
Sarra, S A 2017 The Matlab Radial Basis Function Toolbox. Journal of Open Research
Software, 5: 8, DOI: https://doi.org/10.5334/jors.131

Journal of
open research software

SOFTWARE METAPAPER

The Matlab Radial Basis Function Toolbox
Scott A. Sarra
Marshall University, US
sarra@marshall.edu

Radial Basis Function (RBF) methods are important tools for scattered data interpolation and for the solu-
tion of Partial Differential Equations in complexly shaped domains. The most straight forward approach
used to evaluate the methods involves solving a linear system which is typically poorly conditioned. The
Matlab Radial Basis Function toolbox features a regularization method for the ill-conditioned system,
extended precision floating point arithmetic, and symmetry exploitation for the purpose of reducing flop
counts of the associated numerical linear algebra algorithms.

Keywords: Radial Basis Functions; numerical partial differential equations; extended precision; Matlab;
object oriented programming

(1) Overview
Introduction
Radial Basis Function (RBF) methods are important tools
for scattered data interpolation and for the solution of
PDEs in complexly shaped domains. The most straight for-
ward approach that is used to evaluate the method while
incorporating the “standard basis functions” involves solving
a linear system which is typically poorly conditioned. Two
variations of a method, dubbed the RBF-QR approach, use
a different basis that spans the same space as the standard
basis but which in some cases results in a better conditioned
linear system. Software packages which implement the two
RBF-QR approaches are freely available ([11] and [13]).

Extended precision floating point arithmetic can be
used to accurately evaluate the ill-conditioned problem
in the standard basis. This approach has been used and
implemented in several different software environments
that include: Mathematica [7], the Matlab Symbolic
Toolbox [21], C++ [16], and Fortran [5]. The extended pre-
cision approach is attractive because it retains one of the
great strengths of the RBF method – simplicity. Whereas
the RBF-QR approaches, as can be ascertained by brows-
ing the software that implements the methods, is far
more complex. A software package that implements the
RBF method in extended precision is not currently avail-
able. A detailed comparison of the RBF-QR and extended
precision with the standard basis approaches is made in
[20].

In this work a Matlab [12] toolbox is described that fea-
tures a regularization method for the ill-conditioned lin-
ear system, extended precision floating point arithmetic,
and symmetry exploitation for the purpose of reducing
flop counts. The toolbox is called the Matlab Radial Basis

Function Toolbox (MRBFT). The toolbox uses an object ori-
ented approach to organize its functionality via three main
classes. Static methods in the class rbfx are used to imple-
ment functionality associated with RBF methods in gen-
eral, while class methods are used to implement methods
in subclasses of rbfx which apply to a particular RBF. The
superclass rbfx has abstract methods which every subclass
must implement. These include a definition of the RBF
itself as well as a variety of derivative operators applied to
the RBF. The complete list of abstract methods is as follows:
methods(Abstract = true)
 v = rbf(obj, r, s);		 % RBF definition
 d = D1(obj, r,s, x);		 % first derivative wrt x
 d = D2(obj, r, s, x);	 % second derivative wrt x
 d = D3(obj, r, s, x);	 % third derivative wrt x
 d = D4(obj, r, s, x);	 % fourth derivative wrt x
 d = G(obj, r, s, x, y);	% Gradient
 d = L(obj, r, s); 		 % Laplacian
 d = B(obj, r, s, x, y);	% Biharmonic operator
 d = D12(obj, r, s, x, y);% mixed partial derivative
 d = D22(obj, r, s, x, y);% mixed partial derivative
end

The rbfx class is subclassed by the gax and iqx
classes which implement methods that are respectively
particular to the Inverse Quadratic and Gaussian RBF.
The class rbfCenters implements methods associated
with scattered center locations and the class rbfCentro
implements methods associated with algorithms that
accurately and efficiently operate on structured matrices.

Radial Basis Function Methods
RBF interpolation uses a set of N distinct points

{ }1 , ,c c
NX x x= … in Rd called centers. No restrictions are

placed on the shape of problem domains or on the loca-
tion of the centers. A RBF

https://doi.org/10.5334/jors.131
mailto:sarra@marshall.edu

Sarra: The Matlab Radial Basis Function ToolboxArt. 8, p. 2 of 10

	
2() (,), ,

c c d
k k kx x x x xφ φ ε= − ∈R 	 (1)

is an infinitely differentiable (compactly supported and
global RBFs without a shape parameter and with less
smoothness exist but are not considered here) function
of one variable 2

c
kr x x= − that is centered at c

kx and that
contains a free parameter ε called the shape parameter.
The RBF interpolant assumes the form

	
2

1

() (,)
N

c
N k k k

k

I f x a x xφ ε
=

= −∑
�

(2)

where a is a vector of expansion coefficients. The Gaussian
(GA) RBF

	 � (3)

and the inverse quadratic (IQ) RBF

	
2 2

1
()

1
r

r
φ

ε
=

+ � (4)

are representative members of the class of global, infi-
nitely differently RBFs containing a shape parameter that
interpolate with exponential accuracy. The two RBFs and
their various derivative are defined respectively in the
classes gax and iqx. A particular RBF, for example the
GA, is instantiated via

>> phi = iqx(); % phi is an instance of the	
inverse quadratic RBF class

Many other RBFs exist and may be added by the user to
the toolbox by extending rbfx and using gax and iqx as
examples.

