could perform a billion op-
erations per second, the solution of the system (for Faseo) would require only around 35000
years to terminate. A little long to wait for a solution, we think.

7.2.2 Structured Gaussian elimination

As we search for ways to solve the linear system AL = b, we should not abandon Gaussian
elimination altogether as a possible aid in our efforts. The objective of the process called
structured Gaussian elimination is to take a matrix that has some special sparsity properties
and exploit those properties in an effort to reduce the original system to a smaller one.
Structured Gaussian elimination takes little time and can be implemented with little space

65

Figure 2: Sparsity plot of the matrix generated by gordon.c for Faee

requirements. The main premise is to determine which columns contribute to the sparsity
of the matrix, and those that contribute to its density. We will label those columns light
and heavy, respectively. The following (taken from [30]) is a description of the basic steps of
structured Gaussian elimination.

1. Delete all columns that have a single non-zero coefficient and the rows in which those
columns have non-zero coefficients.

2. Declare some additional light columns to be heavy, choosing the heaviest ones.

3. Delete some of the rows, selecting those which have the largest number of non-zero
elements in the light columns.

4, For any row which has only a single non-zero coefficient equal to +1 in the light
column, subtract appropriate multiples of that row from all other rows that have non-
zero coefficients on that column so as to make those coefficients 0.

As long as these steps are followed, the number of non-zero coefficients in the light part of the
matrix will never increase. The complete method and its applications are discussed in detail
in [42] and [30]. In some instances in [30], structured Gaussian elimination was successful
in reducing the size of original systems by as much as 95%, and the resulting system could
then be solved by a simple method such as ordinary Gaussian elimination.

66

7.2.3 Iterative and Krylov subspace methods

Over the years many types of iterative methods to find a solution to large (possibly sparse)
linear system over the real numbers have been developed. One such process was developed
by Lanczos [31]. The Lanczos method is similar to a family of methods known as Conjugate
Gradient methods. Thorough explanations and analyses of the conjugate gradient methods
and their variants can be found in [4], [20], [26], and [46]. These methods have also been
implemented for use in the finite field setting, with much success. However, in most of these
methods, scalar multiplication and inner products are required, which can present some
problems in finite fields, mainly division by zero. This can occur during an orthogonalization
process (such as the Gram-Schmidt process) when we need to divide by an inner product.
We could then run into a self-orthogonal vector, i.e., a nonzero vector v such that viv =0.
There is really no such animal as a nonzero self-orthogonal vector over the reals, (aside
from machine error), but they occur frequently in finite fields. This leads us to consider the
geometry of the solution method, and further ask ‘what exactly does a self-orthogonal vector
look like?’ Most iterative methods take a ‘minimization of the residual’ approach to solving
a system Ax = b, where the residual is the vector r given by r = ax — b.

Some methods have been developed especially for application to finite fields. Wiedemann
(58] presents different algorithms for solving sparse linear systems over finite fields, using
the fact that when a square matrix is repeatedly applied to a vector, the computed vector
sequence is actually a linear recursive sequence. Niederreiter ([39]) discusses some topics in
solving linear systems over finite fields. Other methods and variations of known methods
are numerous; [12] and [38] survey some. Active research in this area is plentiful, as solving
linear equations over finite fields is directly related to the problem of factoring large integers,
factoring polynomials, and of course, the discrete logarithm problem.

7.3 Combined Methods

At present, when one wants to solve a large and partially sparse linear system over a finite
field, many of the above methods are integrated to do so. Mostly structured Gaussian
elimination is used at first, reducing the system so that an iterative method such as Lanczos
or Wiedemann can be applied to arrive at the solution. Many such attempts are done in
parallel, but distributed computing is not as attractive as it once was, as slight errors that
can occur in the transfer of information from one machine to another can propagate quickly,
voiding the integrity of the solution.

With the various improvements made to Stage 1 of the index calculus algorithm over the
recent years, Stage 2 remains as our largest obstacle to finding logarithms in finite fields.
Coming across a solution method that does not rely heavily on our computational limits
seems unlikely, although no one knows what the future holds in store for us.

67

8 Conclusions

8.1 Relevance to Cryptography

The discrete logarithm problem has been a virtual ‘thorn in the side’ of many number
theorists and cryptanalysts. Many years have gone by without enough progress to consider
the problem solved. It is highly unlikely that a mathematician will accidentally trip over a
polynomial time algorithm for finding discrete logarithms. So until that watched pot boils,
we continue to, piece by piece, develop and refine the methods available to us. Even though
the main focus this paper may seem relatively obscure to the study of secure information
transfer, it is of significance in the search for cryptosystems impervious to attack. We must
continue to search for ways to improve the known algorithms for finding discrete logarithms
and try to develop new ones. The applicability of this research is evident, for in order to
ensure that Alice and Bob can continue to communicate safely, we must play the role of
Oscar. In this paper we have not changed the current state of public-key cryptosystems;
more work is necessary to determine what impact the general polynomial sieve will have on
the asymptotic running time of the index calculus method. Our computing resources could
not begin to compare to some that are available today, as there are machines that can even
frustrate world chess champions. However, we hope to have presented an interesting new
search direction and/or sparked the reader’s interest for ideas in this area with our brief
survey.

As for the current ability to compute discrete logarithms in practice, we do have some
remarks. As we stated before, Coppersmith successfully computed logarithms of the factor
base for Fyier in 1984, and Odlyzko suggested that logarithms in ¥ were feasible for n
up to 520 (1985). Gordon and McCurley worked on several specific cases of Fzn, including
n = 227,313,401, 503, and 593. They were able to complete Stages 1 and 2 of the index
calculus method for n = 227, 313, and 401, effectively disabling those fields for cryptographic
purposes. For n = 503, a sufficient number of smooth relations have been collected, but (as
of last word) the resulting linear system is yet to be solved. Logarithms in Fises seem to
be out of reach at present, giving some evidence to support Odlyzko’s 1985 conjecture. As
noted in [34], the field Foses is of particular interest, for in 1989 it was known that a Canadian
company named Newbridge Microsystems was producing a Data Encryption Processor chip
that implemented arithmetic in this field, and was intended for use in some cryptographic
protocols whose security was based on the infeasibility of the discrete logarithm problem in
this field. We also see that, with the Gordon and McCurley sieve, one with quite modest
computing resources can complete Stage 1 of the index calculus method in little time.

