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Abstract

The integration of artificial intelligence capabilities into mod-
ern software systems is increasingly being simplified through
the use of cloud-based machine learning services and repre-
sentational state transfer architecture design. However, insuffi-
cient information regarding underlying model provenance and
the lack of control over model evolution serve as an impedi-
ment to more widespread adoption of these services in opera-
tional environments which have strict security requirements.
Furthermore, although tools such as TensorFlow Serving al-
low models to be deployed as RESTful endpoints, they require
the error-prone process of converting the PyTorch models into
static computational graphs needed by TensorFlow. To enable
rapid deployments of PyTorch models without the need for
intermediate transformations, we have developed FlexServe, a
simple library to deploy multi-model ensembles with flexible
batching.

1 Introduction

The use of machine learning (ML) capabilities, such as visual
inference and classification, in operational software systems
continues to increase. A common approach for incorporating
ML functionality into a larger operational system is to isolate
it behind a microservice accessible through a REpresenta-
tional State Transfer (REST) protocol [1]. This architecture
separates the complexity of ML components from the rest of
the application while making the capabilities more accessible
to software developers through well-defined interfaces.
Multiple commercial vendors offer such capabilities as
cloud services as described by Cummaudo et al. in their as-
sessment of using such services in larger software systems [2].
They found a lack of consistency across services for the same
data points, and also the unpredictable evolution of models,
resulting in temporal inconsistency of a given service for
identical data points. This behavior is due to the underlying
classification models and their evolution as they are trained on
different and additional data points by their vendors, providing

insufficient information to the consuming system developer
regarding the provenance of the model. Lack of control over
the underlying models prevents many operational systems
from consuming inference output from these services.

A better approach for preserving the benefits of a REST
architecture while maintaining control of all aspects of model
behavior is to deploy them as RESTful endpoints, thereby
exposing them to the rest of the system. A popular approach
for serving ML models as REST services is TensorFlow Serv-
ing [3]. However, serving PyTorch’s dynamic graph through
Tensor Flow Serving requires transforming PyTorch models to
an intermediate representation such as Open Neural Network
Exchange (ONNX) [4] which in turn is converted to a static
graph compatible with TensorFlow Serving. This two-step
conversion often fails and is difficult to debug because not all
PyTorch features are supported by ONNX, making the train-
test-deploy pipeline through TensorFlow Serving at best slow
and at worst impossible for some PyTorch models. Another
solution is to use the KFServing Kubernetes library [5]', but
that requires the deployment of Kubernetes, as KFServing is
a serverless library and depends on a separate ingress gateway
deployed on Kubernetes. Although this is a promising good
solution, its deployment options are not lightweight when
compared to TensorFlow Serving and Kubernetes itself can
be complex to configure and manage [6].

To enable PyTorch model deployments in a manner similar
to TensorFlow model deployments with TensorFlow Serv-
ing, we have developed FlexServe, a simple REST service
deployment module that provides the following additional
capabilities which are commonly needed in operational en-
vironments: (i) the deployment of multiple models behind a
single endpoint, (ii) the ability to share a single GPU mem-
ory across multiple models, and (iii) the capacity to perform
inference using flexible batch sizes.

In the remainder of the paper, we give an overview of
FlexServe and demonstrate its advantages in scenarios such
as those outlined above.

IKFServing is currently in beta status.
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Figure 1: FlexServe architecture consists of an ensemble module which loads N models into a shared memory space. Inference output of each
model is combined in a single response and returned to the requesting client as a JSON response object. The Flask application invokes the
fmodels module, which encompasses the ensemble of models, and exposes RESTful endpoints through the Web Service Gateway Interface.
Variable batch sizes provide for maximum efficiency and flexibility as clients are not restricted to a fixed batch size of samples to send to the
inference service. Additional efficiency is achieved through the use of the shared memory, better utilizing available GPUs and requiring only

one data transformation for all models in the ensemble.

2 Approach and Use Cases

FlexServe is implemented as a Python module encompassed
in a Flask [7] application. We chose the lightweight Gunicorn
[8] application server as the Web-Server Gateway Interface
(WSGI) HTTP server to be used within the Flask application.
This WSGI enables us to forward requests to web applications
using the Python programming language. Figure 1 shows
the high-level FlexServe architecture and its interaction with
consuming applications.

2.1 Multiple models, single endpoint

Running ensembles of models is a common way to improve
classification accuracy [9], but it can also be used to adjust
the number of false negatives of the ensemble dynamically.
Consider an ensemble of n models trained to recognize the
presence of a specific object. By using different architectures,
the ensemble model takes advantage of different inductive
biases that perform better at different geometric variations of
the target object. Then, combining its inference outputs ac-
cording to the sensitivity policy of the consuming application,
ensemble sensitivity can be adjusted dynamically. For exam-
ple, let y € {0, 1} be a binary output (O=absent, 1=present) of
a classifier and let y' be the combined output. Then for maxi-
mum sensitivity the policy isy =y || y2 || --- || y»» meaning
that when a single model detects the target, the final ensemble
output is positive identification. Different sensitivity policies
can be employed by the client as needed.

2.2 Share a single device

Deployed models vary in size, but are often significantly
smaller than the memory available on hardware accelerators
such as GPUs. Loading multiple models in the same device
memory brings down the cost and provides for more efficient
inference. FlexServe allows multiple models to be loaded as
part of the ensemble and performs multi-model inference on
a single forward call of nn.Module, thereby removing the ad-
ditional data transformation calls associated with competing
methods. Scaling horizontally to multiple CPU cores is also
possible through the use of Gunicorn workers.

2.3 Varying batch size

FlexServe accepts varying batch sizes of image samples
and returns a combined result of the form ‘model y_i’:
[‘class’, ‘class’, ..., ‘class’] for every model y;. This func-
tionality can be used in many applications. For example, to
perform time series tracking from conventional image sensors
or inexpensive web cameras by taking images at various time
intervals and sending these chronological batches of images
to FlexServe. As an object moves through the field of view of
the sensor, a series of images is produced that can be used to
infer movement of an object through the surveillance sector
when more sophisticated object trackers are not available and
video feeds are too costly to transmit. This places the com-
putation and power burden on the Flask server as opposed to
the potentially energy-constrained consumer which is only
interested in the inference results of the ensemble model.

3 Conclusion

Commercial cloud services offer a convenient way of intro-
ducing ML capabilities to software systems through the use
of a REST architecture. However, lack of control over under-
lying models and insufficient information regarding model
provenance & evolution limit their use in operational environ-
ments. Existing solutions for deploying models as RESTful
services are not robust enough to work with PyTorch models
in many environments. FlexServe is a lightweight solution
that provides deployment functionality similar to TensorFlow
Serving without intermediate conversions to a static computa-
tional graph.

Availability

The FlexServe deployment module is available in a public
repository (https://github.com/verenie/flexserve)
which provides details showing how FlexServe can be used to
deploy an ensemble model and also describes its limitations
with respect to the REST interface.
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