The entire list of functions associated with an object is
available as follows:

> methods(iqx)

Methods for class iqx:

B 	 D2 	 D4	 iqx
D1 	 D22 	 G	 rbf
D12 	 D3 	 L	

Static methods:

distanceMatrix1d 	 distanceMatrix3d 	solve	
distanceMatrix2d 	dm 	 variableShape

First the methods that the class must define are listed and
then the static methods inherited from the superclass are
listed.

The RBF expansion coefficients are determined by
enforcing the interpolation conditions

	
() (), 1, 2, ,c c

N k kI f x f x k N= = … � (5)

which result in a N × N linear system

	 .Ba f= � (6)

The matrix B with entries

	 2(,), , 1, ,c c
jk j k kb x x j k Nφ ε= − = � (7)

is called the system matrix. The solve method which is
a static method of the rbfx class can be used to find the
expansion coefficients. Static methods can be called in
two ways. Either through the class
>> a = iqx.solve(B,f);		 % or a = rbfx.solve(B,f);

or from instances of the class
>> a = phi.solve(B,f);

Matlab is optimized for operations involving matrices and
vectors. The process of revising loop-based, scalar-oriented
code to use Matlab matrix and vector operations is called
vectorization. At every opportunity, functions have been
vectorized so that they execute as efficiently as possible.

The functions that define RBFs and their derivative
matrices take distance matrices as their arguments.
Taking

for example 2d where ()1 2,c c cx x x= the signed dis-

tance matrices

1 1 2 2() () () and () () ()

where , 1,...,

c c c c
jk j k jk j krx x x ry x x

j k N

= − = −

= �(8)

respectively contain the signed distance between the x
and y coordinates of centers j and k. The distance matrix

	

2 2() () , , 1, ,jk jk jkr rx ry j k N= + = … � (9)

stores the distance between centers j and k. With the x and
y coordinates of the centers located in arrays xc and yc the
distance matrices are formed via

>> [r, rx, ry] = rbfx.distanceMatrix2d(xc,yc);

and the RBF system matrix is constructed as

>> B = phi.rbf(r,s);

The evaluation of the interpolant (2) at M points xj can be
accomplished by multiplying the expansion coefficients
by the M × N evaluation matrix H that has entries entries

	

2(,),

1, , and 1, , .

c
jk j k kh x x

j M k N
φ ε= −

= =
� �

… … �
(10)

Continuing the 2d example, consider evaluation points
x = (x1, x2). The distance matrices containing the distances
between the centers and evaluation points
	

1 1 2 2() () () and () () ()

where 1, , and 1, ,

c c
jk j k jk j krxe x x rye x x

j M k N

= − = −

= =… …
�

(11)

respectively contain the signed distances between the
x and y coordinates of evaluation point j and center k.
Then

2 2
() rr e εφ −=

Sarra: The Matlab Radial Basis Function Toolbox Art. 8, p. 3 of 10

	

2 2() () ,

1, , and 1, , .

jk jk jkre rxe rye

j M k N

= +

= =… … �
(12)

With the x and y coordinates located in arrays x and y the
distance matrices are formed via

>> [re, rxe, rye] = rbfx.distanceMatrix2d(xc,yc,x,y);

and the evaluation matrix is constructed via
>> H = phi.rbf(re,s);

The interpolant is then evaluated as
>> fa = H*a;

Derivatives are approximated by differentiating the RBF
interpolant as

	
()2

1

(()) ,
N

c
N k k k

k

I f x a x xφ ε
=

= −∑D D
�

(13)

where D is a linear differential operator. The operator D
may be a single differential operator or a linear differen-
tial operator such as the Laplacian. Evaluating (13) at the
centers X can be accomplished by multiplying the expan-
sion coefficients by the evaluation matrix HD with entries

	 2(,), , 1, , .c c
jk j k kh x x j k Nφ ε= − = …D �(14)

That is, Df ≈ HDa. For example, to approximate the first
derivative with respect to x of a function of two variables
using the MRBFT

>> Hd = phi.D1(r,s,rx);
>> fa = Hd*a;

Alternatively, derivatives can be approximated by mutiply-
ing the grid function values 1{ ()}c N

k kf x = by the differentia-
tion matrix D = HDB–1 since

	
1 1() () .f H a H B f H B f− −≈ = =D D DD � (15)

This is accomplished as

>> D = phi.dm(B,Hd);
>> fa = D*f;

The shape parameter εk may take on different values at
each center c

Kx (or equivalently in each column of the
system or evaluation matrix). Such an approach is called
a variable shape parameter strategy. Numerical evidence
exists [8, 10, 22] that indicates that the use of a variable
shape parameter may improve the conditioning of the
system matrix as well as improve accuracy. A drawback
of variable shape parameter strategies is that they cause
the RBF system matrix to be non-symmetric. Reference [8]
suggested the exponentially varying shape parameter

	

1
1 2

2 1
2

2
1, , ,

j
N

max
j min

min

j N
ε

ε ε
ε

−
−

⎡ ⎤
⎛ ⎞⎢ ⎥⎟⎜⎢ ⎥⎟= =⎜ ⎟⎜⎢ ⎥⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

…

�

(16)

and well as the linearly varying shape parameter

	

 0,1, , 1.
1

max min
j min j j N

N
ε ε

ε ε
⎛ ⎞− ⎟⎜= + = −⎟⎜ ⎟⎟⎜⎝ ⎠−

…
�
(17)

Reference [22] gives examples of the benefits of using a
random variable shape parameter

	 () N+ × rand(1,)j min max minε ε ε ε= − � (18)

All three variable shape strategies are available in the
MRBFT via

0 1 2 3
shape parameter

10 -20

10 -15

10 -10

10 -5

10 0

|e
rr

o
r|

F128
F64

0 1 2 3
shape parameter

10 10

10 20

10 30

10 40

κ
(B

)

F128
F64

Figure 1: Interpolation of a smooth function using both double (F64) and quadruple (F128) precision. The script
condVaccury.m produces the plots. Left: accuracy versus the shape parameter. Right: condition number of the
system matrix versus the shape parameter.

