
Designing Robust Java Programs with Exceptions

Martin P. Robillard and Gail C. Murphy
Department of Computer Science
University of British Columbia
2366 Main Mall, Vancouver, BC

Canada V6T 1Z4
mrobilla,murphy @cs.ubc.ca

ABSTRACT
Exception handling mechanisms are intended to help developers
build robust systems. Although an exception handling mechanism
provides a basis for structuring source code dealing with unusual
situations, little information is available to help guide a developer
in the appropriate application of the mechanism. In our experience,
this lack of guidance leads to complex exception structures. In this
paper, we reflect upon our experiences using the Java exception
handling mechanism. Based on these experiences, we discuss two
issues we believe underlie the difficulties encountered: exceptions
are a global design problem, and exception sources are often dif-
ficult to predict in advance. We then describe a design approach,
based on work by Litke for Ada programs, which we have used to
simplify exception structure in existing Java programs.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming—
Java, exception handling; D.2.2 [Software Engineering]: Design
Tools and Techniques

General Terms
DESIGN, EXPERIMENTATION

Keywords
Exception handling, error handling, exception structure design, soft-
ware compartments

1. INTRODUCTION

For programs to be reliable and fault tolerant, each
program module must be defined to behave reasonably
under a wide variety of circumstances. An exception
handling mechanism supports the construction of such
modules. [8, p.546]

FSE 2000, San Diego, CA.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Copyright ACM, 2000.

Most modern programming languages, including object-oriented
languages such as C++ [13] and Java [6], provide an exception
handling mechanism. Syntactically, these mechanisms provide a
means to explicitly raise an exceptional condition, and a means of
expressing a block of code to handle one or more exceptional con-
ditions. As described by Liskov and Snyder above, the intent of
these mechanisms is to make it easier to reason about and build
robust software systems.
Although an exception handling mechanism provides a basis for

structuring source code that deals with unusual situations, little in-
formation is available to help guide a software developer in the
appropriate application of the mechanism. In our experience, this
lack of information about how to design and implement with ex-
ceptions leads to complex and spaghetti-like exception structures.
Even when we set out to carefully design and implement the excep-
tion handling code in one of our programs, we still ended up in the
same predicament. Speaking with other Java developers and ana-
lyzing other Java source code [11], we have found that the situation
is far from uncommon.
In this paper, we reflect upon our experiences trying to build a

robust program analysis tool in Java with a “good” exception struc-
ture (Section 2). We describe where and when we made trade-offs
that eventually led to an overly complex exception structure. We
then discuss the two issues we believe underlie the difficulties we
encountered (Section 3). The first issue is that exception handling
is a global design problem, making it difficult to decompose the
problem to handle complexity. The second issue is that it is often
extremely difficult to predict the sources of exceptions in advance,
complicating the design and implementation of exception structure.
We believe that the difficulties we encountered can be mitigated

through the development and use of better design methods for ex-
ceptions. To provide an example of how design methods can help,
we describe an approach we have used to simplify the exception
structure in existing systems (Section 4). This approach is based
on a proposed method for designing fault-tolerant Ada systems [9].
We discuss the outcome of applying this approach to three differ-
ent Java systems (Section 4 and 5) and analyze its costs and benefits
(Section 6). We also compare the work presented in this paper to
previous efforts (Section 7).
By describing the difficulties we have encountered working with

exceptions and a method we have used to address these difficulties,
this paper makes two contributions. First, it identifies some rea-
sons why and how exception structure becomes complex. Second,
it demonstrates how a straightforward approach to exception struc-
ture design and implementation can simplify exception structure,
improving the robustness and changeability of the program.

2. DESIGNINGWITH EXCEPTIONS
To illustrate the difficulty of designing and implementing a ro-

bust system with exceptions, we describe the case of the Jex excep-
tion analysis tool [11]. Jex is a static analysis tool that determines
exception flow information in Java programs. Specifically, Jex de-
termines the list of exceptions that can be raised at every program
point and presents this information in the context of the exception
handling structure of the program.

Type System

Controller

ASTParser

Jex Loader

Figure 1: The Architecture of Jex

Jex consists of five components (Figure 1) comprising 136 classes
and approximately 22 kLOC.1 Each component consists of a set of
highly related classes that are accessed through a restricted inter-
face. The arrows in the figure represent calls between the compo-
nents.
From the start, we wanted Jex to be robust and not to fail in

unanticipated ways. To achieve this goal, we chose to build upon
the exception handling mechanism supported by Java, the language
used to implement Jex. Specifically, we used a two-level approach.
At the first level, the component-level, we designed a restricted set
of general, high-level, exceptions for each component. A compo-
nent was to explicitly signal only this limited set of exceptions. By
limiting the exceptions that could be raised, we hoped to limit the
number and complexity of handlers for those exceptions in clients
to a manageable level. Table 1 shows the initial specification for
the exceptions raised at the component level; each was chosen to
represent a failure that was meaningful from an architectural view-
point. Our intent was to make reasoning about the exception flow
a manageable task and to limit the number of unanticipated excep-
tions that could cross component boundaries and cause the system
to crash.
Having a specification of the exceptions which can propagate

from a component was also intended to simplify the design of intra-
component exception handling, the second level. Specifically, for
each intra-component exception, a decision had to be made whether
to handle the exception locally, or to re-map the exception to a
component-level exception and propagate it. To make the option of
re-mapping feasible, we tried to name the component-level excep-
tions using terms general enough that intra-component exceptions
could be meaningfully re-mapped. The idea was to be able to fo-
cus independently on intra-component or component-level excep-
tions, depending on whether we were implementing or integrating
components. Specifying the component exception interfaces early
supported this focus.
After producing an architectural design with detailed interfaces,

the Jex development proceeded incrementally. The components
were developed in a roughly bottom-up order: Type System, Jex
Loader, Parser, AST, and Controller.

