The Eclipse Builder

Patty Jablonski
EE564 — Enterprise Java
Mid-term Project Paper

March 26, 2007

Introduction

This paper explores the design of the builder in Eclipse version 3.2.2, including the
generic builder’s association with resources, the incremental builder infrastructure, and
the Java-specific builder and its relationship with the compiler. In addition to background
investigation and exploration, this paper also looks at the evolution of the builder over
several versions of the Eclipse IDE with each of these designs evaluated. First, to
understand the builder, it is necessary to understand what workspaces, resources, and
projects are.

Workspace Resource Model

The workspace resource model represents the content that is accessible in the workspace.
Since only one workspace is active at one time when using Eclipse, it acts as the root in
this model. A workspace (see o.e.core.resources.IWorkspace* and
o.e.core.internal.resources. Workspace) is where the user works and is represented as a
directory in the file system. The workspace contains resources (see
o.e.core.resources.IResource and o.e.core.internal.resources.Resource), which are
projects (see o.e.core.resources.IProject and o.e.core.internal.resources.Project), files (see
o.e.core.resources.IFile and o.e.core.internal.resources.File), and folders (see
o.e.core.resources.IFolder and o.e.core.internal.resources.Folder). Together the
workspace root (see o.e.core.resources.IWorkspaceRoot and

o.e.core.internal.resources. WorkspaceRoot) and its resources form a resource tree. The
workspace root, projects, and folders are containers, meaning that they can have children
(see o.e.core.resources.IContainer and o.e.core.internal.resources.Container). A file
cannot have children. Picture 1 shows a resource model that contains a workspace root
with one project that contains both a file and a folder that contains a file.

g ¥ ;
metadata [e— Workspace 1
Workspace Root |

~ P

Y

o~ -—h\l-\u
[Project ||

).

|{ File |
oo

Picture 1: A resource model that contains a workspace root with one project that
contains both a file and a folder that contains a file.

" Written throughout this paper, the shorthand notation o.e. = org.eclipse.

.

A workspace root must have projects as its direct children (a project’s parent is always
the workspace root). The project, which is represented as a directory in the file system,
can contain files and folders, and the folders can then contain more files. The entire
resource tree models the directories and files on the file system, however the workspace
view in Eclipse and the actual file system contents may differ. The view may not show
hidden files or unrelated files that are on the file system. To synchronize the Eclipse
workspace view and the file system, there is an option to refresh the view if content is
added directly to the file system instead of via the IDE.

Picture 2 shows an example workspace with multiple projects in it. In this example, each
of the projects shown is a different type of project — a plug-in project, a Java project, and
a C++ project. This setup is quite possible in the Eclipse IDE, since it can support
projects of multiple types and programming languages. The first project, the plug-in
project, contains two folders (src and icons) and one file directly within the project
(plugin.xml). The icons folder then contains picture.gif, which is a file. The src folder
contains a folder (package) which then contains a source code file. The example Java
project directly contains a package folder which contains two source code files,
Class.java and Main.java. Finally, the C++ project simply contains a single main.cpp file.

Wortkspace Eoot

Plug-in Project Java Project O+ Project
{com.exzample helloworld) {eed64 homeworlc2) (testproject)
/ r\‘ ! !
st icons plugin. zml package fmain. cpp
(folder) (folder) (file) (folder) (file)
¥ v / \
package picture gif Class java Main java
{folder) ifile) ifile) ifile)
¥
Hello java
(file)

Picture 2: An example with multiple projects in the workspace.

Projects — Natures and Builders

The resource of interest when discussing builders is a project. Each project has a project
description, which defines the nature(s) and builder(s) of the project and any projects that
this project references (as shown in Picture 3).

s S :] Project :

Description |*—' R e

A \ > Pileer

S S gr—————— w

| Nature : Builder . A
{0 Bu:’lder.—‘

e,
Y

Project <

MNature | Builder

E
|
x -

-~

-

MNature Adds Builders to Project During configure()

Picture 3: Each project has a project description, which defines the nature(s) and
builder(s) of the project and any projects that this project references.

A nature tells the type a project is (i.e. plug-in, Java, C++, etc) and associates behavior
and function with the project. The nature often tells which builder to use with a particular
project and can even be used to determine the look-and-feel of the navigator for a project,
for example, which icon to display for the project in the view (for example, a J on top of
the folder icon for a Java project), and it may also be used to determine the perspectives
that can be applied to a project. A single project can have more than one nature.

A builder is a mechanism that allows tool-specific logic to process changed files at
specific times and it transforms resources from one form to another. For the Eclipse
builder, the tool-specific logic is incremental compilation. Specifically, the Java builder
uses the compiler to transform .java source code files to binary .class files for its resource
transformation. Also, if there are problems when compiling, the problems are added as
problem markers to the affected .java files. These new resources that are created by the
builder are called derived resources, which if deleted, can easily be recreated from the
source files. Like natures, a single project can have more than one builder. Also, a single
nature can be mapped to one or more builders.

A builder that is associated with a nature is specified in the configure method of that
nature. First, a nature is added to a project in the project description (specifically with the
setNaturelds method listed in o.e.core.resources.IProjectDescription and implemented in

o.e.core.internal.resources.ProjectDescription, as seen in Fragments* 1 and 2,
respectively) and then the nature’s configure method can add the appropriate builders to
the project. Similarly, when a nature is removed from a project, the deconfigure method
can remove builders that were associated with that project. The configure and
deconfigure methods begin and end the life of a specific builder that is associated with a
particular project. They are part of the o.e.core.resources.IProjectNature interface, as seen
in Fragment 3, and are called in the o.e.core.internal.resources.NatureManager class’
configureNature and deconfigureNature methods, in Fragments 4 and 5, respectively. For
example, a Java project (o.e.jdt.internal.core.JavaProject) adds the Java builder (as
defined in o.e.jdt.core.JavaCore) to its build spec in its implementation of the configure
method (and the deconfigure method removes the builder), as seen in Fragments 6 and 7.
Also in o.e.core.internal.resources.NatureManager, the mapping between natures and
builders is represented as a java.util.Map as seen in Fragment 8 and more specifically as a
java.util.HashMap in the findNatureForBuilder method as seen in Fragment 9.

The Project Description

The project description is maintained in a file in the workspace named .project, which is
shown for each project in Eclipse’s Resource Perspective. The details of the project
description can be found in the o.e.core.resources.IProjectDescription interface and the
o.e.core.internal.resources.ProjectDescription class. The declaration of the .project file is
located in o.e.core.resources.IProjectDescription as seen in Fragment 10. Furthermore,
the hasPublicChanges method in o.e.core.internal.resources.ProjectDescription deals with
the project’s public attributes, which are the attributes that are displayed in the .project
file — the project’s name, comments, project references, natures, and builders (as defined
in the build spec). The hasPublicChanges method, seen in Fragment 11, compares the
known project description (passed in as the parameter “description” of type
ProjectDescription) with this project’s description as stored in the variables “‘comment”,
“buildSpec”, “staticRefs”, and “natures”. This method also compares the linked
resources, which are references to files or folders that are physically outside the project,
that the project may have.

Another way to view a project’s project description is by viewing the contents of the
.project file. Picture 4 shows the .project file for the Helloworld Plug-in. This is a good
example because this is a single project that has multiple natures and builders associated
with it. This simple plug-in project has two natures (a plug-in nature and a Java nature)
and three builders (a Java builder, a manifest builder, and a schema builder).

The first line of the .project file tells that the file is written in XML version 1.0 with UTF-
8 encoding. This is then followed by the contents of the project description itself (defined
within the “ProjectDescription” tags). The “name” tag tells the name of this project
(com.example.helloworld) and the “comment” tag displays any optional comments about
the project (it is empty in the Helloworld Plug-in example). The next tag, “projects”, lists
the simple project references, in other words, the projects that this project references, if

“ All code fragments are in the Appendix at the end of this paper due to the amount of space they take up.

-5-

b

any (the Helloworld Plug-in does not have any project references). Next, the “buildSpec’
tag represents the build spec, which specifies the set of builders to invoke for this project
and the ordering of those builders. The build spec contains build commands (seen in the
.project file as “BuildCommand” tags), where each build command tells the name of the
builder extension to run (“name” tag) and an optional table of builder arguments
(“arguments” tag). Finally, the “natures” tag in the .project file lists the natures of this
project, each nature within it specified with a “nature” tag. As mentioned previously, the
Helloworld Plug-in’s project description consists of three builders —
o.e.jdt.core.javabuilder, o.e.pde.ManifestBuilder, and o.e.pde.SchemaBuilder — and two
natures — o.e.pde.PluginNature and o.e.jdt.core.javanature.

< ?xml wersion="1.0" encoding="UTF-5"7?>
<projecthescription>
“hnamercom. exXxample . hellowor 1d</ nawe >
<oomment></ comment >
<projects:
</projectsr
<build3pecs
<buildCormmatnd:
<namerorg.eclipse. jdt.core. javabui lder </ name:-
<arguments:
</argumentas
</buildCommands>
<buildCormand:-
<namerorg.eclipse.pde.ManifestEBuilder </ name>
<Aarguments-
</argumentss
</buildCommand:s
<buildCorenstds-
<namerorg.eclipse.pde.SchemaBuilder <,/ name >
<argumentss
</argumentsyr
</buildCommand:
</build3pecs>
<natures:
<naturerorg.eclipse.pde.Pluginilature</ nature:
<naturerorg.eclipse. jdr.core. javahature</hature>
</naturesx>

</projecthescription>

Picture 4: The Helloworld Plug-in’s .project file.

Each of the project description attributes can be set by the various ‘“set” methods seen in
o.e.core.resources.IProjectDescription.

Public Attributes: (displayed in the .project file)

Project Name: setName

Comment: setComment

Simple Project References: setReferencedProjects
Build Spec: setBuildSpec

Natures: setNaturelds

Private Attributes: (not displayed in the .project file)

Project’s Location (in the file system): setLocation and setLocationURI
Dynamic Project References: setDynamicReferences

The project description is then set for a particular project via the setDescription method,
which is listed in o.e.core.resources.IProject and implemented in
o.e.core.internal.resources.Project.

The building of a single project involves invoking each builder in the build spec, one at a
time, in the order specified in the build spec. The build spec is represented as an ordered
array of [Command objects, as seen in the setBuildSpec and getBuildSpec methods. The
getBuildSpec method’s comment in o.e.core.resources.IProjectDescription, shown in
Fragment 12, states that “the commands are listed in the order in which they are to be
run”. In o.e.core.internal.resources.ProjectDescription, the implementation of the
setBuildSpec method shows that this array is created in a certain order, seen in Fragment
13. The name of the incremental builder and the optional arguments are defined in the
o.e.core.internal.events.BuildCommand class, which implements the interface
o.e.core.resources.ICommand. More about the building process and the actual builder
invocation will be discussed in the following section.

The Build Process

The first step of the build process is to determine the order of projects to build. The
workspace build order, which is an ordered list of projects to build, is computed (or
retrieved, if it is set by the user on the preference page, although this manual setting of
the project build order is not recommended). If the order of projects to build is not set
manually, then the workspace computes a default build order based on the project
references, specifically with a breadth-first traversal of the project reference graph as
seen in the computeProjectOrder (also listed in o.e.core.resources.IWorkspace) and
computeFullProjectOrder methods of o.e.core.internal.resources. Workspace in Fragments
14, 15, and 16, respectively. The workspace build order (the ordered list of projects to
build) is returned by o.e.core.internal.resources. Workspace’s getBuildOrder method and
is based on the workspace’s workspace description. The getBuildOrder method that is
implemented in o.e.core.internal.resources.Workspace and listed in
o.e.core.resources.IWorkspaceDescription is shown in Fragments 17 and 18, respectively.
Each opened project in the build order is built, followed by each remaining opened
project in the workspace, in no particular order. Closed and non-existent projects are
ignored by the build process.

Then, for a single project, the order of builders to invoke must be determined. The order
of builders is specified in the build spec, as mentioned in the previous section. The
o.e.core.resources.IWorkspace interface lists a build method and it is implemented in
o.e.core.internal.resources. Workspace. This build method builds all projects in this
workspace. It calls the first build method listed in o.e.core.internal.events.BuildManager,
which then calls basicBuildLoop (also in o.e.core.internal.events.BuildManager). The
basicBuildLoop method calls the last basicBuild method also listed in this class, which
then calls the second basicBuild method in the list, which finally calls the first basicBuild
method in the list. Similarly, the o.e.core.resources.IProject interface lists a build method
and it is implemented in o.e.core.internal.resources.Project. This build method builds this
particular project. The two build methods of o.e.core.internal.resources.Project call the
corresponding build methods of o.e.core.internal.events.BuildManager. The second
basicBuild method in o.e.core.internal.events.BuildManager, shown in Fragment 19,
called with the parameters “project”, “trigger”, “commands”, “status”, and “monitor”,
shows that the builders are, in fact, invoked in a specific order. The for loop invokes the
builder that is associated with the first build command listed in the build spec, then
continues to the next one until it has gone through all build commands in the build spec.

Finally, the builder is invoked only if necessary. For incremental and auto-build, the
builder can be skipped if no resources have changed in this project or in any of the
projects that the builder is interested in. The o.e.core.internal.events.BuildManager class
has methods createBuildersPersistentInfo and getBuildersPersistentInfo, seen in
Fragments 20 and 21, respectively, that return a list of BuilderPersistentInfo that includes
all builders for the project that have a last built state. The class
o.e.core.internal.events.BuilderPersistentInfo contains setInterestingProjects and
getInterestingProjects methods, seen in Fragments 22 and 23, respectively, that actually
“set” and “get” this array of IProjects that the builder is interested in. Projects that have a
last built state are the “interesting projects” to the builder since they have had changes to
them before (projects that have never had changes to them are not interesting until they
have had changes made to them). The “interesting projects” are those projects returned by
the incremental project builder’s build method. Having the builder skip projects that have
not had any changes to them is the key concept behind incremental building, which is
discussed in the next section.

The Incremental Project Builder and Resource Deltas

There are four kinds of builds: auto-build, clean build, full build, and incremental build.
Each of these “build kinds” (also called “triggers”) indicate a particular type of build
request and are defined in the class o.e.core.resources.IncrementalProjectBuilder (which
is a subclass of o.e.core.internal.events.InternalBuilder) as integer constants AUTO_
BUILD =9, CLEAN_BUILD = 15, FULL_BUILD = 6, and INCREMENTAL_BUILD =
10, as seen in Fragment 24. The different types of builds are similar in function to the
Unix “make” utility, which has options of “make all” (similar to full build) and “make
clean” (similar to clean build). Auto-build, full build, and incremental build are all
implemented in the build method that is listed in
o.e.core.resources.IncrementalProjectBuilder, seen in Fragment 25, and implemented in

its subclasses (such as o.e.jdt.internal.core.builder.JavaBuilder, discussed in a later
section). The clean build has its own clean method that is listed in
o.e.core.resources.IncrementalProjectBuilder, seen in Fragment 26, and implemented in
its subclasses, because the clean build is new to Eclipse 3.0.