Sarra: The Matlab Radial Basis Function ToolboxArt. 8, p. 4 of 10

>> Bs, Hs = phi.variableShape(sMin,sMax,opt,N,M);

Both equations (6) for the expansion coefficients and
(15) for the differentiation matrix assume that the system
matrix is invertible. Both the GA and IQ system matrices
are symmetric positive definite (SPD) if a constant shape
parameter is used and therefore they are invertible. While
it is invertible, the system matrix is typically very poorly
conditioned and it may cease to be numerically SPD and
the standard algorithm to factorize a SPD matrix may fail.
The eigenvalues of B satisfy 0 < 𝜆min = 𝜆1 ≤ 𝜆2 ≤ … ≤ 𝜆N = 𝜆max
and the matrix condition number in the 2-norm is κ(B) =
𝜆min/𝜆max. For a fixed set of centers, the shape parameter
affects both the accuracy of the method and the condi-
tioning of the system matrix. The RBF method is most
accurate for smaller values of the shape parameter where
the system matrix is ill-conditioned. Figure 1 illustrates
a typical result. For fixed N, the error is reduced as the
shape parameter is made smaller until the condition num-
ber of the system matrix reaches O(1018) in double preci-
sion and O(1036) in quadruple precision. A regularization
technique to mitigate the effects of the ill-conditioning is
discussed in the next section.

Recent monographs [2, 4, 21, 23] on RBF methods can
be consulted for more information on RBF methods in
general.

Regularization
Reference [17] demonstrated that a simple regularization
technique can mitigate the effects of the poor condition-
ing of RBF system matrices and in most cases ensure that
the RBF system matrix remains numerically SPD so that
Cholesky factorization can be used. Instead of solving the
system

	 Ba f= � (19)

the regularized system

	 Cy f= � (20)

where C = B + µI is solved. The parameter µ is a small
positive constant called the regularization parameter and
I is the identity matrix. The technique is called the method
of diagonal increments (MDI) and its first use dates back
to the 1940’s [15]. Matrix C is better conditioned than B as

	

() () .max max

min min

C B
λ μ λ

κ κ
λ μ λ

+
= < =

+ � (21)

For small µ, (B + µI)−1 is close to B−1 and MDI simply
replaces B with (B + µI) in computing the solution of a
system. Equation

	
1 1 2 1 1() (/)B B I B I B Bμ μ μ− − − −− + = + � (22)

quantifies how close that (B + µI)–1 and B–1 are [6]. For very
small µ the difference is negligible. A good choice of the
parameter is µ = 5εM where εM is machine epsilon in the
floating point number system being used.

All MRBFT functions that involve the factorization
of a SPD matrix take two optional arguments: a regu-
larization parameter µ and a logical variable safe. The
default value of µ is 5e–15 which is the suggested value
for double precision. The standard linear equation
solver in Matlab is the mldivide function which may be
evoked via the backslash operator. If a matrix is sym-
metric, Cholesky factorization is attempted. If Cholesky
factorization fails, then the matrix is factorized with LU
factorization. The default value of safe is true which
causes all MRBFT routines to use the mldivide function.
Setting safe to false forces the routines to use Cholesky
factorization. The danger in directly calling Cholesky
factorization is that if the regularization parameter is
not large enough a matrix may fail to be numerically
SPD and Choleksy factorization will fail due to taking
the square root of a negative number if the matrix is
severely ill-conditioned.

0 2 4 6
shape parameter

10 14

10 16

10 18

10 20

10 22

(B
)

no MDI
MDI

0 2 4 6
shape parameter

10 -6

10 -4

10 -2

10 0

|e
rr

or
|

no MDI
MDI

Figure 2: Interpolation with (green solid) and without (blue dashed) regularization. The script
mdiRegularization.m produces the plots. Left: accuracy versus the shape parameter. Right: system matrix
condition versus the shape parameter.

Sarra: The Matlab Radial Basis Function Toolbox Art. 8, p. 5 of 10

Figure 2 shows the results of a 2d interpolation problem
with scattered centers with and without MDI regularization
in double precision. Both the accuracy and condition num-
ber of the two approaches are virtually the same when the
condition number of the system matrix can be accurately
calculated in double precision which is for κ(B) ≈ O(1016)
and smaller. When the condition number of the unregu-
larized method reaches beyond that threshold the regulari-
zation keeps the condition number in the approximately
O(1016) range and the regularized solution is approximately
two decimal places more accurate in this example.

Extended precision
The MRBFT uses the Multiprecision Computing Toolbox
for Matlab (MCT) [1] for its extended precision func-
tionality. The MCT enables extended precision data
types to be seamlessly used in place of the standard
double type. As a result, existing Matlab programs can
be converted to run with arbitrary precision with mini-
mal changes. IEEE 754-2008 compliant quadruple pre-
cision is supported and the MCT is highly optimized for
this case. Note that the MRBFT is in no way dependent
on the MCT. The installation of the MCT is not neces-
sary. However, without the MCT, the MRBFT is limited
to double precision.