The kLOC figures in this paper include generated code and com-
ments.

Table 1: Component-level exception specification
Component Name Exceptions Raised
Controller None
Type System TypeException

ParseExceptionJex Loader
IOException
AnalysisExceptionAST
ExceptionGenerationException

Parser ParseException

2.1 Creeping Exception Complexity
Even before the Jex tool was complete, we realized that the ex-

ception structure was gaining rapidly in complexity. This increase
in complexity occurred despite the fact that the structure of the code
handling normal conditions remained straightforward. Our “loss of
control” of the exception structure was due to the following causes.
Ambiguous exception semantics. As mentioned above, in our

design approach, intra-component exceptions could be re-mapped
to the smaller set of exceptions that might be raised by a compo-
nent. In practice, this led to problems interpreting the meaning of a
component-level exception. Consider the following example. The
implementation of the Type System component re-mapped the ex-
ceptions that could occur in classes contributing to the Type System
to the generic TypeException. In most cases, this re-mapping
was appropriate because the precise meaning of the errors raised in
the component did not enable clients to vary or improve their recov-
ery code. However, in one case, the re-mapping approach led to a
TypeException representing either some I/O problems related to
initializing the type system component, or lookup problems related
to using the component. Treating these exceptions the same made
it difficult to write useful handlers; for instance, it was difficult to
write a handler to inform the user that their environment was not
setup properly. To enable this separate treatment, we modified the
interface of the Type System component to propagate IOExcep-
tion. Unfortunately, this change led the explicitly raised Type-
Exception and the propagated IOException to carry the same
semantics during the initialization of the Type System. In this case,
the handling of both types of exceptions was identical. Clearly, this
situation made it confusing and difficult for a client to determine
when the semantics of the exceptions were the same and when they
differed.
Distinguishing exceptions with exception values. To enable cli-

ents to distinguish the specific reason a particular component-level
exception was raised, we sometimes used information stored in the
exception object—the value of the exception. This situation arose,
for instance, in the client of the Jex Loader component. The Jex
Loader parses files containing information about exception flow for
all methods of a class. As described in Table 1, only two exceptions
were to escape the Jex Loader: an IOException if the file could
not be opened, and a ParseException if the file could not be
parsed correctly. When the system was implemented, it was deter-
mined that the situation in which a file does not contain informa-
tion requested about a method be signaled as a ParseException.
However, when we integrated the Jex Loader with its client, the
AST, we realized that the difference between a parsing error and a
unfulfilled request for method information should be distinct. To
differentiate between the two situations, we set the value of the ex-
ception differently in each case. Although this allowed us to write
handlers to deal with each case separately, we found that the ap-
proach complicated both the writing of handlers, and the mainte-
nance of the exception structure. The problem is that it is almost

impossible to trace which program entities are allowed to create or
modify the exception value.
Confusion over the use of system-defined exceptions. Under some

conditions, such as when a documentation file could not be found,
the Jex Loader raised a system-defined IOException. An IOEx-
ception could also be raised by the methods of the Java API
classes when some low-level I/O problems occurred. As a result,
IOException ended up being more pervasive than most user-
defined exceptions. It was difficult for the client of the Jex Loader,
the AST, to handle the exception because the cause could be so
varied.
Unbounded unchecked exceptions. In Java, exceptions can be

either checked or unchecked (runtime). Checked exceptions must
be declared in the header of all methods which propagate them;
unchecked exceptions need not be declared. User-defined excep-
tions are typically checked exceptions because they correspond to
conditions which developers find useful to signal as a specific po-
tential cause of exiting a method. Enabling the compiler to check
such exceptions makes clients aware of these specific exit condi-
tions. Although checked exceptions have many benefits, they can
also be expensive to implement. For instance, it would have been
desirable to declare the AST’s AnalysisException and Excep-
tionGenerationException2 as checked exceptions. However,
since the AST component is implemented as a hierarchy of roughly
100 different classes, and since the problems corresponding to the
two exceptions can arise anywhere in the AST, exceptions could
potentially propagate through most of the methods of most of the
classes. If we had defined these exceptions as checked exceptions,
we would have had to declare them in approximately two to ten
methods in each of 100 classes. An engineering decision had to
be made: declaring the exceptions as checked exceptions was not
deemed cost-effective and the two exceptions were defined to be
unchecked. This decision had two main consequences. First, be-
cause they are unchecked, extra care and inspection was needed to
identify the propagation paths of the exceptions so that they could
be handled effectively. Second, to limit the number of different
unchecked exceptions flowing in the AST and thereby simplify the
exception structure, some other exceptions were recast either as an
AnalysisException or an ExceptionGenerationException,
leading to ambiguity.
Many of the the low-level exceptions in Java, such as Array-

IndexOutOfBounds, are also unchecked exceptions. Because they
are unchecked, these low-level exceptions, which typically repre-
sent a problem with the implementation of a component, tend to
propagate out of the component through most of the call chain to
the entry point of the application. Since these exceptions are so
general, it was impossible to provide handlers at the entry point to
perform any recovery or to provide any useful error message. All
we could do is simply catch all unchecked exceptions at the pro-
gram entry point to avoid crashing the program.