Auto-build

An auto-build is not triggered by an explicit build request, but instead it is done
automatically when there are resource changes in the workspace. With auto-build turned
on, all installed builders will be invoked every time resources are added, removed, or
modified in the workspace. The endOperation method in

o.e.core.internal.resources. Workspace, seen in Fragment 27, is called in various
resources’ (such as Projects’) build, close, copy, create, delete, move, open, and touch
methods. The endOperation method is called at the end of each one of these resource
change operations, where it then notifies interested parties that resource changes have
happened and notifies all registered resource change listeners (see
o.e.core.resources.IResourceChangeListener) via a Notification Manager (see
o.e.core.internal.events.NotificationManager). (o.e.core.resources.IWorkspace and
o.e.core.internal.resources. Workspace contain addResourceChangeListener methods
which add the resource change listener to this workspace). Specifically, the endOperation
calls the broadcastPostChange method (also in o.e.core.internal.resources. Workspace),
which calls the broadcastChanges method in o.e.core.internal.events.NotificationManager
as seen in Fragments 28 and 29, respectively. After a method modifies resources in the
workspace, registered listeners receive after-the-fact notification of what happened in the
form of a resource change event (defined in o.e.core.resources.IResourceChangeEvent
and o.e.core.internal.events.ResourceChangeEvent). If auto-building is enabled, a build is
run — the endTopLevel method of o.e.core.internal.events.BuildManager, shown in
Fragment 30, is called at the end of the endOperation method. The endTopLevel method
then calls the build method of o.e.core.internal.events.AutoBuildJob, which is the job for
performing workspace auto-builds and is run whenever the workspace changes regardless
of whether auto-build is on or off. The build occurs in a background thread and runs
whenever the workspace is not being modified (until the build of the workspace is done).
The auto-build thread can be canceled and interrupted by other threads that are modifying
the workspace.

Clean build

A clean is done by deleting all output files produced by the build and removing and
problem markers associated with the builder (similar to a “make clean” in Unix). With all
build problems and built state discarded from the clean, a full build (discussed next) will
then be done, which will rebuild everything from scratch. A clean build request can be
invoked by the user directly from the menu in Eclipse on all projects or selected projects.
The clean feature was added to Eclipse since version 3.0 to help the building process to
start over from scratch in case a build doesn’t complete successfully. An example of
cleaning done in an implementation of the clean method (and other methods that it calls)
can be seen in o.e.jdt.internal.core.builder.JavaBuilder, shown in Fragment 31.

Full build

A full build is done by discarding all existing build state and starting over from scratch.
Unlike a clean build, a full build cannot be invoked by the user directly. A full build is
the first build done after a clean build. Since it rebuilds everything from scratch with no
existing build state to work with, a full build works with a complete resource tree.

Incremental build

Unlike a full build, an incremental build works with a resource delta tree, which only
contains the resources with changes in it. The building in Eclipse is incremental such that
the after the first build, subsequent builds should only rebuild based on what has changed
since the last build. The reason for this is because it would be inefficient to rebuild from
scratch every time the builder is invoked. The changes in the state of a resource tree
between two discrete points in time are represented as a resource delta (sometimes called
just “delta” for short). For builders, the resource delta is based on a particular project.
Picture 5 shows an example of a resource delta’s content when the resource change is
adding a file (named “a.file”) to a folder (named “aFolder”) in a project (named
“a.project”). The tree of changes shows that / (the workspace root) was changed,
/a.project (the project) was changed, /a.project/aFolder (the folder in the project) was
changed, and /a.project/aFolder/a.file (the file in the folder in the project) was added. The
kinds of resource deltas such as ADDED, REMOVED, and CHANGED are represented
as constants in o.e.core.resources.IResourceDelta. The resource delta in the Eclipse
source code is represented as an o.e.core.resources.IResourceDelta and
o.e.core.internal.events.ResourceDelta. The resource delta tree is represented as type
o.e.core.internal.watson.ElementTree with the changes (deltas) as type
o.e.core.internal.dtree.DeltaDataTree. The resource delta is processed by a visitor
(o.e.core.resources.IResourceDeltaVisitor). The visit process (with the visit method)
continues until the complete resource delta tree has been traveled (with the accept method
in o.e.core.internal.events.ResourceDelta).

Resource Delta Content:

Add a file to a folder in a project:

/ changed (workspace root)
/a.project changed
/a.project/aFolder changed
/a.project/aFolder/a.file added

Picture 5: An example of a resource delta’s content when the resource change is
adding a file (named ‘‘a.file”) to a folder (named ‘“aFolder”) in a project (named
“a.project”).

-10 -

Projects have a resource delta that identifies all of the changes that have occurred since
the last build and a builder can get this resource delta to guide the incremental building
process. (During a full build request, the delta is not available and is null). The
incremental project builder can get this project’s resource delta with the getDelta method.
The getDelta method in o.e.core.resources.IncrementalProjectBuilder (shown in
Fragment 32) returns a call to o.e.core.internal.events.InternalBuilder’s getDelta method
(shown in Fragment 33), which then finally returns a call to the getDelta method in
o.e.core.internal.events.BuildManager (shown in Fragment 34).

The Java Model

So far, the discussion has focused primarily on the generic builder in Eclipse and its
association with resources in the workspace, particularly IProjects and Projects. Most of
the classes looked at so far are from the o.e.core.internal packages and their
corresponding interfaces are from the o.e.core.resources package. Now the focus will
change to provide a brief overview of the Java-specific resources in Eclipse and the Java
builder. The Java-related classes are part of the Java Development Tool (JDT), so the
classes primarily reside in the o.e.jdt.internal.core packages and their corresponding
interfaces in the o.e.jdt.core package.

First, the core support for Java projects is provided by o.e.jdt.core.JavaCore. The Java
model, compared to the general workspace resource model that was introduced at the
beginning of this paper, contains Java elements (similar to resources in the resource
model), which are of type o.e.jdt.core.lJavaElement and
o.e.jdt.internal.core.JavaElement. The root Java element corresponding to the workspace
is called the Java model element and is of type o.e.jdt.core.lJavaModel (there is a Java
Model Manager, o.e.jdt.internal.core.JavaModelManager, that helps manage instances of
[JavaModel) and its children are of type o.e.jdt.core.lJavaProject and
o.e.jdt.internal.core.JavaProject. The Java projects can have files and folders (folders are
of type o.e.jdt.core.IPackageFragmentRoot and
o.e.jdt.internal.core.PackageFragmentRoot with children of type
o.e.jdt.core.IPackageFragment and o.e.jdt.internal.core.PackageFragment). Files can also
be Java source code files of type ICompilationUnit (see o.e.jdt.core.ICompilationUnit and
o.e.jdt.internal.core.CompilationUnit) or binary class files of type IClassFile (see
o.e.jdt.core.IClassFile and o.e.jdt.internal.core.ClassFile), for example. Picture 6 shows
the workspace resource model and Picture 7 shows the Java model, which resembles it.

The o.e.jdt.core.JavaCore class has addElementChangedListener methods to add listeners
of type o.e.jdt.core.IElementChangedListener to listen to changes to Java elements. The
change is described in an o.e.jdt.core.ElementChangedEvent. The changes in Java
elements between two discrete points in time are represented as Java element deltas of
type o.e.jdt.core.lJavaElementDelta and o.e.jdt.internal.core.JavaElementDelta.

As seen earlier, the configure method in o.e.jdt.internal.core.JavaProject adds the Java

builder, which has its name defined in o.e.jdt.core.JavaCore, to its build spec, in
Fragments 6 and 7. With a Java nature added to a project, it indicates that the Java

11 -

Development Tool (JDT) plug-ins are aware of that project and have configured a
classpath (this information is a part of it being a JavaProject) and a Java builder to work
on that project.

MorkspaceRoot
h 4
IProject
l l IResource
h 4
IFolder IFile IFile
IFile

Picture 6: The workspace resource model contains a workspace root
(IWorkspaceRoot) at its root with projects (IProjects) as children, which can
contain folders (IFolders) and files (IFiles).

IJavaModel
v
lJavaProject
l > IJavaElement
v v
IPackageFragmentRoot ICompilationUnit IClassFile

k4

IPackageFragment

J

Picture 7: The Java model resembles the workspace resource model. The Java
model contains a Java model element (IJavaModel) at its root with Java projects
(IJavaProjects) as children, which can contain folders (IPackageFragmentRoots)
and files (IPackageFragments or ICompilationUnits and IClassFiles, for example).

-12-

The Java Builder and Compiler

The build method of o.e.jdt.internal.core.builder.JavaBuilder explains specifically what
the Java builder does for a build, seen in Fragment 35. The
o.e.jdt.internal.core.builder.JavaBuilder implements the build (and clean) method, which
is an abstract method (unimplemented) in o.e.core.internal.events.InternalBuilder and
o.e.core.resources.IncrementalProjectBuilder, which it inherits from. This build method is
called by the Build Manager (o.e.core.internal.events.BuildManager).

The Java builder maintains a built state, which includes a list of all classes and interfaces
that are referenced by each other in the workspace. This information is returned by the
compiler each time a source file is compiled (the state is computed from scratch and
updated incrementally). The o.e.jdt.internal.core.builder.JavaBuilder’s build method calls
the buildAll method, seen in Fragment 36, when it needs to build from scratch and it calls
the buildDeltas method, seen in Fragment 37, when it has some built state to retrieve so
that it can do an incremental build. BuildAll of o.e.jdt.internal.core.builder.JavaBuilder
then calls the build method of o.e.jdt.internal.core.builder.BatchImageBuilder, seen in
Fragment 38. Similarly, buildDeltas of o.e.jdt.internal.core.builder.JavaBuilder calls the
build method of o.e.jdt.internal.core.builder.IncrementallmageBuilder, seen in Fragment
39. Then, both of these build methods call the compile method of
o.e.jdt.internal.core.builder.AbstractimageBuilder, seen in Fragment 40. This compile
method calls a second compile method in
o.e.jdt.internal.core.builder.AbstractimageBuilder, seen in Fragment 41, which finally
calls the compile method in o.e.jdt.internal.compiler.Compiler (the Java compiler), seen
in Fragment 42.

Whenever files are modified, the Java builder receives a resource delta that describes
which files were added, removed, or changed. For deleted Java source files, the
corresponding class files are deleted. Added and changed source files are added to a
queue of files that need to be compiled.

The Java builder then processes this queue of files. It removes a file from the queue and
compiles it. It then compares the resulting type to the old class file and sees if the type
has structural changes, which are changes that can affect the compilation of a referencing
type. Examples of structural changes are added or removed methods, fields, or types, and
changed method signatures. If it has structural changes, the Java builder then finds all
types that reference the changed type and adds them to the queue. If the type has changed
at all, it is written to disk in the builder’s output folder. The built state is then updated
with the new reference information for the compiled type and this process is repeated
until the queue is empty.

Finally, the builder then generates problem markers for each compiled type that had
compilation problems.

Despite this long process, the Java builder would only need to process a long queue of
files if they had structural changes, which might not occur too often in practice.

-13-

Build Summary

./—- el
| Build request
\"—'—*w-w*w_ = T e £
I /'i“\l
I K _/'
) 3 i i
Project | i)
| N Build commands 1-’
| ; > i
{ IncrementalProjectBui 'Ideﬂ
e i Y > ' i
| Resource | S =
e e |
delta getDelta(getProject()) () :
S A |
= _\ |
Builder-created s |
resources 2 ,.f;\ _________
o e SRR '
L J &

Picture 8: A summary of the build process.

This concludes the discussion on the exploration of the builder in Eclipse. To summarize
the build process (as shown in Picture 8):

(1) Builders are associated with projects as build commands (recall the project
description and .project example), and each project can have any number of build
commands.

(2) Each build command is invoked when build processing is triggered. The build
request can be invoked directly from the user when a build (see
o.e.ui.actions.BuildAction) or clean (see
o.e.ui.internal.ide.actions.BuildCleanAction) is selected from the menu in Eclipse.
The build request can also be a result of a change in resources, if auto-build is on.

(3) Projects have a resource delta that identifies all of the changes that have occurred
since the last build. A builder can get this resource delta to guide the incremental
build process by using the getDelta method.

(4) Finally, the builder logic identifies what changed resources must be built and
creates additional resources as necessary. For example, the Java builder uses the
compiler to transform .java source code files to binary .class files and can also
generate problem markers for the source code files if there were problems with
them from compilation.

-14 -

Evolution of the Eclipse Builder and Related Classes

Eclipse has gone through several major and minor revisions. During the exploration
phase I noticed a few “@since” Javadoc comments that label when a feature was added
(features that were a part of Eclipse from the beginning do not generally have this label).
I also looked at the source code of previous versions of Eclipse in the CVS Perspective
and downloaded the previous versions from the Eclipse website.

However, to get a more accurate and detailed description of the changes between Eclipse
releases, I went through the change logs of Eclipse for every major and minor revision
and collected the build notes that are related to builders and some of the other topics
discussed in this paper. Table 1 shows a selection of builder and resource-related changes
from the Platform/Core Release Notes and Table 2, which follows it, shows a selection of
related changes from the JDT/Core Release Notes. For each set of build notes, I only
looked at the content directly under the “What’s new in this drop” headings, and did not
include any of the problem/bug reports and fixes listed there, since I was only interested
in the new and changed features in each release of Eclipse (although some new and
changed features in Eclipse are a result of the problem/bug reports).