The following code that calculates the RBF expansion
coefficients gives an example of how to change double
precision computations to extended precision:

1 phi = iqx();
2 mp.Digits(34); 		 % digits of decimal precision
3 N = mp('30'); 		 % replace with N = 30 to
							 convert to double precision
4 xc = linspace(0,1,N);
5 r = phi.distanceMatrix1d(xc);
6 B = phi.rbf(r,2.5);
7 f = sin(xc);
8 a = phi.solve(B,f,0);

The only coding difference in the above code between
double and extended precision is on lines 2 and 3.
Once the number of digits is specified and N is changed

to a mp object, all other operations involving the
object are then done in extended precision. The script
interpBenchExtended.m compares the execution
speed of a 2d interpolation problem over a range of the
shape parameter in both double and quadruple precision.
In this particular example the quadruple precision calcula-
tion takes approximately 52 times longer to execute which
is a typical result. In benchmarks, the MCT has been shown
to be much more efficient in implementing extended preci-
sion than other available options. Additional comparisons
of execution times can be found in reference [20].

Center locations
The second major class of the MRBFT is rbfCenters.
The methods of the class are the following:
>> methods(rbfCenters)

Static methods:

Halton2d 		 circleCenters 			 squareCenters
Hammersley2d	 circleUniformCenters

RBF methods place no restriction on the location of cent-
ers. However, randomly locating centers is unlikely to
lead to good results. Theory dictates [2, 23] that centers
should well-cover a domain in the sense that the centers
are somewhat uniformly distributed with no large holes
in their coverage and no centers clumped extremely close
together. Centers located too close together hurt condi-
tioning while large holes in the center coverage negatively
affect convergence rates. Computational experience indi-
cates that it is beneficial to locate centers more densely in
boundary regions than in the interior of domains.

Quasirandom sequences [14] have become popu-
lar choices of centers for RBF methods. A quasirandom
sequence is a n-tuples that fills n-space more uni-
formly than uncorrelated random points. Quasirandom
sequences are also called low-discrepancy sequences.
Halton points [24] are probably the most used quasir-
andom sequence in RBF methods due to the sequences

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 3: 1000 centers on the unit circle. Left: Hammersley points. Right: clustered Hamersley points.

Sarra: The Matlab Radial Basis Function ToolboxArt. 8, p. 6 of 10

being featured in the book [4]. However, it is our experi-
ence that the Hammersley points [24] provide a superior
coverage in many cases. The MRBFT implements functions
that produce both Halton and Hammersley center distri-
bution for circular and square domains. The functions

>> [x, y] = rbfCenters.squareCenters(N,a,b,clust
			 er,ch,plt); % square [a,b] x [a,b]

>> [x, y] = rbfCenters.circleCenters (N,cluster,
			 ch,R,plt); % circle of radius R

provide the option to cluster the centers more densely
around the boundaries of the domains. Figure 3 shows
a set of Hammersley points and a set of clustered
Hammersley points on the unit circle. An example of how
the MRBFT can be used to distribute boundary clustered
quasirandom centers in a more complexly shaped domain
can be found in the script complexCentroCenters.m
in the examples directory of the MRBFT.

Symmetry
The third major class of the MRBFT is rbfCentro which
takes advantage of symmetry to reduce the computational
expense and storage requirements of RBF methods. The
methods of the class are:

>> methods(rbfCentro)

Static methods:

centroCenters	  centroDecomposeMatrix	 hasSymmetry
centroCircle	 centroEig  isCentro
centroCondition-    centroMult		 isSkewCentro
Number
centroDM	 fullCentroMatrix	 solveCentro

A matrix B is centrosymmetric if B = JBJ and is skew-cen-
trosymmetric if B = −JBJ where J, the contra-identity matrix,
is a square matrix whose elements are all zero except those
on its southwest-northeast diagonal which are all 1’s. RBF
system and differentiation matrices (details in [18]) are (skew)
centrosymmetric if the signed distance matrices (11) are

(skew) centrosymmetric. Centrosymmetry does not depend
on the location of centers, but rather on the distance between
centers. Any center distribution in one dimension that is sym-
metrical about its mid-point causes the signed distance matrix
to be skew-centrosymmetric. Center distributions in two
dimensions that cause the signed distance matrix to be skew-
centrosymmetric are easily generated in domains that are sym-
metric with respect to either the x-axis, y-axis, or the origin,
or that can be made so by a linear transformation or rotation.
Figure 4 shows two center distributions that result in cen-
trosymmetric distance matrices. Centrosymmetry allows for
significant flop count reductions in numerical linear algebra
routines associated with RBF methods as well as reductions
in computer memory requirements [18]. The efficiency gains
when working with centrosymmetric matrices come from the
fact that a N × N (where N is even and M = N/2) centrosym-
metric matrix has the block structure

	

11 21

21 11

B JB J
B

B JB J

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦ �

(23)

where B11, B21, and J are M × M. The block structure allows
many linear algebra operations to be performed while only
forming and operating on half of the matrix. Additionally,
the matrix (22) and

	

11 21

11 21

0

0

L B JB
D

M B JB

⎡ ⎤= −⎢ ⎥= ⎢ ⎥= +⎣ ⎦
� (24)

are orthogonally similar which allows for efficient eigen-
value calculation. Similar decompositions are possible for
odd N as well.

The MRBFT functions for centrosymmetry include the
following. Centrosymmetric center distributions in circu-
lar domains are produced by

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

Figure 4: Center distributions that result in centrosymmetric distance matrices. Left: 2000 centers based on clustered
Hammersley points that have been extended centro symmetrically about the x axis. Right: 2524 centers on a domain

enclosed by the curve ()
1
32() 3 cos(3) 4 sin(3)f t tθ = + −

that result in centrosymmetric distance matrices.

