
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 58, NO. 10, OCTOBER 2011 2947

Multiscale Modeling of Calcium Dynamics
in Ventricular Myocytes With Realistic

Transverse Tubules
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Abstract—Spatial-temporal Ca2+ dynamics due to Ca2+ re-
lease, buffering, and reuptaking plays a central role in studying
excitation–contraction (E–C) coupling in both normal and diseased
cardiac myocytes. In this paper, we employ two numerical meth-
ods, namely, the meshless method and the finite element method,
to model such Ca2+ behaviors by solving a nonlinear system of
reaction–diffusion partial differential equations at two scales. In
particular, a subcellular model containing several realistic trans-
verse tubules (or t-tubules) is investigated and assumed to reside
at different locations relative to the cell membrane. To this end,
the Ca2+ concentration calculated from the whole-cell modeling
is adopted as part of the boundary constraint in the subcellular
model. The preliminary simulations show that Ca2+ concentra-
tion changes in ventricular myocytes are mainly influenced by cal-
cium release from t-tubules.

Index Terms—Calcium dynamics, finite element methods
(FEMs), meshless methods, numerical simulation, ventricular
myocytes.

I. INTRODUCTION

THE HIGH prevalence of heart failure is largely due to our
lack of accurate understanding of the complex pathology

including abnormal excitation–contraction (E–C) coupling in
cardiomyocytes. The architecture of uniquely developed mem-
brane organelles in ventricular myocytes, including transverse
tubules (t-tubules) and junctional sarcoplasmic reticulum (jSR),
and the arrangement of associated proteins are known to play
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a major role in dynamically controlling intracellular Ca2+ lev-
els, which in turn regulate cardiac contraction and other cellular
functions [1]. For its central role in E–C coupling, modeling
Ca2+ release, and concentration change has been an active re-
search area and is typically studied in two ways: stochastic
approaches that employ Monte Carlo simulation [2] and de-
terministic approaches based on partial differential equations
(PDEs) [3]. While stochastic simulation at the nanometer scale
provides elementary information on Ca2+ dynamics, cardiac
cell contraction is most closely related to the intracellular Ca2+

concentration level [Ca2+ ]i [4]. For this reason, our interest
in this paper is to investigate spatial-temporal variations of in-
tracellular Ca2+ concentration at cellular and subcellular lev-
els, where the stochastic behavior of Ca2+ dynamics is so in-
significant that deterministic methods utilizing PDEs are more
appropriate.

Most of the previous work using PDEs to study Ca2+ dynam-
ics was conducted based on idealized geometries such as cylin-
drical shapes [3], [5]. As pointed out in [2] and [3], geometric
changes may significantly influence the behaviors of Ca2+ dy-
namics both locally and globally. For example, the heart failure
is closely related to rearrangement or lack of t-tubules in cardiac
cells [6], [7]. In fact, a recent study by Cheng et al. [8], which
utilizes a single t-tubular branch generated from light micro-
scopic images, suggests that the quantitative understanding of
Ca2+ signaling requires more accurate knowledge of t-tubular
ultrastructures. Thus, one of the focuses in this paper is to in-
clude nanometer-scale, realistic surface geometries of multiple
t-tubules that are constructed from 3-D electron microscopic
(EM) images of the ventricular myocytes of an adult mouse [9].
It is worth noting that in mice both transverse tubules and axial
tubules are found and often known as transverse-axial tubules
(or TATs) [10]. However, t-tubular branches are naturally more
frequently observed than axial tubules. In addition, the 3-D EM
tomographic data we have used for the current study are so thin
that there is no obvious axial tubule in the image. Therefore, we
shall still adopt the name “t-tubule” instead of “TAT” throughout
this paper.

The underlying PDEs describing Ca2+ dynamics in ventric-
ular myocytes may be numerically solved by such techniques
as the finite difference method (FDM) [11], the finite element
method (FEM) [12], [13], the finite volume method [14], and
the boundary element method [15]. All these methods are mesh
based, meaning that meshes or grids must be constructed on
the problem domain. Another numerical approach known as
the meshless method [16] does not require explicit meshes and,
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Fig. 1. (a) Multiple t-tubule geometry and its surrounding box domain, de-
noted by Ω. The red color in Ω represents t-tubules (denoted by Γ1 ), the top blue
face of the box (denoted by Γ2 ) satisfies the Dirichlet boundary condition, and
a reflective boundary condition is assumed on the remaining boundary faces (in
green). (b) One slice of the 3-D electron tomographic map, showing t-tubules in
dark regions surrounded by jSR. (c) Model in (a) is placed at various locations
in a simplified whole-cell model at a distance d (d =, 2, or 0 μm) from the cell
membrane.

thus, has gradually become popular in the past two decades.
Our recent work (unpublished) has shown that this method can
be easily adapted to handle very large systems. However, nu-
merically it is not as stable as the FEM. For these reasons, in
this study, we employ both meshless and FEMs to study Ca2+

dynamics at different scales.