The ‘hot item’ in cryptography today is the use of elliptic curve groups over finite fields.
An elliptic curve group is additive in structure and the security of many new cryptosytems
is based on the elliptic curve logarithm problem. In [36], Menezes, et al., prove that, for
certain elliptic curve groups, the elliptic curve logarithm problem can be reduced to the
discrete logarithm problem in a finite field. This gives us more fuel for our motivational fire.

68

ity Peob e

N

5.2 The Elliptic Curve Discrete Logarithm Problem

In the mmluplicatve group Zp*, the discrete logarithen problem is: given
elements x and q of the group, and a prime p, find a number & such thatr = g¥
mod p. If the elliptic curve groups iz descrbed using multiplicative netation,
then the elliptic curve diserete logarithm problem is: given peints P and Q in
the group, find & numbes that Pk = Q; & is called the discrete logerithun of Q to
the base P. When the elliptic curve group is described using additive notation,
the elliptc curve discrete logarithm problem is: given points PP snd Q in the
group, find & nurber & such thet P = 4Q

Example:
In the elliptic curve group detined by
YaxteIx+17over Fyy

What is the discrete logarithen & of Q = {4,5) to the base P = (16,5)7

One (naive) way ta find & is to compute multiples of P until Q is found. The
first few multiples of P are:

P = (16,5) 2P = (20,20) 3P = (14,14) 4P = (19,20) 5P = (13,10)
6P = (7.3) TP = (8,7) 8P = (12,17) 9P = (4,5)

Since 9P = (4,5) = Q, the discrete logarithm of Q to the base Pisk = .

In a real application, % would be large enough such that it would be infeasible
to determine & in this manner.

Figure 3: Certicom corp.’s Description of the Discrete Logarithm Problem for Elliptic Curve
Groups.

8.2 Open Questions
We now present some interesting open questions to the reader, cld and new, to be pondered.

Many can be found in other works on the discrete logarithm problem, such as [34] and [51},
and are the questions most relevant to our ability to determine discrete logarithms.

69

o Can one prove the equivalence of the Diffie-Hellman problem and the discrete logarithm
problem?

o Can one prove the heuristic running times of the Coppersmith method, as well as for
the Gordon and McCurley sieve?

e How can one improve the methods for solving large sparse linear systems over finite
fields?

e Why do some methods developed for solving linear systems over the real numbers work
for finite fields?

e Do there exist elliptic curve groups where discrete logarithms are easy, (analogous to
fields with smooth orders)?

¢ Can one develop a better, faster way to sieve polynomials?
e Can one find a polynomial-time algorithm for finding discrete logarithms?

e Are there other cases where discrete logs are easy to find (such as smooth orders)?

As with so many things around us, we close just as we began. According to Hardy, Gauss
and others should be rolling in their graves, for we have now taken some of the purity of
number theory away as we exploit it for our practical purposes. Most often these purposes
are relevant to cryptography, combinatorics, coding theory, and computation, and do have
significant meaning in our ‘human activities.” However, we think Hardy was mistaken in his
judgment. Surely Karl and Evariste would be proud.

References

[1] L. M. Adleman, A subexponential algol'm'thm for the discrete logarithm problem with
applications to cryptography, Proc. 20th IEEE Found. Comp. Sci. Symp. (1979), 55-60.

2] , The function field sieve, Algorithmic number theory, Lec. Notes in
Comp. Sci. 877 1994, Springer-Verlag, 108-121.

[3] L. M. Adleman and J. DeMarrais, A subezponential-time algorithm for discrete loga-
rithms over all finite fields, Math. Comp. 61 (1993), 1-15.

[4] O. Axelsson, Iterative solution methods, Cambridge University Press, 1996.

[5] R. L. Bender and C. Pomerance, Rigorous discrete logarithm computations in finite
fields via smooth polynomials, Computational Perspectives on Number Theory, AMS/IP
Stud. Adv. Math. 7 1998, AMS, Providence, RI, 221-232.

70

[6] E. R. Berlekamp, Factoring polynomials over finite fields, Bell system Tech. J. 46
(1967), 1853-1850.

[7] G. Birkhoff and S. MacLane, A survey of modern algebra, Macmillan, New York, 1977.

(8] 1. F. Blake, R. Fuji-Hara, R. C. Mullin, and S. A. Vanstone, Computing logarithms in
finite fields of characteristic two, SIAM J. Alg. Disc. Methods, 5 (1984), 276-285.

[9] D. G. Cantor and H. Zassenhaus, A new algorithm for factoring polynomials over finite
fields, Math. Comp. 36 (1981), 587-592.

[10] F. Chatelin, Figenvalues of matrices, John Wiley & Sons, Chichester, England, 1993.

[11] D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE
Trans. Inform. Theory, I'T -30, 587-594, 1984.

[12] , Solving linear equations over GF(2): Block Lanczos algorithm, Lin. Alg.
Appl. 192 (1993), 33-60.

[13] D. Coppersmith, A. Odlyzko, and R. Schroeppel, Discrete logarithms in GF(p), Algo-
rithmica 1 (1986}, 1-15.

[14] J. M. Cuneaz, Discrete Logarithms in Finite Fields. Master’s degree project paper.
Department of Mathematical Sciences, Clemson University, April 25,1997.

[15] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Info. Theory,
IT-22 (1976), 644-654.

[16] T. ElGamal, A public key cryptosystem amd a signature scheme based on discrete loga-
rithm, IEEE Trans. Inform. Theory IT-31 (1985}, 469-472.

[17] J. B. Fraleigh, A first course in abstract algebra, Addison-Wesley, Reading, Mass., 1994.

[18] S. Gao, Discrete logarithms and Dickson polynomials, Unpublished notes, Clemson
University, 1996.

[19] J. von zur Gathen and V. Shoup, Computing Frobenius maps and factoring polynomials,
Comput complexity 2 (1992), 187-224.

[20] G.H. Golub and C. F. van Loan, Matriz computation, Johns Hopkins University Press,
Baltimore, 1983.

[21] D. M. Gordon and K. S. McCurley, Massively parallel computation of discrete logarithms,
Advances in Cryptology - Crypto 92, Lec. Notes Comp. Sci. 740 1993, Springer-Verlag,
New York, 312-323.

[22] A. Guest, J. Howell, T. Lemmond, A. Locke, and C. Seawright, Public-key cryptography
and the discrete logarithm problem, Unpublished notes, 1997.