Sarra: The Matlab Radial Basis Function Toolbox Art. 8, p. 7 of 10

>> [xc,yc] = rbfCentro.centroCircle
				 (N,cluster,ch,R,plt);

and in domains with either x, y, or origin symmetry the
function

>> [xc,yc] = rbfCentro.
				 centroCenters(x,y,symType,plt);

uses half of the centers given as an argument to return a
centrosymmetric center distribution.

Only half of the matrix needs to be formed and stored
and then subsequently operated on in centrosymmetric
linear algebra routines. The half-sized distance matrices
are formed via calling the distanceMatrix functions with
the arguments modified as follows:

>> r = rbfx.distanceMatrix1d(xc(1:N/2),xc);
>> [r, rx, ry] = rbfx.distanceMatrix2d(xc(1:N/2)
					 ,yc(1:N/2),xc,yc);

The half sized distance matrices can be used to form half-
sized system and derivative evaluation matrices as

>> B = phi.rbf(r,s);
>> H = phi.D2(r,s,rx);

Matrix condition numbers in the 2-norm are calculated via

>> [kappaB, kappaL, kappaM] = rbfCentro.
	 centroConditionNumber(B,mu);

with a factor of four savings in the dominant term in the
flop count compared to the standard algorithm. The RBF
expansion coefficients for interpolation problems can be
found from the half-sized system matrix as
>> a = rbfCentro.solveCentro(B,f,mu,safe);

Two quarter-sized matrices are factorized by a Cholesky
factorization and the dominant term in the flop count is
reduced by a factor of four from 31

3
N to 31

12
N . In a similar

manner, differentiation matrices are formed via
>> D = rbfCentro.centroDM(B,F,N,rho,mu,safe);

with a factor of four savings in computational effort.
Centrosymmetric matrix-vector multiplication is asymp-
totically faster by a factor of two over the standard algo-
rithm and can be accomplished via
>>  [L,M]  =    rbfCentro.centroDecomposeMatrix(D,rho);
	 % decompose into smaller matrices
>>	fp = rbfCentro.centroMult(f,L,M,rho);
 	 % multiply and reconstruct solution

Other miscellaneous functions concerning centrosymme-
try are
>> c = rbfCentro.hasSymmetry(B);
%tests a N x N matrix for (skew) centrosymmetry

which test matrices for symmetry and

>> D = rbfCentro.fullCentroMatrix(Dh,N,skew);

which constructs a full-size centrosymmetric matrix from
a half-sized matrix.

Examples, tests, and benchmarks
The MRBFT distribution includes three directories that
contains scripts that provide examples of using the
functions in the toolbox. The examples directory

contains scripts that use the functions for typical tasks
associated with the RBF method. The tests directory
contains scripts that verify that the various functions
are working as claimed. The benchmarks directory
contains scripts that measure the execution time of
the centrosymmetric algorithms versus the standard
algorithms and that measure the execution time of
algorithms in double precision versus extended preci-
sion. Below a brief description of each script is given.
More detailed information is contained in the com-
ments of each script. Extensive comments are also
contained in the source code the the classes rbfx,
rbfCenters, and rbfCentro.

The following example scripts come with the toolbox:

•	 �variableShapeInterp1d.m Variable shape
parameter versus constant shape parameter. This is
a typical example in which the two approaches have
system matrices with approximately the same con-
dition number, but the variable shape approach is
several decimal places more accurate.

•	 �centroCenters.m Produces the centers in the
right image of figure 4.

•	 �complexCentroCenters.m Constructs a centro
center distribution on a complexly shaped domain
using quasi-random Hammersley points which are
placed denser near the boundary than in the inte-
rior. Before the centers are extended centrosymmet-
rically, the domain needs to be rotated so that it is
symmetric with respect to the x-axis.

•	 �interp3d.m Gaussian RBF interpolation on the
surface of a sphere.

•	 �interp3dCentro.m Gaussian RBF interpolation
on the surface of a sphere as in interp3d.m but with
a centrosymmetric center distribution. The system
matrix as well as all order differentiation matrices
will have a centro structure. The centrosymmetric
approach executes in approximately half the time
that the standard approach takes.

•	 �condVaccuracy.m Uses a 1d interpolation
problem and the IQ RBF to illustrates the trade off
between conditioning and accuracy using both dou-
ble and extended precision. The script produces the
images in figure 1.

•	 �mdiRegularization.m Interpolates the Franke
function on scattered centers located in a domain
that is one-fourth of a circle. Compares the accuracy
and condition number of the system matrix over a
range of shape parameter with and without regulari-
zation by the method of diagonal increments. The
output is shown in figure 2.

•	 �mdiExample.m 1d interpolation problem using
extended precision and regularization by the
method of diagonal increments.

•	 �rbfInterpConvergence.m Convergence rate of
a RBF interpolant with a fixed shape parameter and
increasing N (decreasing distance between centers).
The convergence is geometric (also called spectral or
exponential) as long as the floating point system can
handle the condition number of the system matrix.

Sarra: The Matlab Radial Basis Function ToolboxArt. 8, p. 8 of 10

•	 �rbfInterpConvergenceB.m Similar to
rbfInterpConvergence.m except that the number
of centers N is fixed and the shape parameter is
decreasing. The convergence is exponential as long
as the floating point system can handle the condi-
tion number of the system matrix.