3. DIFFICULTIESINEXCEPTIONDESIGN
Looking back at the Jex development, it may seem as if some of

the problems described above could have been avoided by making
better design decisions. Indeed, given an unbounded amount of
time and resources, the design and implementation of a system can
always be improved.
Few developments, though, proceed in an environment with un-

bounded resources. Reflecting on the causes presented above and

An AnalysisException results from any problem related to
the syntactic analysis of the AST, while an ExceptionGenera-
tionException corresponds to any problem related to the excep-
tion information generation phase of the AST.

0

41

1

42

2

43

3

44

4

45

5

46

6

47

7

48

8

49

9

50

10

51

11

52

12

53

13

54

14

5515

56

16

57

17

58

18 59

19

60

20

61

21

62

22

63

23

64

24

65

25

66

26

67

27 28

29

30

31

32

33

34

35

36 37

38

39

40

Figure 2: Propagation graph of ClassCastException

18
14

10

1

3

17

7

ASTParser Type System

Controller

Jex Loader

Figure 3: Exception propagation in Jex

analyses of other Java programs [11], we believe there are two main
factors which contribute significantly to the difficulty of designing
exceptions when time and resources are bounded.

1. Exception handling is essentially a global phenomenon.

2. It is difficult and costly to anticipate all categories of prob-
lems, and how they should be reported, during the design
phase.

3.1 A Global Phenomenon
Exceptions are propagated automatically in Java: when a method

exits with an exception, control is not necessarily transfered back
to the direct caller of the method. Instead, it can transparently jump
any number of levels up the call chain. This feature makes it possi-
ble for the raise and handle points for an exception to be separated
by numerous method calls.
One difficulty related to automatic propagation is that reasoning

about exception control paths can quickly become an intractable
task for developers. As one example, Figure 2 represents the prop-
agation paths, at the class-level, leading to the entry point of Jex
for a single unchecked exception, ClassCastException. Obvi-
ously, reasoning about the behavior of the system and handling the
exception reasonably to produce a robust system is difficult! Fig-
ure 3 presents a stylized representation of the flow of all exceptions
between components in Jex. The width of each arrow is roughly
proportional to the number of different exceptions flowing on the
path; the numbers are also indicated on the figure. Clearly, there are
more exceptions flowing in the system beyond component bound-
aries than were anticipated or desired.
A second difficulty introduced by the global nature of exception

handling is the cost of modifying exception interfaces, which re-
quires more effort than modifying normal method interfaces. For
example, the task of adding a parameter to a method signature
requires tracking down where the method is called and ensuring
that a meaningful value is assigned to the parameter. For the Java
language, in cases where the method is not overloaded, the com-

piler will catch calls that have been “forgotten”. In contrast, when
changing the list of exceptions a method can raise, how can one
ensure that all the right handlers are identified and inspected? The
handlers will not necessarily be in the callers of the method. And
a name search on the type of the exception to be changed could be
misleading since this exception could be raised by other methods,
or some handlers could catch the exception by subsumption.3 Tools
like Jex [11] can help, but in our experience, tracking down han-
dlers remains a daunting task. Furthermore, in the case of checked
exceptions, changing the exception interface potentially requires
modifying the interfaces of all the methods along the propagation
path of the exception.

3.2 Unanticipated Exception Sources
In earlier work on exception analysis [11], we identified that rea-

soning about exceptions in Java programs was difficult because pre-
cise information about the types of exceptions that could be raised
at various program points was not easily available to developers.
Using very detailed design practices (down to the implementation
level), it is possible for software engineers to accurately predict all
the potential sources of exceptions originating in a module or com-
ponent. While some organizations use such fine-grained detailed
design as part of their software development process, it is not typ-
ical. Even when implementation information is available, it is still
costly to trace the sources of all exceptions [11]. For these reasons,
the specification of component-level exceptions tends to be based
on incomplete knowledge of how a component can fail. As the de-
sign and implementation is iterated, new, unanticipated exception
sources can emerge.
The end result is that software developers have incomplete knowl-

edge about the exceptions that may occur when designing an ex-
ception structure for their program. This lack of knowledge leads
to a tension between trying to design specific interfaces to enable
appropriate handling of unusual situations, and designing general
interfaces to enable emerging exceptions to be handled within the
bounds of the current chosen scheme. This problem shares many
similarities with designing module interfaces. However, as noted
in the previous section, the global nature of exceptions makes the
task more challenging.

4. SOFTWARE COMPARTMENTS
Our initial approach to designing exception handling was in-

tended to make it tractable to understand our exception structure
by dividing it into two levels: the component-level and the intra-
component-level. Unfortunately, this two-level approach was not
enough to keep control of the exception structure as it evolved dur-
ing the incremental development of our system. One possible rea-
son why our approach did not prove entirely successful is that it
lacked the formal conceptual elements necessary for a systematic
application, and guidelines to help make decisions when tradeoffs
arose.
To investigate how a more thorough method could help, we tried

applying the the principles of compartmented software, initially de-
scribed by Litke for designing fault-tolerant systems in Ada [9].
Litke describes the approach as follows.

An important effect of compartmented software de-
sign is to provide a clear specification and a ready un-
derstanding of error-tolerating behavior at the com-
partment boundaries. This property makes reasoning

Subsumption is the action of implicitly upcasting an object when
assigning it to a variable of a type corresponding to one of its su-
pertypes.

about the program behavior easier by reducing the com-
plexity of relationships andmakes modification of error-
tolerating code easier [9, p. 405].

This property is exactly what we were trying to achieve. To ap-
ply the technique to Jex, we needed to adapt the technique for an
object-oriented language, in this case, Java. This section describes
our refinement of the technique and its application to Jex. Section 5
describes the application of the technique to two other systems.