71

[23] L. N. Herstein, Topics in algebra, Blaisdell, New York, 1964.

[24] E. Kaltofen, Polynomial factorization 1982-1986, Computers in Mathematics, Lec.
Notes in Pure and Applied Math. 125 1990, Marcel Dekker, New York, 285-309.

[25] , Polynomial factorization 1987-1991, Proc. Latin '92, Lec. Notes. Comp.
Sci. 583 (Sdo Paulo, Brazil), 1992, 294-313.

[26] C. T. Kelley, Iterative methods for linear and nonlinear equations, Frontiers in Applied
Mathematics, SIAM, Philadelphia, 1995.

[27] N. Koblitz, A course in number theory and cryptography, Springer-Verlag, New York,
1994.

[28] M. Kraitchik, Théorie des nombres, vol. 1, Gauther-Villars, Paris, 1922.

[29] , Recherches sur la théorie des nombres, Gauther-Villars, Paris, 1924.

[30] B. A. LaMacchia and A. M. Odlyzko, Solving large sparse linear systems over finite
fields, Advances in Cryptology - Crypto '90, Lec. Notes Comp. Sci. 537 1991, Springer-
Verlag, 109-133.

[31] C. Lanczos, An iterative method for the solution of the eigenvalue problem of linear
differential and integral operators, J. Res. Nat. Bur. Standards Sec. B, 45, 255-282.

[32] R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, Mass., 1983.

[33] R. Lovorn, Rigorous, subezponential algorithms for discrete logaritm algorithms over
finite fields, Ph. D. Thesis, University of Georgia, June 1992.

[34] K.S. McCurley, The discrete logarithm problem, Proc. Symposia Applied Mathematics,
AMS, 1990.

[35] R. J. McEliece, Finite fields for computer scientists and engineers, Kluwer, Boston,
1987.

[36] A.J. Menezes, I. F. Blake, X. H. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian,
Applications of finite fields Kluwer, Boston, 1993.

[37] R. Merkle, Secrecy, authentication, and public-key systems, Ph.D. dissertation, Dept.
of Electrical Engineering, Stanford Univ., 1979.

[38] P. L. Montgomery, A block Lanczos algorithm for finding dependencies over GF(2),
Advances in cryptology - proceedings of Eurocrypt '95, (Saint Malo, 1995). 106-120,
Lecture Notes in Computer Science, Springer, Berlin, 1995.

[39] H. Niederreiter, Factorization of polynomials and some linear-algebra problems over
finite fields, Lin. Alg. App. 192 (1993), 301-328.

72

[40] ., New deterministic factorization algorithms for polynomials over finite
fields, Finite Fields: Theory, Applications, and Algorithms (G. L. Mullen and P. J.-S.
Shiue, eds.), Contemporary Mathematics 168, Amer. Math. Soc., 1994, 251-268

[41] A. Nijenhuis and H. S. Wilf, Combinatorial algorithms, Academic Press, New York,
1978.

[42] A. M. Odylzko, “Discrete Logarithms in Finite Fields and their Cryptographic Sig-
nificance.” Advances in Cryptology: Proceedings of Furocrypt ’84. Lecture notes in
Computer Science 209 pgs. 224-314.

[43] . Discrete logarithms and smooth polynomials, Finite Fields: Theory,
Applications, and Algorithms (G. L. Mullen and P. J.-S. Shiue, eds.), Contemporary
Mathematics 168, Amer. Math. Soc., 1994, 269-277.

[44] O. Ore, Number theory and its history, Dover, New York, 1976.

[45] R. Peralta, Simultaneous security of bits in the discrete log, Adv. in Cryptology (Proc.
of Eurocrypt ’85), Lecture notes in Computer Science, 219, Springer-Verlag, New York,
1986, 62-72. Springer-Verlag, 1985.

[46] S. Pissanetsky, Sparse matriz technology, Academic Press, London, 1984.

[47] S. Pohlig and M. Hellman, An improved algorithm for computing logarithms over GF(p)
and its cryptographic significance, IEEE Trans. Inform. Theory IT-24 (1978}, 106-110.

[48] J. M. Pollard, Monte Carlo methods for index computation mod p, Math. Comp. 32
(1978), 118-124.

[49] C. Pomerance, Fast, rigorous factorization and discrete logarithm algorithms, Discrete
algorithms and complexity; Proc. Japa-U.S. joint seminar, June 4, 1986, Kyoto, Japan,
Academic Press, Orlando, 1987, 119-143.

[50] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21 (1978), 120-126.

[51] O. Schirokauer, D. Weber, and T. Denny, Discrete logarithms: the effective of the index
calculus method, Algorithmic Number Theory, Lec. Notes Comp. Sci. 1122 (1996),
Springer, Berlin, 337-361.

[52] 1. A. Semaev, An algorithm for evaluation of discrete logarithms in some nonprime finite
fields, Preprint, 1994.

[53] D. Shanks, Class number, a theory of factorization, and genera, Proc. Symposium Pure
Mathematics, AMS, 1972.

[54] L. D. Smith, Cryptography: The science of secret writing, Dover, New York, 1943.

73

[55] D. Stinson, Cryptography: Theory and Practice. Boca Raton, Fl.. CRC Press, 1995.

[56] S. S. Wagstaff Jr., Greateast of the least primes in arithmetic progressiona having a
given modulus, Math. Comp. 33 (1979), 1073-1080.

[57] A.E. Western and J. C. P. Miller, Tables of indices and primitive roots, Royal Society
Mathematical Tables, vol. 9, Cambridge Univ. Press, 1968.

[58] D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Inf.
Theory 32 (1986), 54-62.

74

A primpoly.c

This routine takes as input the degree n of the desired primitive polynomial as well as the
factorization of 2* — 1. The output is the smallest fi{z) such that f(z) = =™ + fi(z) is
primitive.