The date and version number of the releases of Eclipse are:

Date: Yersion:
11/07/01 1.0
06/27/02 2.0
08/29/02 2.0.1
11/07/02 2.0.2
03/27/03 2.1
06/27/03 2.1.1
11/03/03 2.1.2
03/10/04 2.1.3
06/25/04 3.0
09/16/04 3.0.1
03/11/05 3.0.2
06/27/05 3.1
09/29/05 3.1.1
01/18/06 3.1.2
06/29/06 3.2
09/21/06 3.2.1
02/12/07 3.2.2

Comparing the first releases of Eclipse to its latest releases, many of the classes and
interfaces that were discussed in this paper were included in Eclipse from the beginning.
This makes sense because many of these classes and interfaces are part of the Eclipse
core and define the basic concepts of workspaces, resources, projects, natures, and
builders. Many of the new classes were added, and new methods were added to (and old
ones were removed from) existing builder and resource-related classes, primarily for

-15 -

improvement reasons (i.e. the basic functionality was there from the beginning, but the
main focus has been on improving it in later releases). For example, the option for a clean
build was added to the existing IncrementalProjectBuilder class (and its related classes)
since version 3.0 to improve the building process by providing a recovery mechanism
from an unsuccessful build via deleting the builder-generated files and starting again
from scratch. Also, on 09/23/03, according to the Platform/Core Release Notes, making
the auto-build as a thread running in the background would help all workspace changing
APIs become more responsive. The JDT/Core Release Notes confirm (on 09/22/03) that
as a result of this change to auto-build, the JavaModel will not broadcast deltas during
PRE_AUTO_BUILD event notification anymore, which will improve its overall
performance. In an earlier release of Eclipse, on 02/05/03, new logic was added to deal
with building projects with cyclic dependencies by setting a limit on the number of build
iterations. Furthermore, since the beginning (12/04/01), work was being done on
improving the existing delta processing, merging deltas together when possible
(12/11/01), and batching operations so that only one Java element changed event is
reported at the end of the batch (09/24/02). On 11/12/02, the Java builder was improved
to only consider resources in the resource tree and not all other files on the file system.
More recently, for the Eclipse drop on 12/15/03, it was noted that that the performance of
the incremental builder was improved even further.

The biggest design changes between each major Eclipse releases (1.0, 2.0, and 3.0) are:

Between version 1.0 and 2.0:

- By the release of version 2.0, the original Java builder implementation was
removed (02/12/02) and the new incremental builder implementation became
enabled by default (12/04/01).

Between version 2.0 and 3.0:

- By version 3.0, auto-build was changed to be run in a background thread
(09/22/03 and 09/23/03).

Table 1: Select builder and resource-related changes from the Platform/Core
Release Notes.

Date Change

11/01/01 = API IncrementalProjectBuilder#build should mention how to handle
cancel.

= Added aline in the javadoc recommending how cancelation should be
handled.

03/12/02 = Consolidated many IResource and IWorkspace APIs (delete, copy,
move, etc) to use integers specifying flags, rather than having multiple
booleans as parameters. See IResource and IWorkspace for details.

= Added more support for natures. See [ProjectNatureDescriptor and
nature related methods on IWorkspace.

03/18/02 = The project description file has been moved from the project metadata

-16 -

area to the project content area into a file called “.project”. Current
limitations:

» If #setContents is called on the .project file the changes are
reflected in the project description in memory during the next
resource change notification.

» If new content is discovered for the .project file from a
#refreshLocal the changes are reflected in the project
description in memory during the next resource change
notification.

11/18/02

Build Order Computation - The algorithm to calculate the default
project build order in the workspace has changed. The new API for
this method is: IWorkspace.computeProjectOrder. The old method
(IWorkspace.computePrerequisiteOrder) has been deprecated.

01/13/03

New API for more efficient visiting of resource trees. This new visitor
mechanism allows clients to traverse resource trees very quickly, by
avoiding the creation of unnecessary objects during the traversal. See
the new types org.eclipse.core.resources.IResourceProxyVisitor and
org.eclipse.core.resources.IResourceProxy, and the corresponding new
accept methods on org.eclipse.core.resources.IResource.

02/05/03

Added IncrementalProjectBuilder.needRebuild() and
IncrementalProjectBuilder.hasBeenBuilt(IProject) to help
accommodate recent changes with building projects with cyclic
dependencies.

Added API to IWorkspaceDescription for setting/getting the values to
use for the number of iterations for building projects with cyclic
dependencies.

09/23/03

Autobuild in the background!! When automatic build is enabled, it
now runs in a background thread. This makes all workspace changing
APIs more responsive.

05/20/04

Users are now able to build working sets rather than having to build
the entire workspace.

Table 2: Select builder and resource-related changes from the JDT/Core Release

Notes.

Date

Change

12/04/01

New incremental builder implementation enabled by default (can re-
enable the old implementation by changing the builder extension in the
plugin.xml).
Delta processing improvement:

» No longer creates unnecessary Java elements when traversing

the resource delta.

» Handles changes in binary folder libraries.

» Projects that share libraries are notified individually.

» Doesn't notify empty deltas any longer.

12/11/01

Java element deltas are batched. If the java model operation modifies a

-17 -

resource, then the java element deltas are merged and fired during the
resource delta processing. If the java model operation doesn't modify
any resource (e.g. IWorkingCopy.reconcile()), then the java element
delta is fired right away.

02/12/02

Old Java builder implementation got removed.

04/09/02

Adding a new empty source folder no longer causes a full build. Only
an incremental build is needed now.

04/16/02

ElementChangedEvent got added notion of type (similar to
IResourceChangeEvent), so as to better allow clients to react to
JavaModel changes.

Also added a corresponding API on JavaCore so as to allow registering
a listener for a given type of event.

04/23/02

JavaModelOperations now guarantee the JavaModel is up to date when
notifying the Java model change listeners. In particular, a builder
running after the Java builder will be able to query the Java model with
respect to the changes introduced through Java model operations
(except for index queries). This was never guaranteed in 1.0, but
indirectly occurred due to the fact that the previous Java builder
implementation did force to refresh the Java model while building.

05/07/02

JavaBuilder no longer builds projects for which prerequisite projects
aborted the build process. This considerably reduces the number of
secondary errors when dealing with workspace setup problems.
JavaCore option added, to allow build to abort in presence of invalid
classpath (default is ignore).

05/08/02

Java builder is logging its internal errors.

05/15/02

By default, the Java builder is now aborting build process on projects
with classpath problems. This option can be disabled through the Java
preferences: Window>Preferences>Java>Builder>

09/24/02

Added JavaCore.run(IWorkspaceRunnable, IProgressMonitor) that
allows batching of java model operations. Only one Java element
changed event is reported at the end of the batch.

11/12/02

The Java builder now iterates over the resource tree, allowing to take
advantage of forthcoming workspace structure enhancements (in
particular: linked folders). As a consequence, the Java builder will
only consider the resources officially reflected in the resource tree (as
opposed to existing underlying files not yet reflected when the
resource tree is out of sync). Note that the build state format has
changed to reflect this evolution, as a consequence, if reusing an
existing workspace, the first build action will have to be a rebuild-all
projects, since incrementally it will not be able to re-read old build
states associated with prerequisite projects (and an incremental build
cannot tell the build manager a full rebuild is necessary).

An option allows to control whether the Java builder should clean the
output folder(s). Since options can be specified on a per project basis,
each individual project can be toggled for cleaning the output folder or
not (default is to clean). Also, “scrubbing” output folder got renamed

- 18 -

into “cleaning” output folder.

09/22/03

As a consequence of migrating to background autobuild, the
JavaModel will no longer broadcast deltas during
PRE_AUTO_BUILD event notification. These were somewhat
inconsistent in so far as the model wasn't totally up to date anyway.
Now the model will only fire deltas during POST_CHANGE, or
working copy reconcile operations.

12/15/03

Improved incremental builder performance.

08/25/04

All resource change listeners/builder now react to new encoding
change notification.

10/19/04

Changed build state format to record access restrictions. As a
consequence, a full rebuild will be required when reusing existing
workspaces.

03/22/05

The internal build state format has changed and a full build is expected
when restarting an existing workspace with this version of JDT Core.

06/09/05

The build state version number has changed. A full build of all projects
in the workspace will be triggered upon startup if autobuild is on, or on
the next build if autobuild is off.

02/07/06

Java projects can now depend on other Java projects that have replaced
the default builder with their own builder, such as an Ant builder. We
will now trust that the Ant build was successful and propagate any
changes to the affected class files.

Note: When projects are associated with the Java builder, it is able to
track structural changes to classfiles (signatures etc...) and only
recompile dependents of structurally changed classfiles. In the absence
of a Java builder on a prereq project, all modified classfiles will be
considered as (potentially) structurally changed; and thus
recompilation will be less optimal.

02/21/06

Build states for very large projects should now save in a fraction of the
time.

03/29/06

Added new option to JavaCore. Indicate whether the JavaBuilder
should check for any changes to .class files in the output folders while
performing incremental build operations.

Design Evaluation

Design Patterns

There are various examples of design patterns in the Eclipse source code, specifically in
the builder and resource-related classes. I will discuss a few of these design patterns next.

Singleton Pattern

The workspace contains various types of managers that handle tasks in their specialized
areas. The creation of managers most likely is so that the workspace isn’t too large and so
that it doesn’t have to do all of these tasks by itself. Instead, the workspace delegates

-19-

some tasks to the managers, which continue to work closely with the workspace, seen in
Picture 9. Each manager is a singleton, meaning that each has only one instance. This
makes sense because each manager should have just a single instance in the workspace.
The o.e.core.internal.resources.Workspace’s startup method, shown in Fragment 43, calls
each manager’s constructor. Later on, when o.e.core.internal.events.InternalBuilder wants
a BuildManager, it does not call the BuildManager’s constructor, but instead gets the
Workspace’s BuildManager, seen in Fragment 44.

Workspace

. Build Nature otificatio .
Manager /| Manager |\Manager

Picture 9: The various managers in Eclipse are examples of singletons.

Command Pattern

The o.e.core.internal.events.BuildManager contains an implementation of the
o.e.core.runtime.ISafeRunnable interface as an anonymous class in its third basicBuild
method, shown in Fragment 45. The ISafeRunnable interface is an example of a
command pattern that has a run method that deals with threads running a procedure,
where there is no expectation about the behavior of the procedure.

Composite Pattern and Visitor Pattern

As said earlier, the resource delta in the Eclipse source code is represented as an
o.e.core.resources.IResourceDelta and o.e.core.internal.events.ResourceDelta. The
resource delta tree is represented as type o.e.core.internal.watson.ElementTree with the
changes (deltas) as type o.e.core.internal.dtree.DeltaDataTree. The resource delta is
processed by a visitor (o.e.core.resources.IResourceDeltaVisitor). The visit process (with
the visit method) continues until the complete resource delta tree has been traveled (with
the accept method in o.e.core.internal.events.ResourceDelta). This is an example of the
composite pattern (the use of trees to store information) with the visitor pattern (the
resource delta nodes provide accept methods with an IResourceDeltaVisitor argument
and IResourceDeltaVisitor lists the visit method that is used to visit the resource delta).

-20 -

Exceptions

The most common exception used in the builder and resource-related classes is
CoreException (in the package o.e.core.runtime). The o.e.core.runtime.CoreException is
a checked exception (its supertype is Exception). This exception is used as we learned in
class. Its name follows the “throws” clause in a method header and is caught in the code
that calls this method (or this method can also have a “throws” clause, etc., but the
exception is eventually handled). For example, createBuildersPersistentInfo in
o.e.core.internal.events.BuildManager throws a CoreException, as seen in its header, in
Fragment 46. The createBuildersPersistentInfo is called by the collapseTrees method
(and other methods) in o.e.core.internal.resources.SaveManager, shown in Fragment 47.
However, the collapseTrees method does not catch this exception, but also has the
CoreException listed in the “throws” clause of its header. The collapseTrees method is
then called by the save method also in o.e.core.internal.resources.SaveManager. The save
method has a “throws” clause also, but it has the call to collapseTrees in a try statement
and the CoreException is caught in a following catch statement, shown in Fragment 48.

Comments

The developers of Eclipse use Javadoc comments and regular comments, however not all
classes and methods are commented, and the ones that are commented do not have the
same components. For example, the comment may include an “@since” tag if the class or
method was added in later releases, but would not necessarily have this tag if it is an
older class or method that has been in Eclipse all along. Also, some methods have tags
like “@param” and “@return”, while many others do not. I would suggest deciding on a
standard set of tags and being consistent with this amount of comment documentation for
all classes and methods.

Also, I would suggest that classes are located in packages that they are expected to be in
based on where the rest of the similar ones are located. Many of the interfaces that I
looked at were in o.e.core.resources and their corresponding class implementations were
in o.e.core.internal.resources. So, why is IResourceDelta in o.e.core.resources, but
ResourceDelta is in o.e.core.internal.events? According to the location where most of the
others are, ResourceDelta should be in o.e.core.internal.resources to be consistent.
However, the names of packages may be arbitrary anyway, as seen by the naming of
o.e.core.internal.watson.ElementTree’s package, explained in Picture 10.

Finally, why are ElementTrees in a package called "watson™?
— "It's ElementTree my dear Watson, ElementTree.™

Picture 10: The developers explain why they chose the package
o.e.core.internal.watson for the ElementTree class.

As a part of this famous quote, the reason for this package name seems to be due to the
humor that “ElementTree” sounds like “elementary”.

221 -

Finally, I would also suggest that the code be cleaned up a bit more. I saw a DoNotUse()
method and some other code that was left in for (temporary) testing purposes. There are
specific tests that Eclipse goes through and these extra print statements and other
temporary code should be removed when the code is officially released.

However, I still think that Eclipse is some of the best-documented and well-written
source code that I’ve seen. The class, interface, and method names were all simple and
made the code easier to understand as a whole. The documentation helped explain a class,
interface, or method’s purpose, usage, or functionality. Of course, the comments did not
include the specification that we learned in class — with an abstract function and rep
invariant explicitly written out, and a REQUIRES, MODIFIES, and EFFECTS clause to
describe the methods — but I still think that the documentation provided was sufficient.

The developers did create some new types of comments standard to Eclipse. They have
“XXX” and “FIXME” tags put in places that still need to be fixed. The Eclipse source
code also has “SNON-NLS-#$” comments in it, where # is a number that specifies the
part of the preceding print statement in quotes that will remain unchanged. For example,
a print statement can contain static components concatenated with a variable in the
middle. Each of the static parts would be in quotes. If “SNON-NLS-1$" is seen as a
comment after this example print statement, then the developers guarantee that the first
part of the print statement will remain unchanged. This comment is useful for other
developers who rely on the format of the print statement output for their code.

List of Classes, Interfaces, and Methods

Here I list the classes and interfaces with packages and the methods of each that I looked
at during the design evaluation phase of this project. (A more detailed list of the classes
and interfaces with packages and the methods of each that I looked at during the code
exploration phase of this project is included in a future section).

Table 3: List of classes, interfaces, and methods discussed in the design evaluation
section of this paper.