•	 �poissonCentro.m The script solves a 2d steady
PDE problem, the Poisson equation uxx + uyy = −π2

sin(πx) sin(πy), on a circular domain with Dirichlet
boundary conditions using Kansa’s assymetric RBF
collocation method [9]. The asymmetric collocation
method discretizes the boundary value problem as
Ha = f where H is a N × N matrix that discretizes
the PDE at interior centers and applies boundary
conditions at centers located on the boundary. After
the linear system is solved for the expansion coef-
ficients, a, the approximate solution is found by a
matrix-vector multiplication u ≈ Ba where B is the N
× N system matrix. The details of the application of
the asymmetric collocation method to steady linear
PDEs can be found in reference [21].

The problem is solved two ways: 1) standard
algorithms, 2) centrosymmetric algorithms. With N
= 5000 the accuracy of the two approaches is the
same but the centrosymmetric approach is approxi-
mately five times faster and requires only half the
storage compared to the standard approach.

•	 �diffusionReactionCentro.m and
diffusionReactionCentroDriver.m The
scripts solve the diffusion-reaction PDE ut = ν(uxx
+ uyy) + 𝜆u2(1 – u) on a circular domain with Dir-
ichlet boundary conditions prescribed from the
exact solution. The space derivatives in the PDE are
discretized by the IQ RBF method and are evalu-
ated by the matrix-vector product Du where D is a
differentiation matrix that discretizes the 2d Lapla-
cian operator. The PDE is advanced in time with a
fourth-order Runge-Kutta method. The details of
the application of the RBF collocation method to
time-dependent PDEs can be found in reference
[21].

The problem is solved two ways: 1) standard algo-
rithms, 2) centrosymmetric algorithms. With N =
5000 the accuracy of the two approaches is the same
but the centrosymmetric approach is approximately
eight times faster and requires half the storage.

The following test scripts come with the toolbox:

•	 �centroCondTest.m Verifies the centrosymmet-
ric 2-norm condition number algorithm against the
standard algorithm. The two algorithms agree until
the matrix becomes very ill-conditioned. As expected
there is a slight variation when K(B) > O(1016).

•	 �centroSolveAccuracy.m Compares the
accuracy of the centrosymmetric and standard
algorithms for solving a linear system. The linear
system is the system (6) for the RBF expansion
coefficients over a range of the shape parameter.
The centrosymmetric algorithm is slightly more

accurate at most shape parameters and several
decimal places more accurate for several shape
parameters.

•	 �isCentroTest.m Depending on how the centers
were extended to be symmetric, RBF differentiation
matrices will have a (skew) centrosymmetric struc-
ture. Reference [18] can be consulted for details.

•	 �rbfDerivativeTest.m Verifies the accuracy of all
derivative approximation methods of the iqx and gax
classes using both double and quadruple precision.

The following benchmark scripts come with the toolbox:

•	 �systemSolveBench.m Compares the evalu-
ation times of centrosymmetric versus standard
algorithms for the solution of a centrosymmetric
linear system. The centrosymmetric linear system
solving algorithm is faster than the standard algo-
rithm for N > 350 and nearly four times as fast for
large N .

•	 �condBench.m Compares the execution times of
the centrosymmetric and standard algorithm for
calculating the 2-norm condition number of a cen-
trosymmetric matrix. For N > 100 the centrosym-
metric algorithm is more efficient and for large N >
2000 it is nearly five times as fast.

•	 �dmFormBench.m Compares the execution time of
the centrosymmetric and standard algorithm for RBF
derivative matrix formation. For larger N, the cen-
trosymmetric algorithm is over three times faster.

•	 �multiplicationBench.m Compares the execu-
tion times of centrosymmetric matrix multiplication
to standard matrix multiplication. For N ≥ 900 the
centrosymmetric algorithm is faster and the limiting
efficiency factor of two is being approached.

•	 �interpBenchExtended.m Compares the
execution time of a 2d scattered data interpolation
problem over a range of the shape parameter using
both double and quadruple precision.

•	 �centroExtendedConditionNumberBenc
h.m Compares the execution times of centrosym-
metric and standard algorithms for the 2-norm con-
dition number using both double and quadruple
precision. The condition number of a 2000 × 2000
system matrix is calculated using both double preci-
sion and quadruple precision. The centrosymmetric
algorithm speeds up the double precision calcula-
tion by a factor of approximately 3.8 and the quad-
ruple precision calculation by a factor of 3.3.

Additional results demonstrating the benefits of using
extending precision with RBF methods and the efficiency
gains from exploiting centrosymmetry can be found in
references [20] and [18] for which the MRBFT was used
extensively to produce the examples and results.

Summary
The MRBFT is a freely available collection of Matlab files
and scripts that implement RBF methods for scattered
data interpolation and for the numerical solution of PDEs.

Sarra: The Matlab Radial Basis Function Toolbox Art. 8, p. 9 of 10

The toolbox has been developed over a period of several
years while it has been used in the author’s research.
The class rbfx implements routines for common tasks
associated with all RBFs and defines abstract methods
for differential operators that must be implemented
by all subclasses that define particular RBFs. The class
rbfCenters implements methods for locating uni-
form and quasi-random centers in rectangular and
circular domains. The class rbfCentro implements
methods for locating centers in symmetric domains that
cause RBF matrices to have a structure that allows for
substantial saving in storage requirements and reduc-
tions in flop counts for associated linear algebra rou-
tines. All MRBFT functions can be implemented using
extended precision floating point arithmetic provided
that the MCT [1] is installed. Scripts that provide exam-
ples, tests, and benchmarks of the MRBFT are included
with the distribution. Comments in the class files pro-
vide additional documentation.