#include "EB_pX.h"

#include "BB_pXFactoring.h"
#include "BBFactoring.h"
#include "pair.h"

#include "ZZ.h"

#include "vector.h"
#include "vec_ZZ.h"
#include "tools.h"

#include <math.h>

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

BB NextPoly(BB) ;

BB PrimitivePoly(vector(ZZ), long) ;
int NZterms(BB) ;

int main()
{
long n ;
BB fieldPoly, Xtothen ;
double tm ;
vector(ZZ) ord_factors ;

/% Determine the size of the field and construct the primitive polynomial */
cout << "Enter the exponent of 2 \n"
¢in >> n ;
cout << "Enter the vector of factors of 2°n-1 \n" ;
cin >> ord_factors ;

tm = GetTime() ;

fieldPoly = PrimitivePoly(ord_factors, n) ;
tm = GetTime() - tm ;

SetCoeff (Xtothen, n) ;

cout << fieldPoly-Xtothen << endl ;

cout << "time = " << tm << " sec." << endl ;

/*1‘***#**#*#************/
/#*xxxxIncreases a polynomial by 1 (integer representaton)*x#*/

BE NextPoly(BB tP)
{

75

int carry = 1 ;
long i = 0 ;
while(carry)
{
tP.rep[i]++ ;
if (tP.replil)
{
carry = 0 ;
}
i++ ;
}
return (tP) ;

}

/lll!lull******************************t**##***#****************#**/
/****Finds the ’smallest’ primitive polynomial of degree n**#*/

BB PrimitivePoly(vector{(2ZZ) ord_fact, long n)
{
BB tp, Xtothen, triv, primTest ;
long num_factors = ord_fact.length() ;
SetCoeff(tp, n) ;

set(triv) ;
Xtothen = tp ;
int Ok = 1 ;
while(Ok = Q)
{

tp = NextPoly(tp) ;
it (tp.repl0])
{
if (NZterms(tp))
{
if(IterIrredTest(tp)})
{
if (num_factors==1)
{
0k =0 ;
}
else
{
bk =1 ;
while(Dk == 1)
{
int 1 =1 ;
while(i <= num_factors)

{
PowerXMod (primTest, ord_fact(i), tp) ;
if (primTest == triv)

i = nom_factors + 1 ;

76

}
else
{
if{i == num_factors)
{
Ok =0 ;
i+
}

else

return tp ;

}

/****lﬁ********)Il**#***********************#*#******************/

JxwrxnrrsrnksRaturns 1 if polynomial had odd number®s#sssaxmxx/
Jrsiiokioeexsanof nonzero terms, 0 if evensksmkkksdidkddok koo /

int NZterms (BB Poly)
{
long nzTerms = O ;
long k ;
k = deg(Poly) ;
for(int 1=0; i<=k; i++)
{
if (coeff(Poly,i))
{
nzTerms++ ;
}
¥
return(nzTerms % 2) ;

}

77

B indcal.c

This routine takes as input the degree n and the polynomial f1{z) such that f(z) = 2™+ f1(z)
is primitive, as well as the desired smoothness parameter B. The output is the matrix form
of the logarithms of the smooth relations.

#include "BE_pX.h"

#include "BB_pXFactoring.h"

#include "BBFactoring.h"

#include "pair.h"

#include "ZZ.h"

#include "vector.h"

#include "vec_ZZ.h"

#include “"tools.h"

#include <math.h>

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

double pw(double, double) ;

ZZ Poly2Int(BB) ;

BB Int2Poly(ZZ) ;

vector(ZZ) Factors(vector (pair(BB,long))) ;
vector(long) Exponents(vector{pair(BB,long))} ;
long baseSize(long) ;

int SmoothTest(vector(pair(BB,long)), long) ;

int main()

{

/* Initialization */
ifstream fin("PolyList") ;
ofstream fout("indrows.out") ;
ZZ twotothen, expon ;
BB constPoly, fieldPoly, trial, primpart, Xtothem, irrpol ;
vector(pair(BB,long)) factors ;
vector(2Z) ind, rowvec, fac ;
vector(long) expn ;
long B, n, numSmooth, t ;
double tm ;

/* Determine the size of the field and factorbase */
cout << "Enter the exponent of 2 \n" ;
cin >> n ;
SetCoeff (Xtothen, n) ;
cout << "Enter the small part of the primitive polymomial \n" ;
cin >> primpart ;
fieldPoly = primpart + Xtothen ;
BBModulus F ;
build{F, fieldPoly) ;

/* B = ceil{pw((double)n, 1.0L/3.0L)*pw(log(n), 2.0L/3.0L)) ;*/
cout << "Enter degree of factorbase \n" ;

78

cin >>» B ;
cout << "degree of factorbase = " << B << endl ;
cout << "base size = " << baseSize(B) << endl ;

int notdone = 1 ;
while(notdone)
{
fin >> irrpol ;
if (deg(irrpol)>B)
{
notdone=0;
}
else
{
append(ind, Poly2Int(irrpol)) ;
}
}
t = ind.length() ;
rowvec.SetLength(t) ;

/* More initialization »/
set(constPoly) ;
numSmooth = 0 ;
power {twotothen, 2, n) ;
int Dk = 1 ;

tm = GetTime{() ;
/* Begin searching for smooth relations */
while (numSmooth <= 2#%baseSize(B))
{
RandomBnd (expon, twotothen) ;
PowerXMod(trial, expon, F) ;
CanZass{factors, trial) ;

/* If the polynomial is smooth, then print out the relation in matrix form */
if (SmoothTest (factors, B))
{
numSmooth++ ;
clear(rowvec) ;
rowvec(t) = expon ;
fac=Factors(factors) ;
expn=Exponents{factors) ;
for(int i=1; i<=fac.length{); i++)

{
if(fac(i)==2)
{
rowvec(t)=rowvec(t)-expn(i) ;
}
else
{
for(int j=2; j<=t; j++)
{

79

if (fac(i)==ind(j))

{
rowvec(j-1)=rowvec(j-1)+expn(i) ;
}
}
}
}
fout << rowvec << endl ;
}
}
tm = GetTime() - tm ;
cout << numSmooth << endl << "time = " << tm << " sec\n" ;
return 0 ;

}//end main

/*****t***#*********#***********t***#*****************!**#*t*#/
/oexeraxxnksssPower function, for noninteger exponents*ssskssk/

double pw(double x, double p)
{

return exp(p * log(x}) ;
}

/**************t**#************#******t*tttt**#***************/
/#xxwxxxxsxxsxChanges an integer to a polynomial in f_2%xssass/

BB Int2Poly(ZZ total)
{
BB Poly ;
long k ;
for(k=0; k<=log(total)/log(2) + 1; k++)
{
if (bit(total, k))
{
SetCoeff(Poly, k) ;
}
}
return Poly ;