Litke’s technique consists of the following steps.

1. Determining software compartments.

2. Defining precise and complete exception interfaces for each
compartment.

3. Automatically verifying the conformance of the actual pro-
gram to the compartment specification.

Clearly, this technique overlaps with our original concept of com-
ponent-level and intra-component-level exceptions. However, in
comparison, the technique of Litke is more explicit about the def-
inition of compartments, provides better guidance for determining
interfaces, and includes a verification aspect.

4.1 Compartments
The idea behind software compartmenting is that “compart-

mented programs have identifiable boundaries within them that con-
tain the propagation of specific error classes” [9, p.405].

There is no real restriction on what compartments can be. In the-
ory, a compartment could be any set of entities that can raise excep-
tions, such as a set of methods. Litke suggests choosing boundaries
at the software architecture level so that the functional and excep-
tional interfaces are minimal. Practically, aligning compartments
with the program structure provides a basis for reasoning about the
exception structure. In Jex, the compartments we chose mostly
aligned with the architectural components in the system: the Con-
troller, the Type System, the Parser and the Jex Loader. We did not
specify the AST component to be a compartment for two reasons.
First, the interface to the component comprised a high number of
public methods with extensive use of polymorphism. Second, the
AST component was accessed only through the Parser; the com-
partment specified for the parser could include the AST.

In addition to these coarse-grained compartments, we found it
useful to specify one sub-component compartment around a class,
Resolver, which was responsible for resolving simple names to
fully-qualified Java names. This refinement is compatible with
Litke’s approach, which suggests allocating “internal compart-
ments” if the initial boundaries are too large [9, p. 460]. We de-
fined this compartment for two reasons: the precise error semantics
of the Resolver class were necessary to perform some specialized
recovery in our program, and the cost of defining this compartment
was negligible since the interface consisted of only a few methods.

4.2 Exception Interfaces
The next step involves determining which exceptions will be al-

lowed to propagate from a compartment. We refer to exceptions
designed to propagate from a compartment as abstract exceptions.
Determining these exceptions is the most difficult step. The diffi-
culty stems from trying to determine a list of semantically coherent
exceptions that describe the complete set of problems that can hap-
pen in a compartment.

Litke states four important guidelines in establishing exception
interfaces [9, p.406].
1. “Use Ada exceptions to signal all detected errors.”

2. “Enumerate all exceptions propagated across the defined
boundaries.”

3. “Decide [] the precise semantics of all error signals prop-
agated across the boundary.”

4. “Determine appropriate transforms [re-mappings] for excep-
tions, including specifying which are completely handled,
and which are partially handled before propagation to pro-
vide the specified semantics. This step may require a def-
inition of a new exception to carry the specified semantics
across the boundary.”

Applying these guidelines to Java has led to the following refine-
ments.
1.Only use exceptions. Similar to Litke’s first guideline, we have

found it useful to limit the error handling structure to the use of
the Java exception handling mechanism. Global error code vari-
ables and local exit instructions should be avoided. Adherence to
this guideline ensures a simpler structure, and facilitates reuse by
allowing clients to control how they should fail. In Jex, no compo-
nent was allowed to terminate the program except the Controller,
which is the entry point to the application.
2. Document exhaustive interfaces. The description of the ab-

stract exceptions should be complete and precise. By complete, we
mean that every possible abstract exception, runtime or checked,
must be specified. By precise, we mean that, if the exceptions
that can be propagated are organized in a hierarchy, all exceptions
should be documented, not only the supertype. This way, all exit
points out of the compartment are explicit.
3. Specify precise error semantics. Since Ada does not support

exception hierarchies, Litke suggests that the precise semantics of
all abstract exceptions be specified in advance. As we described
earlier, meeting this condition is almost impossible given the emer-
gence of unanticipated exception sources as design and implemen-
tation proceeds. To try and manage this situation, we propose an
enhanced version of this guideline.
3a. Design exception interfaces for change. When a hierarchical

exception mechanism is available, as is the case in Java, it can be
used to help manage the evolution of exception interfaces. Specifi-
cally, abstract exceptions should be chosen to be as general as pos-
sible while still being meaningful. If a new source of exception is
uncovered that has a more specific meaning, often, a subtype of the
original abstract exception can be added to the compartment’s in-
terface. This approach gives the client the option of either handling
only the more general supertype exception or handling the more
specific subtype exception. This change can be made without mod-
ifying the interfaces to all the methods propagating the exception.
The difficulty lies in choosing the original abstract exception to be
sufficiently general.
4. Determine re-mappings for exceptions. We interpret Litke’s

guideline simply as determining in advance which low-level excep-
tions should be handled locally, and which exceptions should be re-
mapped as abstract exceptions. Again, because of unanticipated ex-
ception sources, this can be a difficult task. Instead, we have found
it useful to distinguish between two classes of intra-component ex-
ceptions: system exceptions and internal failures. System excep-
tions typically correspond to broken assumptions about the system.
Such assumptions can include constraints about the sequence of op-
erations on a component, the parameters to an operation, or the en-
vironment. On the other hand, internal failures relate to an internal

inconsistency. These exceptions typically correspond to an imple-
mentation problem and generally do not indicate anything useful to
a client, except a failure of the component. Example of internal fail-
ures can include dynamically casting an object to an invalid type,
or accessing an array beyond its bounds. For Jex and the other pro-
grams we have analyzed, we have used a single abstract exception,
AlgorithmicException, to model internal failures.4
In addition to the first four guidelines suggested by Litke, we

have also found the following guidelines to be helpful.
5. Avoid using system-defined exceptions as abstract exceptions.