Class or Interface with Methods of Interest

o.e.core.internal.dtree.DeltaDataTree

o.e.core.internal.events.BuildManager
- basicBuild
- createBuildersPersistentInfo

o.e.core.internal.events.InternalBuilder

o.e.core.internal.events.ResourceDelta
- accept

o.e.core.internal.resources.SaveManager
- collapseTrees
- save

o.e.core.internal.resources. Workspace
- startup

-2

o.e.core.internal.watson.ElementTree

o.e.core.resources.IResourceDelta
- accept

o.e.core.resources.IResourceDeltaVisitor
- visit

o.e.core.runtime.CoreException

o.e.core.runtime.ISafeRunnable
- run

Lessons Learned

The first step of this project was choosing a topic. At first I wanted to focus on the
compiler, but I found out after one week that it is too big of a topic (as a whole) to do, so
I then decided to narrow the topic to just the Java builder. I figured that the Java builder
is a much smaller part of Eclipse to focus on. However, I soon realized that I had to also
know about workspaces, resources, projects, and natures before I could fully understand
builders and I had to know about the generic builder in Eclipse before I could understand
the Java-specific builder. So, while the project still grew much larger than I had first
anticipated, in the end, I feel like I learned the most important concepts about builders
and have kept the project contained within this scope. At first I had wanted to make sure
that I mentioned every possible builder-related class in Eclipse including any UI (menu)
components. I did this by searching for all classes and interfaces that contain the word
“build” or “builder” in them. This was not a good approach to this project, since many of
these classes and interfaces are irrelevant to understanding the builder and the building
process itself. (I include a list of packages that have builder-related classes in them that I
saw during this phase of the project, but that were not relevant enough to be included in
this paper, in the next section).

At this point, I had to start over again. I found the BuildManager class from the previous
search, which seemed to be very important, so it was recommended that I start the code
exploration here. However, this still did not work well for me. Instead, I had to learn
about the Eclipse builder first by reading about it before looking at the source code. The
best source of information about the internals of Eclipse is from the developers
themselves, so I bought a book written by Eclipse developers for Eclipse developers. The
information from this book was extremely helpful to me and helped me get up to speed
with the background material and then determine the correct place to begin — with the
workspace. The book’s information helped me to then find and isolate the more important
parts of the source code — especially to determine the relevant methods. While I had an
idea of the important and relevant classes and interfaces, I then had to sort through their
methods and determine which ones matter the most. It turns out that many of the classes
have methods of the same name (the build method, for example) that link each class
together (a build method in one class calls the build method of another class). What
didn’t work well for me was trying to figure out what the Eclipse builder does by looking
at the source code only. Instead, what worked well for me was gathering the background
information so that I knew what to look for in the code. Then, it was a great feeling when
I actually found the pieces of code that did the functionality that I was looking for.

-23-

I was also new to using Eclipse for code exploration purposes. Although I’ve used
Eclipse to create new projects and do programming assignments, I never used it for
exploring the contents of existing source code before this project. Now I regularly use the
exploration features of Eclipse and they were truly helpful to me during the exploration
phase of this project. The features that I used the most were in the Navigate menu: Open
Type, Open Type Hierarchy, and Open Call Hierarchy and some of the features available
in a right-click on the source code: Open Declaration, References in Workspace, and
Declarations in Workspace. The Outline view was also helpful in seeing all of the fields
and methods in a class or interface in alphabetical order and allowing me to jump to
certain methods of interest. Before I knew enough to use these features, I always
wondered where everything originated from (if I started looking at a class or interface
that was used as a type in another class or if I started looking at a method implementation
that was called by other methods beforehand, this was important to know). These features
helped me see how everything fits together and helped me to get a better understanding
of the entire system.

Finally, even though it was a little premature, having had the presentation early during
the project helped me get the basic information about builders figured out early on. Also,
with existing presentation slides and notes, the paper was eventually easier to write than
it would have been without. And, of course, having extra time to finish the project was
the most helpful of all (due to starting late, having to re-start and learn the basics, etc).
The completion of this final paper would not have been possible otherwise.

List of Classes, Interfaces, and Methods

Here I list the classes and interfaces with packages and the methods of each that I looked
at during the code exploration phase of this project. I also include a rough estimate of the
lines of code (LOC) for these classes and interfaces, which actually includes comments
and blank lines, so I label it as number of lines (NOL) to be more accurate. I got this
number by right-clicking the vertical ruler to the left of the editor in Eclipse and selecting
“Show Line Numbers” and then reading the last line of each file. I also include the page
numbers where each of the classes and interfaces is mentioned in this paper.

This list includes all classes, interfaces, and methods that I believe a newcomer should
look at, since I believe that they are most relevant to understanding how the Eclipse
builder works. I believe that once a newcomer understands the necessary background
information (before looking at the source code), he/she should explore the source code
starting with the IWorkspace interface and the Workspace class, exactly the way that this
paper presented it. The workspace should be explored first since it introduces the
important concepts of resources, projects, project descriptions, natures, builders, and
managers.

-4 -

Table 4: List of classes, interfaces, and methods explored in this paper, with number
of lines statistics and the page numbers where each class and interface is mentioned.

Class or Interface with Methods of Interest

Number of
Lines (NOL)

Page Numbers

java.util. HashMap

1076

java.util. Map

451

o.e.core.internal.dtree.DeltaDataTree

961

o.e.core.internal.events. AutoBuildJob
- build

250

o.e.core.internal.events.BuildCommand

220

o.e.core.internal.events.BuilderPersistentInfo
- getInterestingProjects
- setInterestingProjects

61

o.e.core.internal.events.BuildManager
- basicBuild (3 of them)
- basicBuildLoop
- build (3 of them)
- createBuildersPersistentInfo
- endTopLevel
- getBuildersPersistentInfo
- getDelta

938

8,9,11,13

o.e.core.internal.events.InternalBuilder
- build
- clean
- getDelta

180

8,11,13

o.e.core.internal.events.NotificationManager
- broadcastChanges

321

o.e.core.internal.events.ResourceChangeEvent

103

o.e.core.internal.events.ResourceDelta
- accept

543

o.e.core.internal.resources.Container

299

o.e.core.internal.resources.File

475

o.e.core.internal.resources.Folder

185

o.e.core.internal.resources.NatureManager
- configureNature
- deconfigureNature
- findNatureForBuilder

650

NN

o.e.core.internal.resources.Project

- build (2 of them)

- close

- copy

- create

- delete

- move

- open

1100

2,7,8,9

-25-

- setDescription
- touch

o.e.core.internal.resources.ProjectDescription
- hasPublicChanges
- setBuildSpec
- setNaturelds

379

5,7

o.e.core.internal.resources.Resource

1695

o.e.core.internal.resources. Workspace
- addResourceChangeListener
- broadcastPostChange
- build
- computeFullProjectOrder
- computeProjectOrder
- endOperation
- getBuildOrder

2048

2,7,89

o.e.core.internal.resources. WorkspaceRoot

289

o.e.core.internal.watson.ElementTree

729

0

o.e.core.resources.JCommand

131

o.e.core.resources.IContainer

456

o.e.core.resources.IFile

1086

o.e.core.resources.IFolder

429

o.e.core.resources.IncrementalProjectBuilder
- build
- clean
- getDelta

337

2
1
7
2
2
2
8

9,11,13

o.e.core.resources.IProject
- build (2 of them)
- setDescription

778

2,7,8

o.e.core.resources.IProjectDescription
- getBuildSpec
- setBuildSpec
- setComment
- setDynamicReferences
- setLocation
- setLocationURI
- setName
- setNaturelds
- setReferencedProjects

290

4,5,6,7

o.e.core.resources.[ProjectNature
- configure
- deconfigure

82

o.e.core.resources.JResource

2361

o.e.core.resources.IResourceChangeEvent

246

o.e.core.resources.IResourceChangeListener

48

o.e.core.resources.JResourceDelta
- accept

553

—[\O[\O| DN

-26 -

o.e.core.resources.IResourceDeltaVisitor 56 10
- visit
o.e.core.resources.IWorkspace 1569 2,7,8,9
- addResourceChangeListener
- broadcastPostChange
- build
- computeProjectOrder
o.e.core.resources.IWorkspaceDescription 222 7
- getBuildOrder
o.e.core.resources.IWorkspaceRoot 234 2
o.e.jdt.core.ElementChangedEvent 127 11
o.e.jdt.core.IClassFile 174 11
o.e.jdt.core.ICompilationUnit 624 11
o.e.jdt.core.lElementChangedListener 30 11
o.e.jdt.core.lJavaElement 368 11
o.e.jdt.core.lJavaElementDelta 385 11
o.e.jdt.core.lJavaModel 259 11
o.e.jdt.core.lJavaProject 1034 11
o.e.jdt.core.IPackageFragment 198 11
o.e.jdt.core.IPackageFragmentRoot 433 11
o.e.jdt.core.JavaCore 4382 5,11
- addElementChangedListener
o.e.jdt.internal.compiler.Compiler 703 13
- compile
o.e.jdt.internal.core.builder.AbstractimageBuilder 743 13
- compile (2 of them)
o.e.jdt.internal.core.builder.BatchImageBuilder 289 13
- build
o.e.jdt.internal.core.builder.IncrementalImageBuilder | 868 13
- build
o.e.jdt.internal.core.builder.JavaBuilder 712 9,13
- build
- buildAll
- buildDeltas
- clean
o.e.jdt.internal.core.ClassFile 735 11
o.e.jdt.internal.core.CompilationUnit 1206 11
o.e.jdt.internal.core.JavaElement 806 11
o.e.jdt.internal.core.JavaElementDelta 733 11
o.e.jdt.internal.core.JavaModelManager 4106 11
o.e.jdt.internal.core.JavaProject 3217 5,11
- configure
- deconfigure
o.e.jdt.internal.core.PackageFragment 487 11
o.e.jdt.internal.core.PackageFragmentRoot 854 11

-7 -

o.e.ui.actions.BuildAction 302 14

o.e.ui.internal.ide.actions.BuildCleanAction 54 14

And finally, I would like to briefly mention that there are many other builder-related
classes and interfaces that I did not focus on in this paper. Here 1 list the main categories
and the packages to explore for more information.

Ant — This includes builder classes for Apache Ant.
o.apache.tools.ant, o.e.ant.internal

APT — This includes builder classes to deal with files with annotations in them; part of
the annotation processing tool (APT).
o.e.jdt.apt.core.internal.env

CVS — This includes builder classes related to the CVS version control system.
o.e.team.internal

External Tools — This includes builder support for external tools.
o.e.ui.externaltools.internal

JDT — This includes additional Java-specific builder classes related to the Java
Development Tool (JDT).
o.e.jdt.internal.core.builder

JDT UI — This includes Java-specific builder classes related to the JDT user interface
(UD).
o.e.jdt.internal.ui, o.e.jdt.ui.actions

JUnit — This includes builder classes for JUnit.
o.e.jdt.internal.junit.buildpath

PDE - This includes builder classes related to the Plug-in Developer Environment
(PDE).

o.e.pde.internal

Ul - This includes builder classes related to the general user interface (UI).
o.e.ui.internal.ide.actions

Wizards — This includes builder classes related to wizards.
o.e.jdt.internal.ui.wizards.buildpaths

-08 -

References

J. Arthorne. Project Builders and Natures. Eclipse Corner Article. 2003, 2004.
http://www.eclipse.org/articles/Article-Builders/builders.html

J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman, P. McCarthy. The Java Developer’s
Guide to ECLIPSE, Second Edition. 2005.

Incremental Project Builders. Eclipse Platform Plug-in Developer Guide. Part of the

Eclipse Help documentation.

http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/resAdv
builders.htm

Eclipse Source Code, versions 3.2.2, and previous releases. http://www.eclipse.org/

-29 -

Appendix of
Code Fragments

/-x-x
% Sets the list of natures associated with the described project.
* 4 project created with this description will hawe these natures
* added to it in the giwven order.
i a g
* Users must call {@link IProject#setDescription(IFrojectlescription, int, IProgressMonitor):}
* hefore changes mwade to this description take effect.
* </px
k3
% @param hatures the list of natures
* @see IProjectfsetlescription(IProjectlescription, int, IProgressMonitor)
* dzee #getlNaturelds()
v
public void setlNaturelds(3tring[] natures) !

Fragment 1: The setNaturelds method listed in
o.e.core.resources.IProjectDescription.

/% (non—Javadoo)
zee IProjectlescriptionf#zetNaturelds (String[])
w/
public void setMNatureIds (String[] walue)] {
natures = [(String[]) wvalus.clone():
i

Fragment 2: The setNaturelds method implemented in
o.e.core.internal.resources.ProjectDescription.

public interface IProjectNature {
f*‘k
* Configures this nature for its project. This is called by the workspace
* when natures are added to the project using <code:xIProject.setDescription</code:
* and should not he called directly by clients. The nature extension
id is added to the list of natures before this method is called,

E

* and need not be added here.
L
* Exceptions thrown by this wethod will be propagated back to the caller
* of <code>IFroject.setbescription</code>, hut the nature will remain in
* the project description.
+
* @exception CoreException if this method fails.
cors
public void configure() throws CoreException;
"’W'ﬂ‘
* De-configures this nature for its project. This is called by the workspace
* when natures are remowved from the project using
* <oodexIProject.setlescription</code> and should not be called directly by
* glients. The nature extension id is rewoved from the list of natures before
% this method i=s called, and need not kbe removed here.
+
¥ Exceptions thrown by this method will be propagated back to the caller
* pf <code>IProject.setDescription</code>, but the nature will still he
+*

removed from the project description.
*

=+

* @exception CoreException if this method fails.
iyl

public void deconfigure () throws CoreException;

Fragment 3: The configure and deconfigure methods listed in
o.e.core.resources.IProjectNature.

-31 -

ll."ﬁﬁ
* Configures the nature with the given ID for the given project.
i
protected void configurelNature (£final Project project, fimal String naturelIl,
ISafeRunnsble code = new I3afeRunnable() |
public void run{) throws Exception f{
IFrojectlature nature = createllature (project, naturelIl):

final MultiZtatus errors) {

nature.configure () ;
ProjectInfo info = (FProjectInfo) project.getBResourcelnfo(false, true):

info.zetNature (natureID, nature)] !

public void handleException(Throwsble exception) |
if (exception instanceof CoreException)
errors.add([(CoreException] exception).get3tatus()):

else
errors.add (new Resourcedtatus (IResourceltatus.INTERNAL ERROR, project.getFullPath(), NL3

b
if (Policy.DEBUG NATURES) |

System. out.println("Configuring nature: "™ + naturelIl + " on project: "™ + project.getllame()): 7/ 4]
i

SafePunner.run(code) ;

i

Fragment 4: The configureNature method of
o.e.core.internal.resources.NatureManager, which calls the configure method.

ll."‘.\‘ﬁ‘
Deconfigures the nature with the given ID for the given project.
i
protected void deconfigurelNature (final Project project, final String naturelIl, £final Multci3tatus status) |
final ProjectInfo info = (ProjectInfo) project.getResourcelInfo(false, true):
IProjectlNature existingMNature = info.getNature (natureID):
if (existingMNature == null)] {
ff 1f there isn't a nature then create one so we can deconfig it.
try |
existingNature = createMNature (project, naturelID):

} catch (CoreException e) {
ff have to swallow the exception because it wust be possible
ffto remowve a nature that no longer exists in the install
Policy.logle.getdtatus (1)
return;

i
final IProjectNature nature = existingMature:
ISafeFunnable code = new ISafeRunnable() {
public void run() throws Exception {
nature.deconfigure () ;
info.zetNature (natureID, null):

public void handleException(Throwsble exception)
if [(exception instanceof CoreException)
statuz.add|([(CoreException) exXception).get3tatus()):

else
status.add (new Resourceitatus (IResourcedtatus. INTERNAL EREROR, project.getFullPathi), NL3.»