}

/***************************t*t*********************#*********/
[xwxxrkresnkrChanges a polynomial in f_2 to an integerwwissx/

ZZ Poly2Int{(BB Poly)
{
ZZ total = 0 ;
ZZ temp ;
long D = deg(Poly) ;
for(int j=0; j<=D; j++)
{
if (coeff(Poly,j)==1)
{

80

power (temp, 2, j) ;
total = total + temp ;
}
}
return total ;

}

/**************************t****************#**t*t***t*****t**/
JexaxrarrrrsssSplits the vector pair, returns factorsrrxissrs/

vector (ZZ) Factors(vector(pair(BB,long)) P)
{

vector{(2ZZ) fac ;

fac.SetLength(P.length()) ;

for(int j=1; j<=P.length(}; j++)

{

fac(j) = Poly2Int(P(j).a) ;
}
return fac ;

1

/**t****#*#***/
/**xxxeikxkx2Splits the vector pair, reurns the exponents*#**/

vector (long) Exponents(vector(pair(BB,long)) P)
{

vector(long) expe ;

expo.SetLength(P.length()) ;

for(int j=1; j<=P.length(); j++)

{

expo(j) = P(j).b ;
}
return expo ;

¥

/***********t*t***********#**tii*#**t*****************#*ii*t#*t/
Jadnkrrnrasxsrr+tsDatermines the size of the factor basexxxsss*x/

long baseSizae(long t)
{
double 8 = 0 ;
double tmp ;
for (int i=1; i<=t; i++)

{
tmp = pow(2, i);
8 =8 + tmp/i ;
}
return floor(s) ;

}

T et
/HrxskxkknrskxDatermines if a polynomial is B-smooth#skssdisss/

81

int SmoothTest(vector(pair(BB,long)) factors, long B)
{
int IsSmooth =1 ;
for (long j = 1; j <= factors.length(} ; j++)
{
if(deg(factors(j).a) > B)

{
IsSmooth = 0 ;
}
}
return(IsSmooth} ;

}

82

C copper.c

This routine takes as input the degree n and the polynomial fi(z) such that f(z) = 2"+ fi(z)
is primitive, as well as the degree d of the largest u,(x) and uy(z) polynomials. The output
is the matrix form of the logarithms of the smooth relations.

#include "BB_pX.h"

#include "BB_pXFactoring.h"

#include "BBFactoring.h"

#include "pair.h"

#include "ZZ.h"

#include "vector.h"

#include "vec_ZZ.h"

#include "tools.h"

#include <math.h>

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

double pw(double, double) ;

ZZ Poly2Int(BB) ;

BB Int2Poly(ZZ) ;

long LowBit(long)} ;

BB W2_construct(BB, BB, BB, long, long) ;
BB Wi_comstruct(BB, BB, BB, long, long) ;
vector (ZZ} Factors{vector{pair(BB,long})) ;
vector (long) Exponents(vector(pair(BB,long))) ;
long baseSize(long) ;

int SmoothTest({vector(pair(BB,long)), long) ;

int main()

{

/* Initialization »/
ofstream fout("coprows.out") ;
ifstream fin("PolyList") ;
BB w2, wl, Xtothen, irrpel ;
BB euclid, constPoly, fieldPoly, f1 ;
vector(pair(BB,long)) factorsl, factors2 ;
vector(long) exp_wl, exp_w2 ;
vector(ZZ) fac_wl, fac_w2, rowveg, ind ;
long B, t, h, n, twotothek ;
long 1, tt ;
long numSmooth ;
double tm ;

/* Determine the size of the field and the primitive polynomial */
cout << "Enter the expoment of 2 \n" ;
cin >»> n ;
SetCoeff(Xtothen, n) ;
cout << "Enter the small part of the primitive polynomial \n" ;
cin »> f1 ;

83

fieldPoly = f1 + Xtothen ;

/* Determine the Coppersmith parameters */
B = ceil(pw((double)n, 1.0L/3.0L)*pw(log(n), 2.0L/3.0L)) ;
cout << "degree of factorbase = " << B << endl ;
twotothek = ceil(pw{{n/log(n)},1.0L/3.0L)} ;
h = floor{ n/twotothek)} + 1 ;
cout << "2°k = " << twotothek << endl << "h = " << h << endl ;
cout << "base size = " << baseSize(B) << endl ;
cout << "Enter the maximum size of ul,u2 \n" ;
cin >> t ;

/% Initialize the vector of irreducibles in the factor base */
int notdone = 1 ;
while(notdone)
{
fin >> irrpol ;
if{deg(irrpol)>B) notdone=0;
else append(ind, Poly2Int(irrpol)) ;
}
tt = ind.length() ;
rowvec.SetLength(tt) ;

/* More initialjzation */
set (constPoly) ;
numSmooth = O ;
tm = GetTime() ;
int Ok = 1 ;

BB ul, u2 ;

/* Begin searching for smooth Coppersmith relations */
while (numSmooth <= 2sbaseSize(B))
{
random{ul, t+1) ;
random{u2, t+1) ;
GCD(euclid, ui, u2) ;

/* If gcd(ul,u2)=1, then construct and factor wi =/
it (euclid == constPoly)
{
wi = Wi_construct(ul, u2, fieldPoly, h, twotothek) ;
CanZass{factorsl, wl) ;
if (SmoothTest (factorsl, B))
{

/* If the wi is smooth, construct and factor w2 */
w2 = W2_construct(ul, u2, fieldPoly, h, twotothek) ;
CanZass(factors2, w2) ;
if (SmoothTest (factors2, B))
{

84

/* 1f both are smooth, then print the output in matrix form */
numSmooth++ ;
clear (rowvac) ;
fac_wi=Factors{factors1) ;
fac_w2=Factors{factors2) ;
exp_w2=Exponents(factors2) ;
exp_wl = Exponents(factorsi) ;
for(int jj=1; jj<=exp_wi.length(); jj++)