Even though reusing a pre-defined exception, such as IOExcep-
tion, as an abstract exception saves writing an exception class, this
does not generally pay off as it makes the interpretation of abstract
exceptions more difficult.
6. Do not propagate abstract exceptions. Abstract exceptions

are meant to be semantically associated with the compartment that
raises them. For instance, the Resolver compartment can raise
a NameException when a name cannot be resolved to a fully-
qualified Java name. To avoid weakening the semantic connota-
tion of the exception, it should not be propagated past the client
compartment. This is not to say that abstract exceptions should
not necessarily be reused where appropriate. However, the use of
abstract exceptions should be limited to compartment boundaries.
7. Do not raise abstract exceptions except in a compartment’s

entry points. Abstract exceptions should not be raised by methods
that are not entry points to a compartment. If a method which is not
an entry point raises an abstract exception, then it becomes difficult
to reuse that method in another compartment. It is preferable to
catch all intra-compartment exceptions at the compartment bound-
aries, and to re-map these exceptions into the abstract exceptions at
the compartment’s entry points.
Table 2 shows the complete list of abstract exceptions for each

compartment in Jex. The Controller, being the entry point of the
application, cannot raise any exception. For the Type System, we
chose two exceptions corresponding to the two orthogonal modes
of operations on the component: initialization and lookup. Since
these exceptions can never be raised by the same operation, they
are not specified in a hierarchy. The AlgorithmicException is
the abstract exception representing internal failures in each com-
partment other than Controller. This exception is reused in most
compartments, and thus is allowed to propagate through compart-
ments. We feel this “exception” to guideline 6 is acceptable since
it represents internal failures, which we can rarely handle, except
at the application entry point.
The other abstract exceptions all represent system exceptions.

The Resolver propagates a NameException if a name cannot be
resolved. The Jex Loader can raise two abstract exceptions; each
is a subtype of JexFileException since each can be raised by
the same operation. Finally, the Parser can raise three abstract sys-
tem exceptions: ParseException, and two exceptions that can
propagate from the AST, AnalysisException and Exception-
GenerationException.

4.3 Compartment Verification
The means of establishing conformance suggested by Litke is

based on a proposed automated tool. This tool, using an informal
model of exception control flow in Ada, is intended to locate and
classify exception raise points, and to trace the propagation of ex-
ceptions up to either their handling point or a program exit point.

Some languages directly support the unified signaling of internal
errors. For example, CLU has a single unchecked failure ex-
ception. C++ re-maps all undeclared exceptions to a single unex-
pected type.

Table 2: Abstract exception specification for Jex
Component Name Exceptions Raised
Controller None

TypeSystemSetupException
Type System TypeSystemLookupException

AlgorithmicException
NameExceptionResolver
AlgorithmicException
JexFileException
JexFileLoadingExceptionJex Loader
JexFileInterpretationException
AlgorithmicException
ParseException
AnalysisExceptionParser
ExceptionGenerationException
AlgorithmicException

public TypeSystem()
{

try
{

// Initializing the Type System
// Perform necessary exception
// re-mappings

}
catch(TypeSystemSetupException e)
{ throw e; }
catch(Throwable e)
{ throw new AlgorithmicException(e); }

}

Figure 4: An example of exception guard implementation

Java eases the problem of establishing conformance through its
support of exception hierarchies. Through subsumption, many types
of exceptions can be caught in a single catch clause. Specifically,
we use exception guards to enforce the exception interface, ensur-
ing only abstract exceptions defined for a compartment are allowed
to propagate.
Each entry point method of a compartment is wrapped in a try

block with a catch clause for every abstract exception, followed
by a catch clause declaring the type Throwable, the supertype of
all exceptions that can be raised in a Java program. The catch
clauses for the abstract exceptions simply re-throw the exceptions,
while the catch clause for the general type maps all exceptions to
a new exception of type AlgorithmicException. As specified in
Table 2, an AlgorithmicException is raised whenever an unan-
ticipated exception is detected in the compartment, and thus this
type of exception corresponds to the concept of internal failure.
Figure 4 gives an example of the implementation of an exception

guard for the constructor of the Type System. In this case, because
of the complexity of the operations in the top-level try block, the
re-mappings to abstract exceptions are performed within the try
block and the abstract exceptions are filtered in the corresponding
catch clauses. For methods with simpler operations, it is possible
to perform the re-mappings directly in the catch clauses associated
with the top-level try block.
Although they help enforcing conformance without requiring tool

support, exception guards have two weaknesses. First, exceptions
can theoretically be raised in the top-level catch clause. Second,
the mechanism only enforces syntactic conformance. Specifically,
an unchecked exception that was meant to be re-mapped as an ab-
stract exception could be “forgotten”, and automatically re-mapped

4

1

2

1

1

3

2

ASTParser Type System

Controller

Jex Loader

Figure 5: Exception propagation in the revised version of Jex

as an internal failure.
When necessary, these finer points can be dealt with using the

Jex tool. Since Jex extracts exception information from Java pro-
grams, it can be used to report any exceptions raised in the top-level
catch clause, and all uncaught exceptions propagating to the top-
level try block. Running Jex on the modified Jex program allowed
us to ensure that the desired containment properties were respected.
With the exception guards in place and the conformance to our

specification of abstract exceptions verified, the propagation inter-
actions between the components of Jex are simpler (Figure 5).