The author uses the MRBFT in his own research and
as a result the toolbox is constantly being improved
and new features are being added. Future improve-
ments to the MRBFT include: developing a class of
methods for working with the local RBF method,
implementing Mercer’s method for the GA RBF [3],
developing a class that implements rational RBF
methods, and adding methods to the rbfCenters class
that distribute centers in more complexly shaped
domains. Updates, bug fixes, and other improvements
to the MRBFT are posted at [19] where the project is
hosted.

Implementation and architecture
A summary of the implementation of the MRBFT is as
follows. The toolbox is implemented in Matlab which is
widely used in Mathematics and other scientific disci-
plines. An object oriented approach is used to organize
the functionality of the toolbox.

Quality control
The MRBFT has been developed over a period of several
years as it has been used in the author’s research. It was
used extensively in the preparation of references [20] and
[18] which are accompanied by scripts that use the MRBFT
to produce the results in the manuscripts. Additionally, as
discussed in the overview section, the toolbox comes with
a collection of scripts that demonstrate its usage, bench-
mark its performance, and verify that its algorithms pro-
duce the correct results.

(2) Availability
Operating system
The MRBFT is programmed in Matlab which is available
on Windows, OS X, and Linux.

Programming language
The MRBFT was developed and tested using Matlab ver-
sions 2015b through 2016b [12]. It is not clear as to
which version of Matlab first featured object oriented pro-
gramming (OOP). However, version R2008a made major

changes in the way Matlab implements OOP. Thus, while
not tested, it is possible that the MRBFT is compatible
with Matlab versions as old as 2008a.

Dependencies
The MRBFT uses the Multiprecision Computing Toolbox
for Matlab (MCT) [1] for its extended precision function-
ality. Note that the MRBFT is in no way dependent on
the MCT. The installation of the MCT is not necessary.
However, without the MCT, the MRBFT is limited to dou-
ble precision floating point arithmetic.

List of contributors
The author is the only contributor to the software.
However, the contributions of others are welcome.

Software location
Code repository GitHub 
Name: scottsarra/Matlab-RBF-Toolbox
Persistent identifier: https://doi.org/10.5281/
zenodo.221368
Licence: GNU GPL V3
Date published: 28/03/16

(3) Reuse potential
The potential for others to use the MRBFT is substantial.
RBF methods have become very popular in applications.
The MRBFT may potentially find use in industrial applica-
tions. Research in RBF methods is very active. The MRBF
is a potentially useful tool for faculty research, gradu-
ate student research, and undergraduate research pro-
jects. The object oriented design of the toolbox makes it
extremely easy for it to be extended by subclassing rbfx
to define new RBFs. The MRBFT can be used to foster the
idea of reproducible research in the area of RBF meth-
ods. The MRBFT provides core functionality that other
research can be built on and for which the code is freely
available.

Competing Interests
The author has no competing interests to declare.

References
1.	 Advanpix 2016 Multiprecision computing toolbox

for Matlab, version 3.9.9 for 64-bit Linux. http://www.
advanpix.com/.

2.	 Buhmann, M D 2003 Radial Basis Functions.
Cambridge University Press, ISBN 0521633389. DOI:
https://doi.org/10.1017/CBO9780511543241

3.	 Fasshauer, G and McCourt, M 2012 Stable evalu-
ation of Gaussian RBF interpolants. SIAM Journal on
Scientific Computing, 34: 737–762. DOI: https://doi.
org/10.1137/110824784

4.	 Fasshauer, G E 2007 Meshfree Approximation Meth-
ods with Matlab. World Scientific. DOI: https://doi.
org/10.1142/6437

5.	 Fornberg, B, Larsson, E and Flyer, N 2011 Stable
computations with gaussian radial basis functions in
2-d. SIAM Journal on Scientific Computing, 33: 869–
892. DOI: https://doi.org/10.1137/09076756X

https://doi.org/10.5281/zenodo.221368
https://doi.org/10.5281/zenodo.221368
http://www.advanpix.com
http://www.advanpix.com
https://doi.org/10.1017/CBO9780511543241
https://doi.org/10.1137/110824784
https://doi.org/10.1137/110824784
https://doi.org/10.1142/6437
https://doi.org/10.1142/6437
https://doi.org/10.1137/09076756X

Sarra: The Matlab Radial Basis Function ToolboxArt. 8, p. 10 of 10

How to cite this article: Sarra, S A 2017 The Matlab Radial Basis Function Toolbox. Journal of Open Research Software, 5: 8,
DOI: https://doi.org/10.5334/jors.131

Submitted: 28 May 2016 Accepted: 13 January 2017 Published: 27 March 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

6.	 Henderson, H V and Searle, S R 1981 On deriving
the inverse of a sum of matrices. SIAM Review, 23(2):
53–60. DOI: https://doi.org/10.1137/1023004

7.	 Huang, C-S, Leebn C-F and Cheng, A-D 2007 Error
estimate, optimal shape factor, and high precision
computation of multiquadric collocation method.
Engineering Analysis with Boundary Elements, 31:
614–623. DOI: https://doi.org/10.1016/j.engana-
bound.2006.11.011

8.	 Kansa, E J 1990 Multiquadrics – a scattered data ap-
proximation scheme with applications to computa-
tional fluid dynamics I: Surface approximations and
partial derivative estimates. Computers and Mathemat-
ics with Applications, 19 (8/9): 127–145. DOI: https://
doi.org/10.1016/0898-1221(90)90270-T