{
exp_wi(jj) = twotothek+exp wi(jj) ;
}
for(int jj=1; jj<=factorsl.length(}; jj++)
{
factorsi(jj).b = twototheksfactorsi(jj).b ;
}
for(int ii=1; ii<=fac_wl.length(}; ii++)
{
if(fac_wi(ii)==2) rowvec(tt)=rowvec(tt)-exp_wi(ii) ;
else
{
for(int j=2; j<=tt; j++)
{
if (fac_wi(ii)==ind(j)) rowvec(j-1)=rowvec(j-1)+exp_wi(ii} ;
}r}
for(int ii=1; ii<=fac_w2.length(); ii++)
{
if (fac_w2(ii)==2) rowvec(tt)=rowvec(tt)+exp_w2(ii) ;
else
{
for(int j=2; j<=tt; j++}
{
if (fac_w2(ii)==ind(j)) rowvec(j-1)=rowvec(j-1)-exp_w2(ii) ;
}}}
fout << rowvec << endl ;
}
}
}
}
tm = GetTime() - tm ;
cout << numSmooth << endl << "time = " << tm << " sec\n" ;
return 0 ;

}//end main

J AR AR A A AR R RO KR oo AR ORI IO KRR AR Rk [
/**xxkxkkrekenPoyer function, for noninteger exponentssssskxss/

double pw(double x, double p)

{
return exp(p * log(x)) ;
}

85

/**#*t#*/
JHekskesneskkxChanges an integer to a polynomial in f_2stdes/

BB Int2Poly{(ZZ total)
{
BE Poly ;
long k ;
for(k=0; k<=log(total)/log(2) + 1; k++)
{
if (bit(total, k))
{
SetCoeff (Poly, k) ;

}
+

return Poly ;

}

ek e s ek s KSR Ko o oo o S s o S I ORI MR K Aok ok o/
/asiomkiaxaxsxsChanges a polynomial in £_2 to an integerks#kwis/

ZZ Poly2Int (BB Poly)
{
ZZ total = 0 ;
ZZ temp ;
long D = deg(Poly) ;
for(leng j=0; j<=D; j++)
{ .
if (coeff(Poly,j)==1)
{
power (temp, 2, j) ;
total = total + temp ;
}
}

return total ;

}

/A A AR A A A A AR IOI KRR AR A ARk ok ok ok /
/wskkakrsrsxksReturns the lowest nonzero bit of an integersxsx/

long LowBit(long t)
{
long ee = 0 ;
while(!bit(t, ee))
{

agtt;
}

return ee ;

}

/#**#**************************t****##****************!*****#t/
[EekkkaokkkxConstructs the w_2 Coppersmith polynomialssksxs/

86

BB W2_construct(BB ui, BB u2, BB fieldPoly, long h, long twotothek)
{

BB tmpl, tmp2, tmp3, tmpd, Xtothen, w2 ;
long n = deg(fieldPoly) ;

long expon = hxtwotothek - n ;

SetCoeff (tmpl, expon) ;

SetCoeff (Xtothen, n);

PowerMod(tmp2, ul, twotothek, fieldPoly) ;
tmp3 = tmp2*tmpl*(fieldPoly - Xtothen) ;
PowerMod(tmpd, u2, twotothek, fieldPoly) ;
w2 = tmp3 + tmpd ;

return w2 ;

}

/****t******************************#t**##t********#***!ltt*##/
JHeresrperrexxCongtructs the w_1 Coppersmith polynomialskiisss/

BB Wi_construct{BB ul, BB u2, BB fieldPoly, long h, long twotothek)
{

BB tmpl, tmp2, wl ;

SetCoeff (tmpl, h} ;

MulMed(tmp2, ul, tmpl, fieldPoly) ;

wl = tmp2 + u2 ;

return w1l ;

}

/**t************/
/*xrxnkxkseks£Splits the vector pair, returns factors*xsssrsss/

vector(ZZ) Factors(vactor{pair(BB,long)) P)
{

vector{ZZ) fac ;

fac.SetLength(P.length()) ;

for(int j=1; j<=P.length(); j++)

{

fac(j) = Poly2Int(P(j).a) ;
}
return fac ;

}

/*********t*#***#********************#t***********t********tt#/
/HwikmxxnrrexxSplits the vector pair, returns the exponents*»*/

vector(long) Exponents(vector(pair(BB,long}) P)
{
vector(long) expo ;
expo.SetLength(P.length{(}) ;
for(int j=1; j<=P.length{); j++)
{
expo(j) = P(j).b ;

87

¥

return expo ;

¥

/*lll*****#****************#************************t************/
JenxrnssresrernsusDatermines the size of the factor basexwxxxxx/

long baseSize({long t)
{
double 8 = 0 ;
double tmp ;
for (int i=1; i<=t; i++)
{
tmp = pow{2, i);
s = s + tmp/i ;
}
return floor(s) ;

}

SRR A A AR RO AR AR A R R R AR R
/*s#sknxnnxxesDatermines if a polynomial is B-smoothkkkkskxsiis/

int SmoothTest(vector(pair(BB,long)) factors, long B}
{
int IsSmooth = 1 ;
for (long j = 1; j <= factors.length() ; j++)
{
if (deg(factors(j}.a) > B)
{
IsSmooth = 0 ;
}
}
return(IsSmooth) ;

}

88

D gordon.c

This routine takes as input the degree n and the polynomial fi{z) such that f(z} = 2"+ fi(z)
is primitive, as well as some sieve parameters. The first is the degree of the largest u, (z) to
sieve over, and then the user inputs the integers corresponding to the u;(x) to start sieving
with and stop sieving with. The output is the matrix form of the logarithms of the smooth
relations.

#include "BB_pX.h"

#include "BB_pXFactoring.h"

#include "BBFactoring.h"

#include "pair.h"

#include "ZZ.h"

#include "vector.h"

#include "vec_ZZ.h"

#include "tools.h"

#include <math.h>

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

double pw(double, double) ;

ZZ Poly2Int(BB) ;

long Poly2Long(BB) ;

BB Int2Poly(ZZ) ;

long LowBit{long) ;

vector(long) SieveLoop(BB, long, long, long) ;
BB W2_construct (BB, EB, BB, long, long) ;

BB Wi_construct(BB, BB, BB, long, long) ;
vector (ZZ) Factors{vector(pair(BB,long)}) ;
vector(long) Exponents(vector(pair(BB,long))) ;
long baseSize(long) ;

int SmoothTest (vector{pair(BB,long)), long)} ;

int main()