5. ADDITIONAL EXPERIENCES
In many respects, Jex was an ideal candidate for applying the

compartmenting approach. Since compartmenting is a refinement
of our original design approach for exceptions, most compartments
aligned with Jex components. In addition, in choosing abstract
exceptions, we could build upon our previous experience choos-
ing component-level exceptions. To investigate whether the com-
partmenting approach applies in other situations, we applied the
technique to two other existing software packages: GNU JTar ver-
sion 1.1. and IBM’s Bobby class library, version 7.5
We choose to apply the compartmenting approach to existing

systems instead of experimenting with the development of new Java
programs because our goal was to investigate how reasoning about
compartmented exception structure compared to reasoning about
other styles of exception structure. The use of existing programs al-
lowed us to gather insight into how specific design decisions made
by various developers influenced the overall exception structure.
The tradeoff is that this case study approach prevented us from
studying how compartment design interacts with traditional design
activities. The investigation of this interaction is the subject of fu-
ture work.
Each of the package investigated has unique characteristics. The

JTar source demonstrates a layered architecture with no uniform
error handling. The Bobby package is a class library with no over-
all architectural structure. In both cases, using compartmenting,
we were able to simplify and improve specific aspects of the error
handling structure without changing the structure of the program
handling normal operations.

5.1 JTar
JTar is a command-line program implemented in Java which cre-

ates and extracts tape archive (tar) files. It comprises 48 classes in 6
packages (7 kLOC). Based on a manual inspection of the source
code, we determined that JTar has a simple architecture consisting
of three layers: Controller, Actions, and Buffered I/O (Figure 6).

Bobby is now called the Jikes Bytecode Toolkit. It is available at
IBM’s Aphaworks website, www.alphaworks.ibm.com.

Controller

Actions

Buffered I/O

Figure 6: Simplified architecture of JTar

The Controller layer is the entry point to JTar and controls the
application. It parses the command-line arguments and calls the
Actions layer to perform actions requested by users through the
command-line arguments, such as create, read, and extract tar files.
The classes of the Actions layer use the Buffered I/O layer to carry
out specialized I/O tasks.
Based on an inspection of the source code, we determined that er-

ror handling was not uniform in JTar. In the classes of the Buffered
I/O layer, internal failures, such as NullPointerException, were
propagated; other exceptions, such as IOException, caused the
program to terminate. In the Actions layer, exceptions were typi-
cally caught and an error code was set before the call returned nor-
mally, perhaps without having completed the action. We believe
that these choices were not optimal. First, handling exceptions us-
ing a combination of exception handling and normal code makes it
difficult to reason about and modify how the program handles ex-
ceptional conditions. Second, exiting the application haphazardly
complicates reuse of the components.
Our goal was to improve the JTar code in two ways. One im-

provement was to ensure the program could only exit at the Con-
troller layer. The second improvement was to report every fault
using exceptions. To make these improvements, we applied the re-
fined compartment approach with each layer serving as a compart-
ment. Our case study focuses on the interface between the Actions
and Buffered I/O compartments.
We began with the Buffered I/O compartment. First, we deter-

mined the entry points to the compartment which consisted of the
17 public methods of the two classes, BufferRead and Buffer-
Write.6 At each entry point, we implemented exception guards for
the following exceptions types:JTarCorruptedInputException,
JTarFileIOException, JTarNoPermissionException,JTar-
NoArchiveNameException, and AlgorithmicException. This
list was determined by inspecting the conditions under which the
program terminated, and the message that was output at that point.
The first four exception types correspond to conditions related to
the parameters or the object (typically, a tar file) of the various op-
erations. To allow the possibility of handling all of these excep-
tions at once in a client, we defined them as subtypes of a general
JTarException type, which represents any problem related to the
handling of a tar file. As before, internal failures were represented
using AlgorithmicException. Next, we identified the points in
Buffered I/O where an exit was present and replaced the exit in-
struction with a suitable throw statement. This redesign of the ex-
ception structure of the Buffered I/O layer led to a simpler failure

Originally, none of the 32 methods of these classes were scoped
private. However, we could easily determine a set of methods
that was only accessed within the class. To make the interface to the
Buffered I/O layer more explicit, we have qualified these methods
as private.

model because all exceptional conditions are reported to the Ac-
tions layer in the form of anticipated exceptions, and because the
Buffered I/O layer is unable to terminate the application.
Applying the compartmenting technique required reasoning about

the semantics of the program. Much of the effort required involved
tracking down the sources of errors and converting them into ex-
ceptions. When implementing the guards, we found that the main
difficulty was in mapping existing exceptions and exit instructions
to the abstract exceptions defined in the compartment specification.

5.2 Bobby
Bobby is a Java class library for manipulating Java class files. It

consists of 118 classes (23.5 kLOC) representing such items as
the constant pool, methods, and instructions of a class file.
In contrast to Jex and JTar, Bobby does not have an obvious ar-

chitectural decomposition. All the Bobby classes are public and
most of them are intended for inter-package use. There are numer-
ous dependencies between classes. For these reasons, it was not
possible to identify clean compartments within Bobby. However,
since Bobby is a class library, it is meant to be used by client code.
From the perspective of potential client code, two issues regarding
exception handling arose.
First, most problems internal to Bobby were reported as either

a RuntimeException or as an InternalError. These two con-
ditions make it difficult for a client to recover from a problem in
Bobby. A RuntimeException cannot be caught without catch-
ing all other RuntimeExceptions, restricting the granularity of
the potential recovery. According to the Java API specification, an
InternalError corresponds to a problem with the Java virtual
machine (JVM). For a client, it would only be possible to deter-
mine if an InternalError was raised by Bobby and not by the
JVM by programatically inspecting the call stack.
Second, Bobby also reports some system exceptions which result