Y

if (Policy.DEBUS NATURES) {
System.out.println("Deconfiguring nature: "™ + naturelID + " on project: " + project.getMame()l: /3

i

SafeRunner.run(code) ;

j

Fragment 5: The deconfigureNature method of
o.e.core.internal.resources.NatureManager, which calls the deconfigure method.

-32-

J.-'w-a-
* Configure the project with Jawva nature.
g

public void configure() throws CoreException |

Jf register Java builder
addToBuild5pec (JavaCore. BUILDER I ;
*

lla"kﬂ'
* Remowes the Java nature from the project.
el
public void deconfigure (] throws CoreException {

/f deregister Java builder
removeFromEuild3pec (Javacore . EVILDER IDj :

}

Fragment 6: The configure (deconfigure) method in
o.e.jdt.internal.core.JavaProject adds (removes) the Java builder to (from) its build
spec.

lfa-w
* The ijdentifier for the Java builder
* (value <code>"org.eclipse.jdt.core. javabuilder”</codes) .
*
public static final String BUILDER ID = PLIGIN ID + ".jsvabuilder"” ; //§NON-HL3-1%

Fragment 7: The name of the Java builder is defined in o.e.jdt.core.JavaCore.

Sifmapz 3tring (builder ID) -» S3tring (nature ID)
protected Map buildersTolNatures = null;

Fragment 8: The mapping between natures and builders is represented as a
java.util.Map.

f*t
* Returns the ID of the project nature that claims ownership of the
* builder with the giwven ID. Returns null if no nature owns that builder.
o
public String findNatureForBuilder (String builderID) {
if (buildersTolatures == null) {
buildersToNatures = new HashMap (10) ;
IfrojectiNaturelescriptor[] descs = getNaturelescriptors():
for (imt i = 0; i < desecs.length; i++) {
String natureld = descs[i] .getMatureld() ;
String[] builders = [(ProjectNaturelescriptor) descs[i]).getBuilderIdsi):
for (int j = 0; j < builders.length; j++) {
FAFIFME: how to handle multiple natures specifying same builder
buildersToNatures.put (builders[j], natureld):

H
return (String) buildersToMNatures.get (builderID) ;
i

Fragment 9: The mapping between natures and builders is represented more
specifically as a java.util. HashMap in the findNatureForBuilder method.

-33-

fﬁ‘ﬁ
* Constant that denotes the namwe of the project description file [(walue
=woodexfopraleeses codes)
* The handle of a project's description file is
% <ccde>prnject.getFile[DESCRIPTION_FILE_NAHEJ<fccde>.
* The project descriprtion file is located in the root of the project's content area.
3
* @since 2.0
Er
public static final String DESCRIPTION FILE NAME = ".project™; //3iNON-NLZ-1%

Fragment 10: The declaration of the .project file is located in
o.e.core.resources.IProjectDescription.

J."ﬁ"ﬁ'
¥ FEeturns true if any public atcributes of the description have changed.
¥ Public attributes are those that are stored in the project description

¥ Tile d.pEogeebl.
ol
public boolean hasPublicChanges (Frojectlescription description)
if (!getlame () .equals(description.getName()])
return true:
if [!comwent.edquals (description. gecComoent ()])

return true;

fidon't bother optimizing if the order hasz changed

if (lirravs.egualsibuildfpec, description.getBuildipec (false))
return true:;

if (lArravys.eguals|staticRefs, description.getReferencedProjects(false))
return true:
if [(lArray=s.eguals(natures, description.getlaturelds (fal=e)))

return true;
HashMap otherlinks = description.getLinks():
if (linkDescriptions == null)
return otherlinks '= null;
return !linkDescriptions.equals{otherLinks):
E

Fragment 11: The hasPublicChanges method in
o.e.core.internal.resources.ProjectDescription deals with the project’s public
attributes — the project’s name, comments, project references, natures, and builders
(as defined in the build spec).

II."T'R
* Beturns the list of build commands to run when building the described project.
¥ 'The commwartds are listed in the order in which they are to he run.

¥ dre
w
public ICommand[] getBuildSpec():

turn the list of build commwands for the described project

Fragment 12: The build spec is represented as an ordered array of ICommand
objects, as seen in the getBuildSpec method (see the comment).

-34 -

A* (non—Javadoo)
* [@zee IProjectlescriptionf#fizetBuildSpec (ICommand[])
T
public void setBuildSpec (ICommand[] wvalue] 1§
Azgert.islegal (value !'= null);
{/perform 8 deep copy in case clients perform further changes to the comosand
ICommand[] result = new ICommand[values.length]:
for (int i = 0; 1 < result.length; i++) {
result[i] = (ICommand] [(BuildCommand) value[i]).clone():
Jfcopy the reference to any builder instance from the old build spec
fito preserve builder states if possible.
for (int j = 0; j < buildSpec.length; Jj++) {

if (result[i] .equals(build3pec[il)) 1
[(BuildCommand) result[i]).setBuilder || (EuildCommand) buildSpec[j]).getBuilder ()] :
brealk;

¥
buildipec = result:
i

Fragment 13: The setBuildSpec method, implemented in
o.e.core.internal.resources.ProjectDescription, shows that the array of build
commands is created in a certain order.

lj?f‘k
* Comwputes a total ordering of the given projects hased on both static and
¥ dynamic project references. If an existing and open project P references
another existing and open project Q also included in the list, then Q
* should come bhefore P in the resulting ordering. Closed and non-sxistent
* projects are ignored, and will not appear in the result. Beferences to
* non-existent or closed projects are also ignored, as are any
* gelf-references. The total ordering is always consistent with the global
* total ordering of all open projects in the workspace.
' op>
% When there are choices, the choice is made in a reasonsbly stable way.
% For example, given an arbitrary choice between two projects, the one with
* the lower collating project hame is usually selected.
ool pe
b o o P
* When the project reference graph contains cyoelic references, it is
* impossikble to honor &ll of the relationships. In this case, the result
% ignores as few relationships as possible. For example, if P2 references
#P1 P references P cand P2 oand P3-oreferehce eoch brher. theh exXacrly
* one of the relationships hetween P2 and P3 will have to ke ignored. The
% outecome will be either [P1, P2, P3; P4] or [P1l; P3; P2Z; P&]. The result
* glso contains complete details of any cycles present.
®ogfp
e
* Thiz method is time—-consuming and should not he called unnecessarily.
* There are a wvery limited set of changes to a workspace that could affect
% the outcome: creating, renaming, or deleting s project; opening or
* ologing a project; adding or removing & project reference.
oL ps
L
* @Eparam projects the projects to order
* @return result describing the project order
¥ @ 2ot
g
public ProjectOrder cowputeProjectOrder (IFroject[] projects):

Fragment 14: ComputeProjectOrder listed in o.e.core.resources.IWorkspace.

-35-

/% non-Javados)
* [fzee IWorkspacefcomputeProjectOrder (IFroject[])
* fsince 2.1
L
public ProjectOrder computeProjectorder (IProject[] projects) |

/4 compute the full project order for all accessible projects
ProjectOrder fullProjectirder = computeFullProjectOrder (] :

A4 "fullProjectorder.projects” contains no inaccessible projects
J4 but might contain accessible projects omitted from "projects”
// optimize common case where "projects™ includes everything
int accessibleCount = 0;
for (int i = 0; i < projects.length; i++) |
if [(projects[i] .isAccessiblel)) |
accessibleCount++;

+
// no filtering recuired if the subset accounts for the full list
if (accessibleCount == fullProjectOrder.projects.length) {

return fullProjectOrder:

/4 otherwize we need to eliminate mention of other projects...
f/ ... from "fullProjectOrder.projects™...
/4 Ber<IProject> keepers
Jet keepers = new HashSet (Arrays.asList(projects)):
/4 List<IProject> projects
List reducedProjects = new Arraylist (fullProjectOrder.projects.length);
for (int i = 0; i < fullProjectOrder.projecta.length; i++) |
IFroject project = fullProjectOrder.projects[i];
if (keepers.contains (project)) |
Jf remove projects not in the initial subset
reducedProjects.add (project) :

i
IFroject[] pl = new IProject[reducedFrojects.size()]:
reducedProjects.tolrray(pll;

A4 ... and from "fullProjectOrder.knots"
/4 List<IProject[]> knots
List reducedEnots = new ArravyList (fullProjectlOrder.knots.length):
for (int i = 0; 1 < fullProjectOrder.knots.length; i++) |
IFroject[] knot = fullProjectOrder.knots[i]:
Lizt x = new ArravyList (knot.lengthl:
for {(int j = 0; j < knot.length; j++) {
IProject project = knot[3]:
if (keepers.contains (project)) |
w.addiprojectc)

i
/¢ keep knots containing 2 or more projects in the specified subset

if (x.size() > 1] {
reducedEnots.add(x. tolrray (new IProject[x.=size()])1)1:

}
IProject[][] k1l = new IProject[reducedKnots.size()][]:
/¢ okay to use tolhrray here because reducedEnots elements are IProject[]
reducedKnots. tohrray (k1) ;
return new ProjectOrder (pl, (kl.length > 0), kil):
i

Fragment 15: The workspace computes a default build order with a breadth-first
traversal of the project reference graph in the computeProjectOrder method of
o.e.core.internal.resources.Workspace.

-36 -

=+

Computes the global total ordering of all open projects in the

workspace based on project references. If an existing and open project P
references another existing and open project Q0 also included in the list,
then @ should come hefore P in the resulting ordering. Closed and non-
existent projects are ignored, and will not appear in the result. References
to non-existent or closed projects are also ignored, as are any self-
references.

<p

When there are choices, the choice is mwade in & reasonably stable way. For
example, given an arhitrary choice between two projects, the one with the
lower collating project name is wusually selected.

</ pe

<p

When the project reference graph contains cyclic references, it is
impos=ikle to honor all of the relationships. In this case, the result
ignores as few relationships as possible. For example, if PZ references P1,
P4 references P3, and P2 and P3 reference each other, then exactly one of the
relationships between PZ and P3 will have to be ignored. The outcome will hbe
either [P1, P2, P3, P4] or [P1l, P3, P2, P4]. The result also contains
complete details of any cyoles present.

</p>

result describing the global project order
s

B T T T T

bt
private ProjectOrder computeFullProjectOrder() {

/f determine the full set of accessible projects in the workspace
// order the set in descending alphabetical order of project nsame

Sorteddet alllhccessibleProjects = new Treelet (new Comparator () |
public int cowmpare (Chject %, Obhject v {
IProject px = (IProject) x:
IProject py = (IProject) ¥:
return py.getMame () .compareTo(px.getName (]]

b

IProject[] allProjects = getRoot () .getProjectsi);
ff List<IProject[]> edges

List edges = new ArrayList(allProjects.length):
for (int 1 = 0; i1 < allProjects.length; i++) {

Project project = (Project)] allProjects[i]:
/¢ ilgnore projects that are not accessible
if (!project.isiccessibkble(])
continue;
Projectbescription desc = project.internalGetDescription():
if (desc == null)
continue;

J/obtain both static and dynamic project references
IProject[] refs = desc.getlllBReferences(false);
allhccessibleProjects. add(project)
for (int j = 0; j < refs.length; J++) {
IProject ref = refs[3]:
/4 ignore self references and references to projects that are not accessible
if (ref.islccessible() && 'ref.equals(project)
edges.add (new IProject[] {project, refl):

ProjectOrder fullProjectOrder = ComputeProjectOrder.computeProjectlrderialliccessibleFrojects, edges):
return fullProjectdrder;

Fragment 16: The workspace computes a default build order with a breadth-first
traversal of the project reference graph in the computeFullProjectOrder method of
o.e.core.internal.resources. Workspace.

-37-

fww
* RBeturns the order in which open projects in this workspace will ke built.
"R P
* The project build order is based on information specified in the workspace
* desgcription. The projects are built in the order specified by
sooderIWorkspacelescription.getBuilddrder</coder; closed or non-existent
* projects are ignored and not ineluded in the result. If
* ¢ooderIorkspacelescription.getBuildorder</code> is non-null, the default
¥ build order is used; again, only open projects are included in the result.
LA
RHC 52
* The returned wvalue is cached in the <coderbuilddOrder</coder field.
LR
+*
* @Areturn the list of currently open projects in the workspace in the order in
which they would be built by <codes>IVorkspace.builds/codes.
* dzee IWorkspacefbuildiint, IProgressMonitor)
* @see IWorkspacelescriptionfigetBuildorder ()
* @gince 2.1
wf
public IProject[] getBuildorder () 1
if (buildorder !'= null) |

4 return previouzsly-computed and cached project build order
return buildorder;
i
4/ see if & particular build order iz specified
3tringl[] order = description.getBuildOrder (false):
if {(order !'= nuall) {
4f convert from project names to project handles
J4 and eliminate non-existent and closed projects
List projectlList = new ArrayListiorder.length):
for (int i = 0; 1 < order.length; i4++] ¢
IProject project = getRoot () .getProject (order[i])
if (project.islccessikble()) 4
projectlist.add (project) ;

H
buildOrder = new IFroject[projectlist.size()]:
projectlist.tolkrray(builddrder) ;

} else
4/ use default project build order
A4 computed for all accessible projects in workspace
buildOrder = computeFullProjectOrder () .projects:

i

return buildorder:;

}

Fragment 17: The workspace build order (the ordered list of projects to build) is
returned by o.e.core.internal.resources.Workspace’s getBuildOrder method.