II. GEOMETRIC AND MATHEMATICAL MODELING

A. Geometric Model

Fig. 1(a) shows the geometric model containing several t-
tubules extracted from the ventricular myocytes of an adult
mouse. The details of EM imaging and 3-D tomographic re-
construction can be found in [9]. The algorithmic details of
image processing and boundary segmentation are described
in [17]. Fig. 1(b) shows one slice of the reconstructed to-
mographic map, where dark regions are t-tubules surrounded
by jSR (not considered in this study). The rectangle-shaped
model in Fig. 1(a), denoted by Ω ⊂ R

3 , is the problem domain
in our simulations and the dimension of the box is measured
2.81μm × 2.79μm × 0.24μm. The boundary Γ1 (in red) rep-
resents realistic t-tubules and Γ2 (in blue) is the top face of Ω.
Because the location of the constructed t-tubules in the ventric-
ular myocyte is unknown and we are also interested in the roles
of t-tubules and cell membrane in calcium dynamics, we shall
consider three cases in our simulations by placing the model in
Fig. 1(a) in a simplified whole-cell model such that the top face
Γ2 is at a distance d (d = 8 , 2, or 0μm) away from the cell
membrane [see Fig. 1(c)].

B. Governing Equations

The following nonlinear reaction–diffusion equations, de-
fined on the model described earlier, are modified from [18]

∂[Ca2+ ]i
∂t

= DC a∇2 [Ca2+ ]i−
3∑

m=1

RBm−RBs, Ω

∂[CaBm ]
∂t

= DC aBm∇2 [CaBm ] + RBm ,m = 1, 2, 3, Ω

∂[CaBs ]
∂t

= RBs
, Ω

∂[Ca2+ ]i
∂t

= DC a∇2 [Ca2+ ]i + JC aflux, Γ1

[Ca2+ ]i = [Ca2+ ]i0 ,Γ2 (1)

with the following initial conditions:

[Ca2+ ]i = 0.10μM, [CaB1 ] = 11.92μM

[CaB2 ] = 0.97μM, [CaB3 ] = 0.13μM

[CaBs ] = 6.36μM.

The boundary Γ2 [the top face in Fig. 1(a)] satisfies the Dirich-
let boundary condition, and a reflective boundary condition is
assumed on the remaining faces of the box. The Ca2+ concentra-
tion, [Ca2+ ]i0 , on Γ2 is obtained from the whole-cell modeling
using the messless method (see later).

In our model, three types of mobile Ca2+ buffers (Fluo-
3, ATP, and calmodulin, denoted by Bm , m = 1, 2, 3, respec-
tively), and one type of stationary Ca2+ buffers (troponin, de-
noted by Bs) are considered. Their concentrations are denoted
by [Ca2+ ]i , [CaBm ],m = 1, 2, 3, [CaBs ], respectively. The re-
actions between Ca2+ ions and buffers are defined as follows:

RBm = km
+ ([Bm ] − [CaBm ]) [Ca2+ ]i − km

− [CaBm ] (2)

RBs = km
+ ([Bs ] − [CaBs ]) [Ca2+ ]i − km

− [CaBs ] (3)

where m = 1, 2, 3.
At the resting (initial) state, we assume uniform distributions

of all the buffers throughout the cytosol. The resting concen-
trations of mobile and stationary buffers satisfy equilibrium
conditions (i.e., RBm = RBs = 0) [19] with the resting Ca2+

concentration at 0.1μM. The total Ca2+ flux, JC aflux, on the
t-tubule surface is defined as in [18]