from a sequence of operations on the class library as Internal-
Errors, making it difficult for clients to anticipate these failures.
To improve the flexibility of Bobby clients, we were interested in

a version which would not report system exceptions as internal fail-
ures, and which would enable actual internal failures to be handled
more effectively.
Applying the compartmenting technique was more difficult in

the case of Bobby than the other two systems. Since almost every
method in Bobby is public, implementing guards implied adding
a top-level try block and ensuring that exceptions raised in the
method conformed to the interface in every method of the 118
classes. To manage the cost of this change, we decided to imple-
ment the guards on only a subset of frequently-used classes.
The abstract exceptions consisted of the two existing user-defined

exceptions, BB ClassFileException and BB DuplicateClass-
Exception. We also added BB IllegalOperationException
to signal illegal operations and BB InternalFailureException
to represent internal failures. The first two exceptions were checked
exceptions. We decided to implement the two new exceptions as
unchecked exceptions, because of their pervasiveness inside the
Bobby package.
Applying the approach to Bobby, even in this partial way, al-

lowed us to simplify the flow of exceptions within the Bobby classes.
The revised Bobby is also easier to use because the exit points, both
normal and exceptional, are explicit, and the exceptions are more
meaningful.

6. EVALUATION
The case studies show that compartmenting is applicable to a

small set of diverse systems. In this section we discuss whether the
approach is workable by considering its benefits and costs.

6.1 Benefits
From our original experience, we cited two difficulties related to

designing and implementing “good” exception structure: reasoning
about global exception flow, and dealing with emerging exception
sources (Section 3).
With respect to dealing with global exception flow, our experi-

ence in the three case studies agrees with the intuition of Litke:
bounding exception propagation at compartment boundaries has
practical benefits. First, by limiting the scope of exception propaga-
tion at compartment boundaries, we reduce the intra-compartment
exception design problem to deciding whether an exception should
be handled locally or whether it should be propagated and re-
mapped as an abstract exception. Second, by enforcing hard inter-
faces between compartments, we eliminate the possibility of unan-
ticipated exceptions being raised by a compartment. The end re-
sult is that compartments and exception guards enable developers
to reason about compartment-level exceptions in a straightforward
and manageable way.
It is less obvious how compartmenting allows developers to bet-

ter manage the emergence of new exception sources. Design guide-
line 3a, presented in Section 4, specifically caters to that effect, but
whether it will work well in the general case, and how well it scales,
is the object of future investigation.
For the three programs we studied, the guidelines were sufficient

to address most of the problems initially identified with exception
structure. As one example, we now revisit the causes we had iden-
tified for the Jex system (Section 2).
Ambiguous exception semantics. As we mentioned earlier, deter-

mining the ideal set of abstract exceptions is the true challenge of
software compartmenting. To avoid the case of ambiguous excep-
tion semantics identified in Section 2, care must be taken to ensure
that the meaning of the system abstract exceptions chosen for the
new interface do not overlap. For example, in the refined version of
Jex, we did not propagate the pre-defined IOException, but rather
defined two non-overlapping abstract exceptions.
Use of exception values to distinguish between failure types. In

our refined approach, instead of using exception values to distin-
guish between different types of failures, we used subtypes to ex-
press the more specific information. Subtypes are easier to track
and distinguish than values, making the exception structure easier
to reason about. Exception values were used only to carry supple-
mental information. As an example, in all the case studies, when
raising an AlgorithmicException, we nested the “original” ex-
ception object within the AlgorithmicException, to retain in-
formation about the particular source of the problem.
Confusion over the use of system-defined exception. This case is

avoided simply by refraining from using pre-defined exceptions.
Unbounded unchecked exceptions. Exception guards automati-

cally bound all exceptions at the compartment boundaries.

6.2 Costs and Tradeoffs
Applying this technology to three different programs allows us

to roughly evaluate the effort involved in setting up compartments.
The basic design problem for software compartmenting is to estab-
lish a semantically meaningful set of abstract exceptions. As is the
case when designing “normal” module interfaces, the task of de-
signing exception interfaces is difficult to perform and its costs are
difficult to assess.

In our experience, once exception interfaces are chosen for the
compartments, the effort required to adapt a program to the com-
partment interfaces primarily comprises two activities:
1. setting up exception guards at compartment boundaries to
prevent unanticipated exceptions from escaping compart-
ments, and

2. tracking down meaningful exception sources to map them
into the exception interfaces.

The cost of the first activity is roughly proportional to the number
of exception guards needed. The number of guards is determined
by the granularity of compartments and the size of their functional
interface. The cost of the second activity is mostly related to the
complexity of the original exception structure. It is difficult to gen-
eralize this factor. Tracking down meaningful error sources was
easy in Bobby, where only a few exceptions were used. In the case
of Jex, this cost was slightly higher, since Jex has more functional-
ity, resulting in the need for a greater number of abstract exceptions.
In the case of JTar, re-mapping the error sources to abstract excep-
tions was particularly arduous, mostly because of the ad hoc error
handling scheme used.