-38 -

a

Returns the order in which projects in the workspace should be built.
The returned walue iz <codesnull</code> if the workspace's default build
order iz bheing used.

urn the names of projects in the order they will he built;
or <ocodernull</code> if the default build order should he used
#zetBuildorder (3tring[])
ResnurcesPlugin#PREF_BUILD_ORDER

o+ # o+ #*

o
public String[] getBuildOrder (]!

Fragment 18: The getBuildOrder method that is listed in
o.e.core.resources.IWorkspaceDescription.

protected void basicBuild(IProject project, int trigger, IComwand[] comeands, Multidtatus
mohitor = FPolicy.monitorFor (monitor)
try |
String message = NL3.kind(Messages.events building 1, project.getFullPathi{));
monitor.beginTask (message, Math.mazxi(l, commands. length));
for (int 1 = 0; 1 < commands.length; i++) |
checkCanceled (Crigger, monitor) ;

BuildCommand comnand = (BuildCommand) comrands[i]:

IProgressMonitor sub = Policy.subMopitorFor{monitor, 1);
IncrementalProjectBuilder builder = getBuilder (project, commanhd, i, status):
if (builder != nmll)

bhasicBuild(trigger, builder, comoand.getircuments (false), status, sub)
i
+ catch (CoreException =) |
status.addie.getitatus ()] ;
+ finally ¢
monitor.done (] ;

+

Fragment 19: The second of three basicBuild methods defined in
o.e.core.internal.events.BuildManager, shows that the builders are, in fact, invoked
in a specific order.

-39

* Creates and returns an ArraylList of BuilderPersistentInto.

The list includes entries for all builders that are

* in the builder spec, and that hawve a last built state, even if they
* have not been instantiated this session.

public Arraylist createBuildersFersistentInfo|IProject project)] throws CoreException {
/% get the old builders (those not yet instantiasted) */
ArrayList oldlInfos = getBulldersPerzistentlInfo(project):

IContmand[] commands = [(Project] project).internalGetlescription() . .getBuild3pec false) !
if (commwand=s. length == 0)
return null;

/* build the new list */
LrrayList newInfos = new ArraylList (commands.length);
for (int i = 0:; i < commands.length: i++4) |

String builderMName = commands[i] .getBuilderWame () ;2

EuilderPersistentInfo info = null;
IncrementalProjectBuilder builder = | (BuildCommand) commands[i]) .getBuilder ()@
if (builder == null) {

/¢4 if the builder was not instantiated, use the old info if any.

if (0ldInfos !'= null)

info = getBuilderInfoioldInfos, builderMame, 1i):

+ else if (! (builder instanceof MisszingBuilder)) {

ElewentTree oldTree = |{{InternalBuilder) builder) .getLastBuiltTree():;

Addon't persist build state for builders that have no last built state
if (0ldTree !'= null) ¢
// if the builder was instantiated, construct a memento with the important info

info = new BuilderPersistentInfo(project.getlame (), builderMNawe, i):
info.setlastBuildTree (oldTree) ;
info.setInterestingProjects (| {InternalBuilder) builder) .getInterestingProjects()):

i
if (info '= nmll)
newInfos.add|info);
i
return newvInfos;
}

Fragment 20: The o.e.core.internal.events.BuildManager class has a method
createBuildersPersistentInfo that returns a list of BuilderPersistentInfo that
includes all builders for the project that have a last built state.

;’ﬁ'ﬁ

Returns a list of BuilderPersistentInfo.

* The list includes entries for all builders that are in the hbuilder spec,

* and that have a last built state but hawve not been instantiated this session.

it
public ArraylList getBuildersPersistentInfo(IProject project) throws CoreException {

return (Arraylist) project.getiessionProperty (K BUILD LIST) :
i

Fragment 21: The o.e.core.internal.events.BuildManager class has a method
getBuildersPersistentInfo that returns a list of BuilderPersistentInfo that includes
all builders for the project that have a last built state.

- 40 -

public void setInterezstingProjects (IProject[] projecta) {
interestingProjects = projects:

'

Fragment 22: The class o.e.core.internal.events.BuilderPersistentInfo contains the
setInterestingProjects method that actually “sets” the array of Iprojects that the
builder is interested in.

public IPFroject[] getlInterestingProjectsi(l |
return interestingProjects:

:
Fragment 23: The class o.e.core.internal.events.BuilderPersistentInfo contains the

getInterestingProjects method that actually “gets” the array of Iprojects that the
builder is interested in.

l.."*'k

* Build kind constant (value 10) indicating an incremental build reguest.

IProjectfhuild{int, IProgressMonitor)
2e IProjectfbuild(int, String, Map, IProgressMonitor)

* @see IWorkapacefbuildi{int, IFrogressMonitor)
S
public static final int INCREMENTAT BUILD = 10;
,"’“'*

¥ Build kind constant (value 6) indicating a full build redquest.

IProjectfbuild{int, IProgressMonitor)
e IProjectfbuild(int, String, Map, IProgressMonitor)
dsee IWorkspacefbuildiint, IFrogressMonitor)

public static final int FULL BUJILD = 6&;

,-"I**
* Build kind constant ([(value 23 indicating an automatic build reguest.
+
A

public static final int AUTO BUILD = 3;

f."ﬂ"ﬁ'

¥ Build kind constant (value 15) indicating a build elean redguest

Asee IProject#build({int, IProgressMonitor)
ee IProjectf#build({int, S3tring, Map, IProgressMonitor)
ee IWorkspacefbuildiint, IFrogressMonitor)

r 3.0

public static final int CLEAN BUILD = 15;

Fragment 24: The four kinds of builds listed in
o.e.core.resources.IncrementalProjectBuilder.

-4] -

=+

Buns this builder in the specified manner. 3ubclasses should implement
this method to do the processing they require.

<p>

If the build kind is <code>INCREMEMNTAL BUILD</code> or

<codexAUTO BUILD</coder, the <codergetDeltad/coder method can he

used during the invocation of this wethod to obtain information about
what changes have occurred since the last invocation of this method. Any
rezource delta acguired is walid only for the duration of the inwvocation
of this method.

</ p=

<p>

Lfter cowpleting a build, this builder way return a list of projects for
which it recquires a resource delta the next time it is run. This
builder's project is implicitcly included and need not be specified. The
build mechanism will attewpt to maintain and compute deltas relative to
the identified projects when asked the next time this builder is run.
Builders must re-specify the list of interesting projects every time they
are run a3 this is not carried forward beyond the next build. Projects
mentioned in return wvalues but which do not exist will he ignored and no
delta will he made available for them.

</ p>

<p>

Thi=s wethod is long-running; progress and cancellation are provided by
the given progress monitor. 411 builders should report their progress and
honor cancel reguests in a timely manner. Cancelation redquests should be
propagated to the caller by throwving

<ooderOperationCance ledException</ codes>.

</ px

<p>

411 builders should try to be robust in the face of trouble. In
situations where failing the build by throwing <codesxCoreException</codes
is the only option, & builder has a choice of how best to communicate the
problem back to the caller. One option is to use the
<c0de}BUILD_FAILED<Icnde> status code along with a suitahle message:?
another is to use a multi-status containing finer-grained problem
diagnoses.

</p>

@Aparam kind the kind of build heing requested. Valid wvalues are

<ulx

<lir<code>FULL BUILD</coder- indicates a full build.</lix
<c0de>INCREHENTEL_BUILD</code>— indicates an incremental build.

</ lix

<lir<codexAUTO BUILD</coder- indicates an automatically triggered
increwental build (autobuilding on).</lix

</ful=>

@Aparam args a table of builder-specific arguments keyed by argument name
(key type: <codesString</code>, wvalue type: <coderString</codex):
<eodernull</code> iZ equivalent to an empty map

Aparam monitor & progress monitor, or <codernull</coder if progress
reporting and cancellation are not desired

@return the list of projects for which this builder would like deltas the
next time it is run or <codernull</code> if none

Aexception CoreException if this build fails.

@Agee IProject#huild(int, String, Map, IProgressMonitor)

T S S S S S T S T L T T T T T T S S S S S S S S S S S T T R T T T T B B T TR

s

protected abhstract IProject[] build{int kind, Map args, IProgressMonitor monitor) throws CoreExc

Fragment 25: Auto-build, full build, and incremental build are all implemented in
the build method that is listed in o.e.core.resources.IncrementalProjectBuilder and
implemented in its subclasses.

_42 -

=+

Clean is an opportunity for a builder to discard any additional state that has
heen computed as a result of previous builds. It is recommended that builders
owerride this method to delete all derived resources created by previous builds,
and to remowve all markerzs of type <coderIMarker.PROELEN</code> that

were created by previous inwvocations of the builder. The platform will

take care of discarding the builder's last built state (there is no need

to call <coderforgetlastBuilt3cate</codes) .

< px

<p

This method iz called as a result of invocations of
<ooderITorkspace.build</codes> or <coderxIProject.build</code> where

the build kind is <cade>CLEAN_BUILD<KCDde>.

<p>

Thiz default implewmentation does nothing. Subelasses way override.

<p>

This wethod is long-running; progress and cancellation are provided by

the given progress monitor. ALl builders should report their progress and
honor cancel regquests in a timely manner. Cancelation regquests should be
propagated to the caller by throwing

<ooderQperationCance ledException/ codex,

<fpx

@Aparam mohitor & progress monitor, or <codernull</code: if progress
reporting and cancellation are not desired

@exception CoreException if this build fails.

@see IWorkspacefbuild(int, IProgressMonitor)

@see HFCLEAN BUILD

@since 3.0

3 Beoootiodiuab ok B B Beoloabiook % o S Heecablaobiesb # % b B Beooboob ook

L
protected void clean|IProgressMonitor mwonitor) throws CoreException {
f/idefault implementation does nothing
if (false)
throw new CDreExceptinn(Status.OK;STATUS];ffthwart compiler warning

Fragment 26: The clean build has its own clean method that is listed in
o.e.core.resources.IncrementalProjectBuilder and implemented in its subclasses,
because the clean build is new to Eclipse 3.0.

~43 -

* End ah operation (group of resource chahnges).
* Notify interested parties that resource chahnges have taken place. All
* registered resource change listeners are notified. If sutcbuilding is
* enabled, a build is run.
k)
public void endOperation(ISchedulingBule rule, boolean build, IProgressMonitor monitor) throws Corg
WorkManager workManager = getWorkManager () :
fifdon't do any end operation work if we failed to check in
if [workManager.checkInFailedirule])
return;
// This is done in a try finally to ensure that we always decrement the operation count
/¢ and release the workspace lock. Thiz mwust ke done at the end because snapshot
/74 and "hasChanges" comparison have to happen without interference from other threads.
hoolean hasTreeChanges = false;
hoolean depthOne = false;
try {
workManager .setBuild (build) ;
/7 if we are not exiting a top level operation then just decrewment the count and return

depthime = workManager.getPreparedOperationDepthi() == 1;
if (! (notificationManager.shouldNotify() || depthOne)) {
notificationManager.requestNotify () ;
return;

¥
/7 do the following in a try/finally to ensure that the operation tree iz nulled at the end
Jf as we are completing & top level operation.
try {
notificationManager.beginMotify i)
/¢ check for a programming error on using heginCperation/endOperation
Aszert.isTrue(workManager .getPreparedOperationlepthi] > 0, "Mismatched hegin/endOperati

/¢ At this time we need to re-balance the nested operations. It i3 necessary because
F4 build() and snapshot () szhould not fail if they are called.
workManager . rebalanceNestedCperations() 2

f/find out if any operation has potentiaslly modified the tree
hasTreeChanges = workManager.shouldBuild():
f/doukle check if the tree has actually changed
if [(hasTreeChanges)
hasTreeChanges = operationTree !'= null &€& ElewmentTree.hkasChanges (tree, operationTre
hroadeastPostChange () !
/7 Regquest a snapshot if we are sufficiently out of date.
gavelanager.snapshot IfNeeded (hasTreeChanges) ;
} finally {
/¢4 make sure the tree iz immutable if we are ending & top-level operation.
if (depthOne) {
tree.imrmitable (] :
operationTree = null;
} else
newlorkingTree (] ;
}
y finally
wmorkManager .. checkout (rule) ;
i
if jdepthiOne)
buildManager.endToplevel (hasTreeChanges) »

}

Fragment 27: The endOperation method in o.e.core.internal.resources.Workspace is
called at the end of one of the various resource change operations like build, close,
copy, create, delete, move, open, and touch methods.

-44 -

public void broadocastPostChange () |
ResourceChangeEvent event = new ResourceChangeEvent (this, IResourceChangeEvent.POST CHANGE, 0, null);
notificationManager . broadecastChanges (tree, event, true);

F
Fragment 28: The endOperation calls the broadcastPostChange method (also in
o.e.core.internal.resources.Workspace).

ll."tﬂ'
* The main broadcast point for notification deltas
i
public veid broadcastChanges (ElementTree last3tate, ResourceChangeEwvent event, boolean lockTree] {
final int type = event.getTypel):

try |
/¢ Do the notification if there are listeners for events of the given type.
if (!'listeners.haslListenerFor (type))

return;
isNotifying = true:
Resourcelelta delta = getDeltallast3tate, type);
Jidon' t broadoast POST CHANGE or incremental build events if the delta is empty

if (delta == null || delta.getKind({) == 0] {
int trigger = ewvent.getBuildEind():
if (trigger != IncrementalProjectBuilder.FULL BUILD && trigger != IncrementalProjectBuilder.CLEAN §
return;

b
event, setbelta(delta) ;

long start = System.currentTimeMilli=();
notify{getListeners(), ewvent, lockTree):
lastNotifyDuration = System.currentTimeMillis() - start:

+ finally {
/f Update the state regardless of whether people are listening.
isNotifying = false;
cleanlUp(lastState, type):

}
Fragment 29: The broadcastPostChange method in

o.e.core.internal.resources.Workspace calls the broadcastChanges method in
o.e.core.internal.events.NotificationManager.

’.’#ﬂ'
* The outermost workspace operation has finished. Do an autobuild if necessary.
Y
public void endTopLevel (hoolean needsBuild) {
autoBuildJob.build (needsBuild) ;

}
Fragment 30: The endTopLevel method of o.e.core.internal.events.BuildManager is
called at the end of the endOperation method of
o.e.core.internal.resources.Workspace to perform an auto-build if it is enabled.