{

/* Initialization */
ifstream fin("PolyList") ;
ofstream fout("gordrows.out") ;
BE u2, g, quitter, Xtothen, gxl, w2, %1 ;
BB euclid, constPoly, fieldPoly, f1, irrpol ;
vector (pair (BB,long)) factorsl, factors2 ;
vactor(ZZ) fac_wl, fac_w2, rowvec, ind ;
vactor(long) s, exp_wl, exp_w2 ;
ZZ ust, usp, tmp ;
long B, t, h, n, twotothek, bs ;
long i, tt ;
long numSmooth ;
double tm ;

/* Determine the size of the field and construct the primitive polymomial */

89

cout << "Enter the exponent of 2 \n" ;

¢in >> n ;

SetCoeff (Xtothen, n} ;

cout << "Enter the small part of the primitive polynomial \n'
cin >> £1 ;

fieldPoly = f1 + Xtothen ;

/* Determine the Coppersmith parameters */
B = ceil{pw((double)n, 1.0L/3.0L)*pw(log(n), 2.0L/3.0L)) ;
cout << "degree of factorbase = " << B << endl ;
twotothek = ceil (pw((n/log(n)),1.0L/3.0L)) ;
h = floor(n/twotothek } + 1 ;
cout << "2°k = " << twotothek << endl << "h = " << h << endl ;
bs = baseSize(B) ;
cout << "size of factor base = " << bs << endl ;

cout << "Enter the maximum size of u2 to sieve over\n" ;
cin >> t

/* Initialize the vector of irreducibles in the factor base */
int notdone = 1 ;
while(notdone)
{
fin >> irrpol ;
if(deg(irrpol)>B) notdone=0;
else append(ind, Poly2Int{irrpol)) ;
} |
tt = ind.length() ;
rowvec.SetLength(tt) ;

/* Enter the sieve parameters #/
cout << "Enter the integer to start the sieve (ul) \n" ;
cin >> ust ;
BB uStart = Int2Poly(ust) ;
cout << "Enter the integer to stop the sieve " << endl ;
cin >> usp ;
BB uStop = Int2Poly(usp) ;

/* More initialization */
set(constPoly) ;
numSmooth = § ;
tm = GetTime() ;

int Ok =1 ;

BB ul = uStart ;
wvhile (0Ok)

{

s = Sieveloop(ul, t, B, h) ;

/* Determine which pairs of ul, u2 produce smooth wl */
for(i=0; i< s.length() ; i++)

90

{
if(s[i] »>= deg(ul) + h - B)
{
u2 = Int2Poly(i) ;
GCD(euclid, ul, u2) ;

/* If the wi is smooth and gcd(ul,u2)=1, then construct and factor w2 =/
if (emclid == constPoly)
{
w? = W2_construct{ul, u2, fieldPoly, h, twotothek) ;
CanZass{factors2, w2) ;
if (SmoothTest (factors2, B))
{

/* If the w2 is smooth, construct and factor wl »/
wi = Wi_censtruct(ul, u2, fieldPoly, h, twotothek) ;
CanZass(factorsl, wi) ;
if (SmoothTest (factorsli, B))
{

/* If both are smooth, then print the output in matrix form */
numSmooth++ ;
clear(rowvec) ;
fac_wi=Factors{factorsl) ;
fac_w2=Factors (factors2) ;
exp_w2=Exponents{factors2) ;
exp_wl = Exponents(factorsl) ;
for(int jj=1; jj<=exp_wi.length(); jj++)
{

exp_wi(jj) = twotothek*exp_wi(jj) ;

1
for(int ii=i; ii<=fac_wi.length(}; ii++)
{
if(fac_wi(ii)==2) rowvec(tt)=rowvec(tt)-exp_wi(ii} ;
else
{
for(int j=2; j<=tt; j++)
{
if(fac_w1(ii)==ind(j)) rowvec(j-1)=rowvec(j-1)+exp_wi(ii) ;
}r1}
for(int ii=1; ii<=fac_w2.length(); ii++)
{
if(fac_w2{ii)==2) rowvec(tt)=rowvec(tt)+exp_w2(ii) ;
alse
{
for(int j=2; j<=tt; j++)
{ ‘
if (fac_w2(ii)==ind(j)) rowvec(j-1)=rowvec(j-1)-exp_w2(ii) ;
}r}
fout << rowvec << endl ;

}
}

91

}
}
}

/* Increment u_1 and see if we are done */
if (numSmooth > 2*bs)
{
Ok = 0 ;
}
tmp = Poly2Int{ul} ;
tmp++ ;
if (tmp == usp)
{

ul = Int2Poly(tmp) ;
}
tn = GetTime() - tm ;
cout << numSmooth << endl << "time = " << tm << " sec\n" ;
return 0 ;
}//end main

/**********************************t****************#*********/
JerxwwsnnernraPover function, for noninteger exponents*ksxxxxk/

double pw(double x, double p)
{

return exp(p * log(x)) ;
}

/***********#***##**************#tttt**#*********#****t*t###**/
/xxwerrnnrxxs*Changes an integer to a polynomial in f_2«»#xske/

BB Int2Poly(ZZ total)
{
BB Poly ;
long k ;
for(k=0; k<=log(total+l)/log(2) + 1; k++)
{
if (bit(total, k))
{
SetCoeff(Poly, k) ;
}
}

return Poly ;

}

pramemp———— P T TP B P P AR R S S LSS L L L L
Jreesmnxnrrss+Changes a polynomial in f_2 to an integers+ssx/

ZZ Poly2Int{BB Poly)
{

92

ZZ total = 0 ;
ZZ temp ;
iong D = deg{(Poly) ;
for{int j=0; j<=D; j++)
{
it (coeff(Poly,j)==1)
{
pover(temp, 2, j) ;
total = total + temp ;
}
}
return total ;

)

/*llululnllll**********************##**1*t****************#tt*t*****/
J*xxxeeukaxxkkChanges a polynomial in £_2 to a long integerks=/

long Poly2Long(BB Poly)
{
long teotal = 0 ;
long D = deg(Poly) ;
for(int j=0; j<=D; j++)

{
if (coeff{(Poly,j)==1)
{

total = total + pow(2,j) ;

}

}

return total ;

}

AR AR R AR R AR A KA AR IR Ao o R R KRR
/a*reeerkesnxrRoturns the lowest nonzero bit of an integerm##*/

long LowBit(long t)
{

long ee = 0 ;
while(!bit (t, ee))
{

ae++;

}

return ee ;