9.	 Kansa, E J 1990 Multiquadrics – a scattered data
approximation scheme with applications to com-
putational fluid dynamics II: Solutions to para-
bolic, hyperbolic, and elliptic partial differen-
tial equations. Computers and Mathematics with
Applications, 19(8/9): 147–161. DOI: https://doi.
org/10.1016/0898-1221(90)90271-K

10.	Kansa, E J and Carlson, R 1992 Improved accuracy
of multiquadric interpolation using variable shape
parameters. Computers and Mathematics with Applica-
tions, 24: 99–120. DOI: https://doi.org/10.1016/0898-
1221(92)90174-G

11.	Larsson, E 2012 A MATLAB implementation of the
RBF-QR method. http://www.it.uu.se/research/
scicomp/software/rbf_qr.

12.	MATLAB 2015 version 8.6 (R2015b). The MathWorks
Inc., Natick, Massachusetts.

13.	 McCourt, M 2014 GaussQR: Stable Gaussian compu-
tation. http://math.iit.edu/~mccomic/gaussqr/.

14.	Niederreiter, H 1992 Random Number Generation
and Quasi-Monte Carlo Methods. CBMS-NSF, SIAM,
Philadelphia, DOI: https://doi.
org/10.1137/1.9781611970081

15.	Piegorsch, W and Casella, G 1989 The early use
of matrix diagonal increments in statistical prob-

lems. SIAM Review, 31: 428–434. DOI: https://doi.
org/10.1137/1031089

16.	Sarra, S A 2011 Radial basis function approximation
methods with extended precision floating point arith-
metic. Engineering Analysis with Boundary Elements,
35: 68–76. DOI: https://doi.org/10.1016/j.engana-
bound.2010.05.011

17.	Sarra, S A 2014 Regularized symmetric posi-
tive definite matrix factorizations for linear sys-
tems arising from RBF interpolation and differ-
entiation. Engineering Analysis with Boundary
Elements, 44: 76–86. DOI: https://doi.org/10.1016
/j.enganabound.2014.04.019

18.	Sarra, S A 2016 Radial basis function methods – the
case of symmetric domains. Under review, Numerical
Methods for Partial Differential Equations.

19.	Sarra, S A 2016 A Matlab radial basis function toolbox
with symmetry exploitation, regularization, and ex-
tended precision. http://www.scottsarra.org/rbf/rbf.
html.

20.	Sarra, S A and Cogar, S 2017 An examination of
evaluation algorithms for the RBF method. Engineer-
ing Analysis with Boundary Elements, 17: 36–45. DOI:
https://doi.org/10.1016/j.enganabound.2016.11.006

21.	Sarra, S A and Kansa, E J 2009 Multiquadric radial
basis function approximation methods for the numer-
ical solution of partial differential equations. Advances
in Computational Mechanics, 2.

22.	Sarra, S A and Sturgill, D 2009 A random variable
shape parameter strategy for radial basis function
approximation methods. Engineering Analysis with
Boundary Elements, 33: 1239–1245. DOi: https://doi.
org/10.1016/j.enganabound.2009.07.003

23.	Wendland, H 2005 Scattered Data Approxima-
tion. Cambridge University Press, DOI: https://doi.
org/10.1017/CBO9780511617539

24.	Wong, T, Luk, W and Heng, P 1997 Sampling with
Hammersley and Halton points. Journal of Graphics
Tools, 2: 9–24. DOI: https://doi.org/10.1080/108676
51.1997.10487471

https://doi.org/10.5334/jors.131

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/1023004
https://doi.org/10.1016/j.enganabound.2006.11.011
https://doi.org/10.1016/j.enganabound.2006.11.011
https://doi.org/10.1016/0898-1221(90)90270-T
https://doi.org/10.1016/0898-1221(90)90270-T
https://doi.org/10.1016/0898-1221%2890%2990271-K
https://doi.org/10.1016/0898-1221%2890%2990271-K
https://doi.org/10.1016/0898-1221(92)90174-G
https://doi.org/10.1016/0898-1221(92)90174-G
http:
//www.it.uu.se/research/scicomp/software/rbf_qr
http:
//www.it.uu.se/research/scicomp/software/rbf_qr
http://math.iit.edu/~mccomic/gaussqr/
https://doi.org/10.1137/1.9781611970081
https://doi.org/10.1137/1.9781611970081
https://doi.org/10.1137/1031089
https://doi.org/10.1137/1031089
https://doi.org/10.1016/j.enganabound.2010.05.011
https://doi.org/10.1016/j.enganabound.2010.05.011
https://doi.org/10.1016/j.enganabound.2014.04.019
https://doi.org/10.1016/j.enganabound.2014.04.019
http://www.scottsarra.org/rbf/rbf.html
http://www.scottsarra.org/rbf/rbf.html
https://doi.org/10.1016/j.enganabound.2016.11.006
https://doi.org/10.1016/j.enganabound.2009.07.003
https://doi.org/10.1016/j.enganabound.2009.07.003
https://doi.org/10.1017/CBO9780511617539
https://doi.org/10.1017/CBO9780511617539
https://doi.org/10.1080/10867651.1997.10487471
https://doi.org/10.1080/10867651.1997.10487471

	(1) Overview
	Introduction
	Radial Basis Function Methods
	Regularization
	Extended precision
	Center locations
	Symmetry
	Examples, tests, and benchmarks
	Summary
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Dependencies
	List of contributors
	Software location

	(3) Reuse potential
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