_45 -

hrotected void clean(IProgressMonitor monitor) throws CoreException {
thisg.currentProject = getProject ()

if (currentProject == null || 'currentProject.isiccessible ()] return:
if (DEBUG)
System. out.println(™ nCleaning " + currentProject.getName () //SNON-NLS-1%
+ " @ " + new Date (System. currentTimeMillis())i: //SHNON-NLS-1%

this.notifier = new BuildNotifier (monitor, currentProject):;
notifier.begin():
try {

notifier.checkCancel (]

initializeBuilder ({CLEAN BUILL, true)j;
if [(DEBUG)
Syatem. cut.println("Clearing last state as part of clean @ " 4+ lastState); //SHON-NLI-1%
clearLastState ()
remorelrobl emsAndTasksFor (currentProject)
new EBatchlmageBuilder (this, false) .cleantutputFolders (false) ;
} catch [(CoreException 1
Ttil.logie, "JavaBuilder handling CoreException while cleaning: "™ + currentProject.getNamwe ()
INarker marker = currentProject.createlarker (IJavallodelMarker . AVA MODET, PROSLEM MARKER) ;
warker.setittribute (IMarker .MESSAGE, Messages.bind(Nessages.build inconsistentProject, e.get
marker.setittribute (INarker . SEVERTTY, IMarker.SEVERITY EREOR];
} finally {
notifier.done ()
cleanup ()
}

if |DEBUG)
System. out.println("Finished cleaning " + currentProject.getlame () //§HCH-HLE-13
+ " @ " + new Date(System. currentTimeMillis())): //3MNON-HLS-1%

Iprivate void cleanup()

thig.participants = null;
this.naweEnvironmment = null:
this.binaryLocationsPerProject = null;
this. last3tate = null;

this.notifier = null;
this.extrakResourceFileFilters = null;
this.extraResourceFolderFilters = null:

private void clearLastState ()] |
Javallode 1Manager . getJavaodelManager () .setlastBuiltState (currentProject, null):

}

Fragment 31: An example of cleaning done in an implementation of the clean
method (and other methods that it calls) can be seen in
o.e.jdt.internal.core.builder.JavaBuilder.

_ 46 -

%+

Feturns the resource delta recording the changes in the given project
gsince the last time this builder was run. <codernull</coder i3 returned
if no such delta is available. in empty delta is returned if no changes
have occurred. If <codernull</codse> iz returned, clients should assume
that unspecified changes hawve occurred and take the appropriate action.
<P

The system reserwves the right to trim old state in an effort to conserve
space. Az such, callers should he prepared to receive <codernull</code:
ewven if they previously reguested a delta for a particular project by
returning that project from a <coderbuild</code> call.

</ p>

<P

A non- <codernull</coder> delta will only bhe supplied for the given
project if either the result returned from the previous
<ooderbuilds/coder included the project or the project is the one
associated with this builder.

</ pr

<px

If the given project was mentioned in the previous <coderbuild<s/codex
and subsequently deleted, a non- <codernull</coder delta containing the
deletion will be returned. If the given project was mentioned in the
previous <coderbuild</code> and was subsecquently created, the returned
wvalue will be <codernull</code>.

</p>

<P

L wvalid delta will ke returned only when this method is called during a
build. The delta returned will be wvalid only for the duration of the
enclosing build execution.

</ p>

* % % # # # % # # # # # # A # # #F # # # # # # # # # # # # # *

@return the resource delta for the project or <codernull</coder
wf
public final IResourcelelta getDelta(IProject project]
return super.getDeltaiproject):
H

Fragment 32: The getDelta method in o.e.core.resources.IncrementalProjectBuilder
returns a call to o.e.core.internal.events.InternalBuilder’s getDelta method.

P
* [zee IncrementalProjectBuilderfiforgetlastBuiltitcate
o

protected IRescourcelelta getDelta(IProject aProject]

return buildManager.getDelta(aProject)

H

Fragment 33: The o.e.core.internal.events.InternalBuilder’s getDelta method
returns a call to the getDelta method in o.e.core.internal.events.BuildManager.

_47 -

IReszourcelelts getDelta(IProject project)

try
lock.acguire ()
if (currentTree == null) o

if (Policy.DEBUE EUILD FATLURE)

return null:
H
ffoheck if this builder hss indicated it cares shout this project
if [(!isInterestingProject (project)) {

if (Policy.DEBUGE EVILD FAILURE)

return null;

i
ffcheck if this project has changed

if ['project.exists())
return null;
ffjust return an empty delta rooted at this project
return ResourceleltaFactory.newEmpiyvDelta(project)
H
//now check against the cache

if (result !'= null)
return resulc;

long startTime = 0OL;
if (Policy.DEBUG BUILD DELTA) |
startTime = 3ystem.currentTimeMi1lis();

H
result = ResourceleltaFactory. computelelia(workspace, lastBuilcTree, currentTree,
deltaCache.cache (project.getFullPath(), lastBuiltTree, currentTrees, result):
if (Policy.DEBUG BUILD FAILURE £& result == null)
Policy.debug("Build: no delta ™ + debugBuilder() + "™ [" 4+ debugProjectc() + "]
if (Policy.DREBUG BUILD DELTA
Policy.debug("Finished computing delta, time: " + [(Systew.currentTimeMillis|
return result;
} finally {
lock.release () ;

¥

Policy.debug("Build: no tree for delta " + debugBuilder{) + " [" + debugProject()

Policy.debug("Build: project not interesting for this builder " + debugBuilder|)

if (currentDelts !'= mull && currentDelta.findNodelt (project.getFullPathi)) == null)
//1f the project never existed (not in delts and not in current treej, return hull

IResourcelbelta result = [IResourcelelta) deltaCache.getDelta(project.getFullPathi),

Folicy.debug("Computing delta for project: " + project.getMame()): //SHON-NLI-1%

project

{

lastE

+ pro

start

Fragment 34: The getDelta method in o.e.core.internal.events.BuildManager.

- 48 -

hrntected IProject[] build({int kind, Map ignored, IProgressMonitor monitor) throws CoreException {

this.currentProject = getProject();
if (currentProject == null || !'currentProject.islccessible()) return new IProject[0];
if (DEBUG)
System. out.println (™ nStarting build of " + currentProject.getMame () //SHNON-NLS-1%
+ " @ " + new Date(System.currentTimeMillisi))): //SNON-HLS-13

this.notifier = new BuildNotifier (monitor, currentProject):
notifier.begin();
hoolean ok = false;

try {
notifier.checkCancel ()
kind = initializeBuilder (kind, true):
if (isWorthBuildingi()) {
if (kind == FULL BUILD) {
buildill):
} else {
if | (this.last3tace = getlascitate(currentProjecc)) == null) ¢
if [DEBUSE)

System. out.println("Performing full build since last saved state was not found”); //§N
builddll();
} else if (hasClasspathChanged()) {
44 1f the output location changes, do not delete the binary files from old location
/4 the user may be trying something
buildill();
} else if [(naweEnvironment.sourcelocations. length > 0) {
/¢ if there is no source to compile & no classpath changes then we are done
SimplelookupTable deltas = findDeltas():
if (deltas == null)
buildill():
else if (deltas.elewent3ize > 0)
buildDeltasideltas);
else if (DEBUG)
System. cut.println("Nothing to build since deltas were empty™); //SHON-NLS-1%
1 else {
if (hasStructuralDeltai)) { // double check that a jar file didn't get replaced in a binary
buildill();
b else {
if (DEBUS)
System. cut.println("Nothing to build since there are no source folders and no deltd
last8tate. taghsNoopEuild ()

ok = true;
i
+ catch (CoreException e) {
Ttil.leogle, "JavaBuilder handling CoreExeeption while building: " + currentProject.getMName()): //3$NON-H
IMarker marker = currentProject.createMarker (IJavallodelMarker.JAVA MODEL PROBELEM MARKER):
marker.setittribute (IMarker .MESSAGE, Messages.bindtMEssages.build_inconsistentProject, e.getLocalizedMy
marker.secittribute (IMarker . SEVERITY, IMarker.SEVERITY ERROR):
marker.setittribute (IJavalodellarker. CATEGORY I, CategorizedProblem.CAT BUILDPATH)
} catch (ImageBuilderInternalException e) {
Ttil.logle.getThrowable (), "JavaBuilder handling ImsgeBuillderInternalException while building: "™ + cury
IMarker marker = currentProject.createMarker (IJavalodelMarker.JAVA MODEL PROELEM MARKER) :
warker.sechttribute (INarker .MESSAGE, Messages.dbind|Messages.build inconsistentProject, e.getLocalizedNg
marker.setittribute (IMarker .SEVERITY, IMarker.SEVERITY ERROR):
marker.setittribute (IJavaModellarker. CATEGORY IR, CategorizedProblem.CAT BUILDPATH)
} catch (MissingSourceFileException e] {
/¢ do not log this exception since its thrown to handle shorted compiles because of missing source f£ild
if (DEBUG)

System. out.println(Messages. bind(Messages. build missingSourceFile, e.missingdourceFile]]:
removelrobl emsAndTasksFor (currentProject); // make this the only problem for this project
INarker marker = currentProject.createMarker (IJavallodelMarker.JAVA MODEL PROELEM MARKER) :
marker.setittribute [IMarker .MESSAGE, Messages.bindtHessages.buichRussingSourceFile, e.missingSourceFil
marker.setittribute (IMarker .SEVERITY, IMarker.SEVERITY ERROR):

} finally {
if (lok)

A4 If the build failed, clear the previously built state, forcing a full build next time.

clearLast3tate () ;
notifier.donei):
cleanup () ;

ks

IProject[] reguiredProjects = getReguiredProjects(true):
if [DEBUS)
Svstem. out.println("Finished build of ™ + currentProject.getName () //SHNON-WNLS-1%
+ " B " + new Date(System. currentTimeMillis())): //SNON-HNLS-1%

return regquiredProjects;

i

Fragment 35: The build method of o.e.jdt.internal.core.builder.JavaBuilder.

-49 -

Iprivate void buildhll{) {

}

notifier.checkCancel():

notifier.subTask (Nessages. bind(Messages. build preparingBuild, this.currentProject.getfame()));
if (DEBUG && lastState '= null)
System. out.println("Clearing last state : " + last3tate); //SNON-MLZ-1%

clearlast3tate () ;

EatchImageBuilder imageBuilder = new BatchImageBuilder (this, true):;
imageBuilder.build() ;

recordiew3tate (imageBuilder.newdtate) ;

Fragment 36: The buildAll method of o.e.jdt.internal.core.builder.JavaBuilder.

brivate void buildDeltas(3impleLookupTakhle deltas) {

}

notifier.checkCancel ()

notifier.subTask(Messages. bind (Hessages. build preparingBuild, this.currentProject.getName()]):
if (DEBLGE ££ lastState != null)
System.out.println(™Clearing last state : "™ + lastState); //§NON-NL3-13

clearLastState(): // clear the previously built state so0 if the build fails, a full build will
Incremental ImagebBuilder imageBuilder = new IncrementalImagebuilder (this):
if [imageBuilder.buildideltas))
recordiew3tate {imagebuilder.newitate) ;
else
buildall():

Fragment 37: The buildDeltas method of o.e.jdt.internal.core.builder.JavaBuilder.

-50 -

public wvoid build() {
if (JawvaBuilder.DEBIT)
System. out.println ("FULL khuild™); //SHON-NLI-1§

try |
natifier.subTask(Hessages.bind[Hessages.build_cle&ningﬂutput, this. javabBuilder.
Javabuilder. removelProblemsAndTasksFor | javabBuilder . .currentProject) ;
cleanCutputFolders (true) ;
notifier.updateProgresshelta(0.05L)

notifier.SubTask(Hessages.build_analyzingﬂourcesj;
ArrayList sourceFiles = new LrravListi(33):
addillS3ourceFiles (sourceFiles) ;
notifier.updateProgresshelta(0.10£) ;

if (sourceFiles.size () > 0] {
SourceFile[] allZourceFiles = new ZourceFile[sourceFiles.sizel)]:
sourceFiles.tolrrayialliourceFiles) ;s

notifier.setProgresaPerCompilationlnit (0.75f / all3ourceFiles. length) ;
workQueus.addill (all3ourceFiles) ;
compile (all3ourceFiles) ;

if (this.typelLocatorsWichlUndefinedTypes '= null)
if (this.secondaryTypes !'= null £& 'this.secondaryTypes. isEmpty ()
rebuildTypeshffectedbBylecondaryTypes|() ;
if (this.increwmentalBuilder !'= nmll)

this.incrementalBuilder.builldifterBatchBuild() ;

if (jawvabBuilder.javaProject.hasCycleMarker ()]
javabuilder.mustPropagate3tructuralChanges () ;
} catch (CoreException e {
throw internalExceptionie);
+ £finally {
cleanUp ()2

}

Fragment 38: The build method of o.e.jdt.internal.core.builder.BatchImageBuilder.

-51-

jpublic boolean build(SimplelookupTable deltas) |
/4 initialize builder
/¢ walk this project's deltas, find changed source files
/¢ walk prereg projeccs' deltas, find changed class files & add affected source files
i use the build state # to skip the deltas for certain prereqg projects
I ignore changed zip/jar files since they caused a full build
/4 oowpile the source files & acceptResuln|
/¢ compare the produced class files against the existing ones on disk
/¢ recompile all dependent source files of any type with strustural changes or new/removed secondary
// keep a loop counter to abort & perform = full build

if (JavaBuilder.DEBUG
System. out.println|("INCREMENTALL build"™); //SNON-NLE-13

try {
resetCollections();

notifier.subTask(Messages. baild_ analvzingDeltas);

if [(javaBuilder.hasBuildpathErrorsi()] {
44 1f a mesing class file was detected in the last build, a build scace was saved Since ics
/¢ but we need to rebuild every source file since problems were not recorded
4/ MND to avoid the infinite build scenario if this project is involved in a cycle, see bug
/4 we need to avoid unnecessary deltas caused by doing a full build in this case
javaBuilder.currentProject.deleteMarkers |(IJavalode 1Marker. JAVA MODEL, PROBLEM MARKER, false,
addilliourceFiles (sourceFiles)
notifier.updateProgresshelta(0.25f) ;

} else {
IResourcelelta sourcelelta = (IResourcelelta) deltas.get(jsvaBuilder.currentProject);
if (sourceDelta !'= null)

if (!find3ourceFiles(sourcelelta)) return false:
notifier.updateProgresshelta(0.10£) ;

Chiject[] keyTable = deltas.keyTable:
Chject[] walueTable = deltas.valueTable;
for (int 1 = 0, 1 = valueTable.length: 1 < 1; i+4+) [

IResourcelelta delta = [(IResourcelelta) walueTsble[i]:

if (delta !'= nmll) ¢
IProject p = (IProject) keyTable[i]:
Classpathlocation[] classFoldersindJars = (Classpathlocation[]) javaBuilder.binaryLo
if (classFoldersinddars !'= null)

if (!findAffectedlourceFiles(delta, classFoldersindJars, p)) return false:

}
notifier.updateProgresshelta(0.10£) ;

notifier.subTask[Hessages.build_analyzingsaurces]
addiffected3ourceFiles();
notifier.updateProgresshelta(0.05E) ;

this.compilelLoop = 0;
float increment = 0.40f;
while [gourceFiles.size() » 0) { // added to in acceptResuln
if (++this.compileloop > MexCompileLoop)
if (JawvaBuilder.DEBUG)
System. out.println("ABORTING incremental build... exceeded loop count™); //§NCH-NLS-
return false:
}

notifier.checkCancel() :

SourceFile[] allSourceFiles = new JourceFile[sourceFiles.size()]:
gourceFiles.tolrray(allSourceFiles);
resetlollections |} ;

workQueue.addhll (all3ourceFiles)
notifier.setProgressPerCompilationUnit (increment / all3ourceFiles. length);
increwent = increment / 2:
compile (all3ourceFiles) ;
removeSecondaryTypesi) ;
addiffectedSourceFiles() ;
H
if (this.hasStructuralChanges && javaBuilder. javaProject.hasCyclelMarkeri))
javaBuilder.wustPropagate3tructuralChanges () ;
} ecatch (AbortIncrementalBuildException g) {
/4 ashort the incremental build and let the batch builder handle the problem
if (JawvaBuilder.DEBIT)
Fystem, ont.princln ("ABORTING incremental build... problem with "™ + e.qualifiedTypeName + /7§
", Likely renamed inside its existing source file.™); //§MNON-NL3-1%
return false:
+ catch (CoreException e) {
throw internalExceptionie):
} finmally {
cleanlUp ()
+
return true;

Fragment 39: The build method of
o.e.jdt.internal.core.builder.IncrementallmageBuilder.