JC aflux = JC a + JN C X − JpC a + JC ab (4)

where calcium influx/efflux through L-type calcium channels
LCCs, JC a , sodium–calcium exchangers NCXs, JN C X , cal-
cium pump efflux JpC a , and calcium background leak influx
JC ab are included. The current densities, IC a , IN C X , IpC a , and
IC ab , are calculated the same as in [18]. The physical constants
and parameters are taken from [18] and [20]. To calculate the to-
tal Ca2+ flux, JC aflux , each of the current densities is converted
into Ca2+ flux by using

Ji = βi
Vmc

Smc

(
1

2F

Cm

Vcell

)
Ii (5)
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Fig. 2. (a) Whole-cell model of approximately 120 μm × 20 μm × 20 μm,
with t-tubules and all intracellular structures excluded. Indicated in green is a
scanning line going through the center of the cell, with five feature spots that are
2 , 4, 6, 8, and 10 μm away from the cell membrane. (b) Local Ca2+ transients
taken at the five feature spots shown in (a).

with i = Ca,NCX, pCa, or Cab. The capacitance to rendered
volume ratio (Cm /Vcell) is assumed to be 8.8pF/pL [21]. Note
that Smc is the total area of t-tubule membrane where Ca2+ -
related channels reside and Vmc is the volume of the model.
In Fig. 1(a), Vmc = 1.782μm3 , and Smc = 0.919μm2 . The
model-dependent scaling parameter, βC a = 4.0, and βN C X =
βpC a = βC ab = 1.0. The voltage clamp protocol is assumed to
hold the potential −50 mV with an electric pulse of 10 mV for
70 ms [18].

III. METHODOLOGY

To solve the system of equations in (1), we use an explicit
time-stepping method in time and the FEM in space. Since we
consider Γ2 at different locations in a simplified ventricular
myocyte, predicting the initial Ca2+ concentration, [Ca2+ ]i0 ,
on Γ2 is necessary and is performed by using the meshless
method.

A. Meshless Method

A simplified whole-cell model, as shown in Fig. 2(a), is con-
sidered. To predict spatial-temporal Ca2+ concentrations in a
large domain, the meshless method is a good choice compared
with other numerical methods, for its implementation simplicity,
time efficiency, and effectiveness in dealing with complicated
geometries [22]. In particular, the FDM has been utilized in [5]
for whole-cell calcium modeling, but the meshless method can
handle smooth yet complex domain boundaries more effectively.
In our meshless method, the operator-splitting method is used
to decouple the PDEs and to separate nonlinear sources and the
Laplacian operators. The local radial basis function collocation
method (LRBFCM) [16] is employed to approximate Laplacian
terms at every time step. With the predicted spatial-temporal
Ca2+ concentrations, Fig. 2(b) shows local Ca2+ transients at
five representative spots that are 2 , 4 , 6 , 8 , and 10μm away
from the cell membrane. For the subcellular modeling problem
[see Fig. 1(a)], we consider three locations [see Fig. 1(c)], where

d = 0 μm, 2 μm, 8 μm. The concentrations at these locations
in the whole-cell modeling shall be used later as the boundary
condition for Γ2 in the system (1).

B. FEM

With the initial concentration [Ca2+ ]i0 predicted on Γ2 , we
employ the finite element toolkit FETK (http://FETK.org) and
the CSMOL software (http://mccammon.ucsd.edu/smol/) [23]
to solve the system (1) on the geometric model shown in
Fig. 1(a). The software toolkit called GAMer [24] is used to
discretize the complex domain into a tetrahedral mesh. In the
present simulation, we have 83 614 nodes (vertices) and 350 249
tetrahedra. The time-step size is chosen as 4 ms. It takes about
55 min to compute the concentrations for a time period of
[0, 400 ms] on a single Intel Xeon-based processor (3.00 GHz).
The numerical results next are visualized by Meshlab and
MATLAB 2.7.7.

IV. RESULTS

In this study, the SR has been excluded from the finite ele-
ment simulations shown later. Fig. 3 shows the results with the
presence of 100μM Fluo-3, where the geometric model used is
given in Fig. 1(a). The global and local Ca2+ transients reach
the peaks at about 72 ms when the LCC current is completely
blocked. Fig. 3(a) and (b) shows the voltage-clamp protocol and
the whole-cell L-type Ca2+ current as used in [18].