J AR A Ak R ORIOR IR R AR Ok ROk sk ok ok
JakeerseensnrkThe main Gordon-McCurley sieveing loophssdisokkskk/

vector (long) Sieveloop(BB ul, leng t, long B, long h)

{
ifstream fin("PolyList") ;

93

vactor(long) s ;

BB Xpoly, g, gxl, u2 ;

long twototheT = pow(2, t) ;
s.SetLength(twototheT) ;

/* Main sieving loop */
int NotDone = 1;
while(NotDone)
{
fin >> g ;
long d = deg(g) ;
if (d <= B)
{
long dim = max{(t-d, 0) ;
clear(Xpoly) ;
SetCoeff(Xpoly, h) ; /* x"h */
MulMod{u2, ui, Xpoly, g) ; /* u2 = ul*x"h mod g *»/
if (deg(u2) < t)
{
long twotothedim = pow(2, dim) ;
for (long i=1; i<=twotothedim; i++)
{
long indl = Poly2Long(u2) ;
s[indi} = s[indl] + 4 ;
clear (Xpoly) ;
SetCoeff (Xpoly, LowBit(i)) ;
mul (gxl, g, Xpoly) ;
add(u2, u2, gxl) ;
}//end for
}//end if
}//end if
else
{
NotDone = O ;
}//end else
}//end while
return s ;

}

/***#**ll‘**t**********t***************#******#***kt******lHl****/
/axmxxansekeaxConstructs the w_2 Coppersmith polynomialsssskick/

BB W2_construct(BB ul, BB u2, BE fieldPoly, long h, long twotothek)
{

BB tmpl, tmp2, tmp3, tmp4d, Xtothen, w2 ;
long n = deg(fieldPoly) ;

long expon = h*twotothek - n ;

SetCoeff (tmpl, expon} ;

SetCoeff(Xtothen, n);

PowerMod(tmp2, ul, twotothek, fieldPoly) ;
tmp3 = tmp2*tmpi*(fieldPoly - Xtothen) ;

94

PowerMod (tmp4, u2, twotothek, fieldPoly) ;
w2 = top3 + tmpd ;
return w2 ;

}

/*********************************#***************#*****#*****/
JxsoesexrxaarConstructs the w_1 Coppersmith polynomialsssxxss/

BB W1_construct(BB ul, BB u2, BB fieldPoly, long h, long twotothek)
{ .
BB tmpl, tmp2, wl ;

SetCoeff(tmpl, h) ;

MulMod (tmp2, ul, tmpl, fieldPoly) ;
wl = tmp2 + u2 ;

return wi ;

}

J ke ok ok O KA R AR RO R R ok
Jerxrxxkessx*%Splits the vector pair, returns factorsiskdkuiork/

vector(ZZ) Factors(vector(pair(BB,long)) P)
{

vector(ZZ) fac ;

fac.SetLength(P.length()) ;

for(int j=1; j<=P.length(); j++)

{

fac(j) = Poly2Int(P(j).a) ;
}

return fac ;

}

/******************tt#*****************tt*##*****##******!t##t/
J4ssnockrerxxxSplits the vector pair, returns the exponents***/

vector (long) Exponents(vector(pair(BB,long)) P)
{

vector(long) expo ;

expo.SetLength(P.length()) ;

for(int j=1; j<=P.length(}; j++)

{

expo(j) = P(j).b ;
}
return expo ;

}

/***#*****l**********/
JakdorkokmikakeknkxDetermines the size of the factor basexssxx*#/

long baseSize(long t)

{
double 8 = O ;
double tmp ;

95

for (int i=1; i<=t; i++)
{
tmp = pow(2, i);
s = 5 + tmp/1 ;
1
return floor(s) ;

}

/*****li*lll***#*******#*********************t*#**###***********t*/
/xxxxxexsxrxrsDetermines if a polynomial is B-smoothsxexssxxxrs/

int SmoothTest(vector(pair(BB,long)) factors, long B)
{
int IsSmooth = 1 ;
for (long j = 1; j <= factors.length() ; j++)
{
if (deg(factors(j).a) > B)
{
IsSmooth = 0 ;
}
}

return{IsSmooth) ;

96

Index

algorithm Gray code, 45
Coppersmith polynomial sieve, 46 group, 8
Coppersmith’s, 32 additive, 8
deterministic, 11 cyclic, 8, 18, 24
discrete logarithm, 68 elliptic curve, 8, 68
discrete logarithm problem, 11 multiplicative, 8
ﬁleif'ir:gis oglznomlal sieve, b4 Kerckhoff’s principle, 5
index calculus, 18, 19 key, 6
Pollard, 14 keyspace, 6
polynomial factorization, 25 known plaintext attack, 7
Semaev’s, 38 Lanczos method, 67
Shanks’, 12 logarithms
Silver-Pohlig-Hellman, 14, 15 factor base, 31, 37

thnese Remainder Theorem, 14, 19, 64 Maple, 23, 30, 37

ciphertext, 6 Matlab, 65

conjugate gradient method, 67

cryptography, 5 nonprime field, 22

cryptosystem, 6 NTL, 23, 26

private-key, 7

public-key, 7, 9 one-way function, 7
! ?

order
decryption, 6 element, 12
Diffie-Hellman field, 23
Assumption, 9 group, 8

Key Exchange System, 8

discrete logarithm problem, 8 plaintext, 6

polynomial
ElGamal Cryptosystem, 9 C?PPersmith, 38, 59
encryption, 6 DICkS‘?n’ 38
exclusive or, 57 factoring, 25
irreducible, 22
factor base, 18, 26, 65 primitive, 24
logarithms, 31 random, 32
fill-in, 65 Semaev, 38, 62
finite field, 8, 22 sieve, 41
. e s smooth, 32, 43
Gaussian elimination, 64, 65 prime field, 20
structured, 65 . eps
primitive

generator, 8, 18

GP/Pari, 13, 16, 23 element, 8, 24, 40
H ? ?

polynomial, 24

98

RSA cryptosystem, 5, 7

self-orthogonal, 67
sieve, 41
Coppersmith polynomial, 46
function field, 40
general polynomial, 52, 54
Gordon and McCurley, 44, 52
of Eratosthenes, 41
polynomial, 41, 59, 62
smooth, 42
integer, 14
order, 14
polynomial, 32
relation, 18, 19, 27, 43
sparse, 64
symmetric difference, 57

trapdoor one-way function, 7

XOR, 57

99