7. RELATEDWORK
Seminal work on the design of robust and fault-tolerant programs

using exception handling was done by F. Christian. His contribu-
tions include a study of how the failure occurrences related to spe-
cific classes of design faults can be addressed using default excep-
tion handling based on automatic backward recovery [3]. In a later
paper, Christian also proposed “a programming language suitable
for writing well-structured robust programs” [4, p.163]. The work,
mostly theoretical, includes a deductive system for proving total
correctness and robustness properties of programs with exceptions.
Work on designing programs with exceptions also spans the ar-

eas of application-domain specific approaches, methodologies, and
design tools. As described earlier, Litke [9] proposed an approach
to designing fault-tolerant systems in Ada. Similarly, de Lemos and
Romanovsky have suggested a framework for integrating exception
handling into the early phases of the software life-cycle [5].
Tools and modeling techniques integrating exceptions have also

been suggested. An example of a tool is OODREX [1], which helps
take exceptions into account when designing C++ classes. An ex-
ample of a notation that integrates exceptions is the Unified Mod-
eling Language (UML) [2]. Additionally, an extension to UML to
model exceptions as pre- and post-condition constraints using the
Object Constraint Language [14] has been proposed recently by
Soundarajan and Fridella [12].
The work described in this paper differs from these efforts as it

focuses on reasons why exception structure degrades, and investi-
gates a disciplined design technique to alleviate the problems caus-
ing degradation.
More closely related to the problems discussed in this paper is

an analysis by Miller and Tripathi [10] of why it is difficult to de-
sign exceptions in object-oriented systems. However, their analy-
sis focuses on conceptual clashes between object-orientation and
exception handling, such as abstraction, encapsulation, modularity
and inheritance, rather than on the realities of programming with
exceptions. Finally, Lippert and Lopes have investigated how de-
signing exception handling code can be simplified using aspect-
oriented programming in AspectJ [7]. Their focus was primar-
ily on reducing redundant information in exception handlers and in
enabling different configurations of exception structures rather than
in the design of an exception strategy for a system. It is possible
that AspectJ provides another way to implement exception guards.

8. SUMMARY
To help developers during design, principles, methods, and no-

tations have been elaborated. For the most part, these design ap-
proaches have focused on the normal operations of a system. De-
spite the presence of mechanisms, such as exception handling, for
expressing and separating what a program should do in an unusual
situation, there has been less guidance available to help a developer
structure the “exceptional” portions of a system.
In our experience, this lack of information about how to design

and implement with exceptions leads to complex and spaghetti-
like exception structures. To gain insight into why this complexity
arises, we reflected upon our experiences trying to build a “good”
exception structure into a program analysis tool we were imple-
menting in Java. Based on the causes of complexity which arose in
that system and analyses of other Java programs, we believe there
are two main factors which contribute significantly to the difficulty
of designing exception structures: the global flow of exceptions,
and the emergence of unanticipated exceptions. To help control
these factors, we refined an existing software compartmenting tech-
nique for exception design. We report on our experiences apply-
ing it to three different Java programs. In each case, the refined
compartmenting approach helped by providing a basis on which to
make decisions during exception design.
This paper thus makes two contributions. First, it identifies some

reasons why and how exception structure becomes complex. Sec-
ond, it describes a straightforward set of design guidelines we have
used to help simplify exception structure. To date, these guidelines
have been applied to existing systems for which some exception
handling structure already existed. The next steps are to try ap-
plying these guidelines to the development of new systems or new
parts of systems, and to track the effect of the guidelines over the
longer evolution of the systems.

ACKNOWLEDGMENTS
We would like to thank IBM for providing us with the source code
of Bobby. We are also grateful to A. Lai and anonymous reviewers
for useful comments on an earlier version of the paper. This work
was funded by a NSERC graduate fellowship and research grant.

9. REFERENCES
[1] C. Bamford and B. Dollery. OODREX: An object-oriented

design tool for reuse with exceptions. In Proc. of the Interna-
tional Conference on Object-Oriented Information Systems,
pages 248–251. Springer-Verlag, 1995.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Model-
ing Language User Guide. Addison-Wesley, 1999.

[3] F. Christian. Exception handling and software fault tolerance.
IEEE Trans. on Comp., 31(6):531–540, June 1982.

[4] F. Christian. Correct and robust programs. IEEE Trans. on
Soft. Eng., 10(2):163–174, March 1984.

[5] R. de Lemos and A. Romanovsky. Exception handling in a co-
operative object-oriented approach. In Proc. of the 2nd IEEE
International Symposium on Object-Oriented Real-Time Dis-
tributed Computing, pages 3–13, May 1999.

[6] J. Gosling, B. Joy, and G. Steele. The Java Language Specifi-
cation. Addison-Wesley Longman, Inc., 1996.

[7] M. Lippert and C. V. Lopes. A study on exception detection
and handling using aspect-oriented programming. In Proc. of
ICSE’2000, pages 418–427. ACM, June 2000.

[8] B. H. Liskov and A. Snyder. Exception handling in CLU.
IEEE Trans. on Soft. Eng., 5(6):546–558, Nov. 1979.

[9] J. D. Litke. A systematic approach for implementing fault tol-
erant software designs in Ada. In Proc. of the conf. on TRI-
ADA’90, pages 403–408. ACM, Dec. 1990.

[10] R. Miller and A. Tripathi. Issues with exception handling in
object-oriented systems. In Proc. of ECOOP’97, LNCS 1241,
pages 85–103. Springer-Verlag, June 1997.

[11] M. P. Robillard and G. C. Murphy. Analyzing exception flow
in Java programs. In ESEC/FSE’99, LNCS 1687, pages 322–
337. Springer-Verlag, Sep. 1999.

[12] N. Soundarajan and S. Fridella. Modeling exceptional behav-
ior. In Proceedings of the UML’99 Conference, 1999.

[13] B. Stroustrup. The C++ Programming Language. Addison-
Wesley, 2nd edition, 1991.

[14] J. Warmer and A. Kleppe. The Object Constraint Language:
Precise Modelling with UML. Object Technology Series.
Addison-Wesley, Reading/MA, 1999.