In Fig. 3(c)–(l), we show three boundary conditions on Γ2 ,
where Γ2 is assumed to be 8μm (blue lines), 2μm (green
lines), and 0μm (red lines) away from the cell membrane [see
Fig. 1(c)]. Fig. 3(c)–(e) shows the averaged current densities of
Na+ /Ca2+exchangers, Ca2+ pumps, and Ca2+ leaks, assum-
ing a uniform distribution of Ca2+ inside the model. Fig. 3(f)
shows the averaged Ca2+ concentration over time. The time-
varying concentrations of the calcium-bound mobile and sta-
tionary buffers are shown in Fig. 3(g)–(j). In the presence of
LCC current densities, these concentrations rapidly increase.
After the LCC current is blocked, the concentrations of the
calcium-bound buffers gradually decrease and become stable
when the free Ca2+ concentration is stable. In all these results,
the curves are almost identical in the two conditions where Γ2
is 8 and 2μm away from the cell membrane, suggesting that the
main contribution to calcium concentration changes in ventric-
ular myocytes comes from t-tubules except in the regions near
the cell membrane.

While the averaged Ca2+ concentration within the cytosol
of the model is shown in Fig. 3(f), we also consider two fea-
ture spots along a scanning line going vertically through the
center of the box in Fig. 1(a). These two spots are 0.235 and
0.0038μm away from the top surface Γ2 of the box, and the cal-
cium concentration changes over time are given in Fig. 3 (k) and
(l), respectively. Again, when the model is placed near the cell
membrane, we observe significantly higher Ca2+ concentration
than the other two cases. When the feature spot is chosen near
the top surface Γ2 , the other two cases [green and blue lines in
Fig. 3(l)] are also distinguishable.
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Fig. 3. Calcium signaling simulations with realistic t-tubule membrane. The upper boundary Γ2 of the subcellular model [see Fig. 1(a)] is assumed to be 8 μm
(blue lines), 2 μm (green lines), and 0 μm (red lines) away from the cell membrane (also see Fig. 1). Note that in most of the simulations plotted here, the blue
lines are almost identical to the green lines. (a) and (b) Voltage-clamp protocol and the whole-cell LCC current used in the simulation. (c) and (f) Predicted global
Na+ /Ca2+ , Ca2+ pump and leak currents and global average Ca2+ transient when Ca2+ is uniformly distributed inside the cell. (g) and (j) Predicted average
concentrations of calcium-bound mobile and stationary buffers. (k) and (l) Local Ca2+ transients taken at two feature spots that are 0.235 μm (k) and 0.0038 μm
(l) away from Γ2 .

Fig. 4. 3-D views of the Ca2+ concentrations at the [Ca2+ ]i peak of 72 ms
when the subcellular model in Fig. 1(a) is placed 8 μm (left), 2 μm (middle),
and 0 μm (right) away from the cell membrane. Note that the left portion (about
one half) of the domain has been cutout.

The model is able to predicate local Ca2+ transient peaks
at approximately 72 ms. Fig. 4 and Fig. 5 shows the 3-D local
Ca2+ transients when t = 72 ms. The local Ca2+ transients near
the t-tubular surface are about 10%–20% higher than elsewhere.
When the distance from the cell membrane to Γ2 increases (i.e.,
going from 0, 2 to 8μm), the Ca2+ concentration undergoes a
quick (∼ 15%) decrease and then becomes stable, as also seen
in [8], suggesting that the influence from the surface membrane
rapidly diminishes. The difference between the bulk and subsar-
colemmal Ca2+ concentrations had been discussed in previous
studies (i.e., [25]). Another factor of the Ca2+ concentration

Fig. 5. Cross-sectional views of the Ca2+ concentrations at the [Ca2+ ]i
peak of 72 ms when the subcellular model in Fig. 1(a) is placed 8 μm (left),
2 μm (middle), and 0 μm (right) away from the cell membrane. About a
half of the domain has been cutout in the front to show the cross-sectional
views.

changes observed in Figs. 4 and 5 might be due to the lack of
calcium release from SR in this study.

V. CONCLUSION

In this paper, we employed the FEM and realistic EM struc-
tures of t-tubules to investigate calcium dynamics involving
calcium releasing, buffering, and reuptaking at the subcellular
scale. Different boundary conditions are imposed on the sub-
cellular model by placing the model at three different locations
relative to the cell membrane of a simplified ventricular my-
ocyte. The boundary values are borrowed from the whole-cell
simulations precomputed by using the meshless method. The
preliminary results show that t-tubules, as compared to the cell
surface membrane, play a major role in regulating Ca2+ con-
centration changes in ventricular myocytes.
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