-52 -

Hif

i

/% Compile the given elements, adding more elements to the work gqueus
* if they are affected by the chahges.

[protected woid compile(SourceFile[] units) |

if (this.filesWithinnotations !'= mall && this.filesWithinnotations.elewmentiize > 0O)
S4 will add files that hawve annotations in acceptResult|] & then processinnotations() hef
this.filesWithinnotations.clear (),

/¢ notify CompilationParticipants which source files are about to he cowmpiled

EuildContext[] participantFesults = this.javabuilder.participants == null ? null : notifyPart
if (participantResults !'= null && participantBesults.length > units. length)] {
units = new SourceFile[participantResults. length] !
for (int i = participantBEesults.length; --i >= 0;)
units[i] = participantBResults[i] .sourceFile;

int unitslLength = units.length;
this.compiledillitOnce = unitslength <= MAX AT ONCE;
if (this.compiledillitOnce)
/¢ do them all now
if (JawvaBuillder.DESNGT)
for (int i = 0; i < unitsLength; i++)
System.ocut.println("ibout to compile " 4+ units[i] .typelocator()): //SWNON-ILI-1%
compile (units, null, true):
} else {
SGourceFile[] remainingUnits = new JourceFile[unitslength]: // copy of units, removing uni
System. arravcopyiunits, 0, remainingUnits, 0, unitsLength):
int doMNow = unitsLength « MAY AT ONCE ? unitsLength : MAX AT ONCE;
SourceFile[] toCompile = new SourceFile[doNow] ;
int remainingIndex = 0
hoolean compilingFirscGroup = true:;
while (remaininglndex < unitsLength) |
int count = 0;
while (remaininglIndex < unitsLength && count < dolow)] {
S Llthough it needed compiling when thi= method was called, it may have
J¢ already heen compiled when it was referenced by another unit.
SourceFile unit = rewmaininglnits[remaininglIndex]:;

if (unit !'= null £& (compilingFirstGroup || this.workQueue.isWaiting(unit)))] 1
if (Javabuilder ., DESUSE)
System.out.printlniTAbout to cowpile #" + remainingIndex + ™ @ "+ unit.ty
toCompile[count++] = unit;
i
remainingUnits[remainingIndex++] = null:

b
if (count < dolow)
3ystem. grraycopyitoCompile, O, toCompile = new SourceFile[count], 0, count):

if (!'comwmpilingFirstcGroup)
for (int =& = remaininglndex; a < unitslength; =s++)
if i(remainingUnits[a] '= null &% this.workQueue.isCompiled(remainingUnics[a])
remainingUnits[a] = null; // use the class file for this source file sine

cowpile(toComwpile, remaininglnits, compilingFirstGroup):
cowpilingFirstGroup = false:

if (participantResults '= null) {
for (int i = participantResults.length; --i »>= 0;
if (participantResults[i] '= null)

recordParticipantResult (participantResulta[i]):

processinnotations (participantResults)

Fragment 40: The first compile method of
o.e.jdt.internal.core.builder.AbstractimageBuilder.

-53-

hrotected void compile(3ourceFile[] units, 3ourceFile[] additionallUnits, boolean compilingFirstGroup) {
if (units.length == 0) return;
notifier.aboutToCompile (units[0]);: // just to change the message

/¢ extend additionalFilenames with all hierarchical problem types found during this entire build

if (!'problemSourceFiles.isEmptyi()) {
int toldd = problemSourceFiles.size():
int length = additionallUnits == null ? 0 : additionallUnits. length;

if (length == 0)
additionallUnits = new SourceFile[toldd]:
else
System. arravcopyiadditionallUnits, 0, additionallUnits = new SourceFile[length + tokdd], O, length);
for (int i = 0; i < tolddd:; i++)
additionalUnits[length + i] = (SourceFile) problem3ourceFiles.get(i);
i
String[] initialTypeNames = new String[units.length]:
for (int i = 0, 1 = units.length; i < 1; i++)
initialTypelNames[i] = units[i] .initialTypelame:
nameEnvironment . setNames (initialTypelames, additionallUnits)
notifier.checkCancel() !
try {
inCompiler = true;
compiler.compile junits) ;
+ catch (ALbhortCompilation ignored) |
/¢ ignore the AbortCompilcation coming from BuildMNotifier.checkCancelWithinCompiler ()
/¢ the Compiler failed after the user has chose to cancel... likely due to an CutOfMemory error
} finally |
inCompiler = false;
i
/f Check for cancel immwediately after a compile, hecsuse the compiler may
/¢ have been cancelled but without propagating the correct exception
notifier.checkCancel() ;

¥

Fragment 41: Fragment 40: The second compile method of
o.e.jdt.internal.core.builder.AbstractImageBuilder.

_54 -

,u"l**
* General API
* —» compile each of supplied files
* —» recompile any reguired types for which we have an incomplete principle structure
i
public void cowpile(ICowpilationUnitc[] sourcelUnits) |
CowpilationUnitDeclaration unit = null;
int i = 0O;
try {
// build and record parsed units

beginToCowpile (sourcelUnitcs) ;

/¢ process all units (some more could be injected in the loop by the lookup environment)
for (; i < this.totallUnits; i++) |
unit = unitsToProcess[i]:
try |
if [(options.werbose)
thig.out.println|
Messages. bind(Messages. compilation process,
new Stringl[]
String.raluedf(i + 1),
String.ralueldf(this.totallnits) ,
new Jtring(unitsToProcess[i] .getFilelame ()]
Ph):
process (unic, 1i1;
} finally
J// cleanup compilation unit result
unit.cleanUp ()

i
unitsToProces=s[1i] = null; // release reference to processed unit declaration

regquestor.acceptResultc (unit.compilationResult . caghsiccepted()) ;
if [(options.wverhose)
this.out.printlni
Messages. bind (Messages. compilation done,
new String[] |
tring.valuedfii + 1),
String. valueOf (this.totallnits)
new String(uhit.gecFilelame())
Y
H
+ catch [(ibortCompilation e) |
thig.handleInternalExceptionie, unit);
+ catch (Error e) |
thig.handleInternalException(e, unit, null);
throw e; // rethrow
+ catch [(PuntimeException =) ¢
this.handleInternalExceptionie, unit, null);
throw e; // rethrow
b} finally {
this.reset () ;
b
if (options.wverboze] |
if (this.totalUnits > 1) |
this.out.printlni

Messages. bind (Messages. compilation uniés, String.valuelfithis.totallinits))):
} else {
this.out.printlnf
Messages. bind (Messages. compilation unié, String.walweOf(this.totallnits))):

i

Fragment 42: The compile method of o.e.jdt.internal.compiler.Compiler.

-55-

protected void startup(IProgressMonitor monitor) throws CoreException

44 ensure the tree is locked during the startup notification

try
_workManager = new WorkManager (this);
_workManager.startup inull) ;
filedystemManager = new File3ystemPesourcelanager (this) ;
filedystemlanagyer.startup (lwohitor) ;
pathWariahleManager = new FPathVariableManager () !
pathWariahleManager.startup (nall) ;
natureManager = new NatureManager();
natureManager.startup (null) ;
buildManager = new BuildManager (this, getWorkManager().getLockil]:
buildManager.startup (null) ;
notificationManager = new NotificationManager (this) !
notificationManager.startup (nall) ;
markerManager = new MarkerManager (this):
markerManager.startup (null) ;
synchronizer = new Synchronizer (this);
refreshManager = new RefreshManager (this):
savellahager = new Savelanager (this) !
savelahager .. stcartup (null) ;
fimust start after save manager, hecause (read)] access to tree is needed
refreshManager.startup (nall) ;
aliasManager = new AliasManager (this);
aliasManager.startup (null) ;
propertyManager = ResourcesCompatibilityHelper.createPropertvManager():
propercyManager.startup (mohicor)
charsetManager = new CharsetManager (this) :
charsetManager.startup (nmall) ;
contentlescriptionManager = new ContentDescriptionManager() !
contentDescriptionManager .. startup (null) ;

y finally |
Sfunlock tree even in case of failure, otherwize shutdown will also fail
treelocked = null:;

}

Fragment 43: The o.e.core.internal.resources.Workspace’s startup method calls
each manager’s constructor.

ublic abstract class InternalBuilder {
private static BuildManager buildManager = [(Workspace) ResourcesPlugin. getWorkspace()).getBuildManager () :

Fragment 44: When o.e.core.internal.events.InternalBuilder wants a BuildManager,
it does not call the BuildManager’s constructor, but instead gets the Workspace’s
BuildManager.

-56 -

private void basicBuild(final IProject project, final int trigger, final Multi3tatus status, finall

if [!project.islccessible|))

return;
final ICoktand[] comeands = [(Project) project).internalGetDescription() .getBuildipec (false)
if [(commands. length == 0)

return;

IZafeRunnable code = new ISafeRunnable(] {
public void handleException|(Throwable e) {
if (e instanceof OperationCanceledException)
throw [(OperationCanceledException) e
J/ don't log the exception....it is already being logged in Workspacefirun
44 should never get here because the lower-level huild code wrappers
£/ builder exceptions in core exceptions if required.
String message = e.getMessage () !
if (wessage == null)
message = NLS.bind(Hessages.eveﬂts_unk&ouﬂ, e.getClass() .getNawe () , project.getliang
status.add (new Itatus (IStatus. WARNING, ResourcesPlugin.PX RESOURCELZ, IResourceltatus.]

public void run() throws Exception {
hasicBuildiproject, trigoger, comnands, status, wonitor) !

b
SafePunner. runcode) ;
K

Fragment 45: The o.e.core.internal.events.BuildManager contains an
implementation of the o.e.core.runtime.ISafeRunnable interface as an anonymous
class in its third basicBuild method.

* Creates and returns an Arraylist of BuilderPersistentInfo.

% The: Iist Adincludes, entries: for /all builders. that are

* in the huilder spec, and that hawve s last built. state, even if thew
* hawve not been instantiated this session.

public Arraylist createBuildersPersistentInfo (IProject project) throws CoreException {

Fragment 46: The createBuildersPersistentInfo method in
o.e.core.internal.events.BuildManager throws a CoreException, as seen in its
header.

-57 -

f’**
* Collects the set of ElementTrees we are still interested in,
* and removes references to any other trees.
£
protected void collapseTrees|(] throws CoreException
/foollect trees we're interested in

fitrees for plugin saved states

hrrayList trees = new ArrayListi):

for [(Iterator i = saved3tates.wvalues|().iterator(): i.hasMNexti();)] {
SavedState state = [Saved3tate) i.nexti():
if (state.oldTree !'= null) {

trees.add (state.oldTree) ;

fftrees for builders
IProject[] projects = workspace.getRoot () .getProjectsi):
for (int i = 0; 1 < projects.length; i++) {

IProject project = projects[i]:

if (project.isCpeni)) {
ArrayList builderInfos = workspace.getBuildManager () .createBuildersPers
if (builderInfos '= muall)] {
for [(Iterator it = builderInfos.iterator(); it.hasNexti():] {
BuilderPersistentInfo info = [(BuilderPersistentInfo)] it.nexti():;

trees.add(info.getlastBuiltTree|)) :

fino need to collapse if there are no trees at this point
if (trees.isEmptv (]}
return;

fithe complete tree
trees.add (wvorkspace.getElementTree ()] :

fifcollapse the trees
fisort trees in topological order, and set the parent of esach
fitree to its parent in the topological ordering.
ElementTree[] treeldrray = new ElementTree[trees.size(]]:
trees.tolArray(treeldrray) :
ElementTree[] sorted = sortTrees (treelrray) ;
ff dif there was a problem sorting the tree, bhail on trying to collapse.
4 We will be able to GC the layers at a later time.
if (sorted == null)
return;
for (int i = 1: i < sorted.length: i++]
sorted[i] .collapseTo(sorted[i - 1]):
*

Fragment 47: The createBuildersPersistentInfo is called by the collapseTrees
method in o.e.core.internal.resources.SaveManager.

-58 -

public IStatus save (int kind, Project project, IProgressMonitor wohnitor) throws CoreException |
monitor = Folicy.monitorFor(monitor);

try {
isSaving = true;
3tring mwessage = Hessages.resourceq_saviﬂq_ﬂ;
monitor.beginTask (wessage, 71:;
message = MNessages.resources savelarnings:
MultiStatus warnings = new MultiZtatus (ResourcesFlugin.PI RESOURCES, I3tatus.WARNING, m
ISchedulingRule rule = project '= null ? [(IFResource) project @ workspace.getRoot():
try |

workspace.preparedperationirule, monitor):
workspace.beginOperation(false) ;
hook3tcarclave (kind, project):
long Start = 3ystewm. currentTimeMillis():
Map contexts = computelaveContexts (getlaveParticipantPlugins (), kind, project):;
broadeastlifecyole (PREDARE TO SAVE, conRtexts, warnings, Policy.subMoxnitorFor (monito
try {
broadecastLifecycle (SAVING, contexXts, warnhings, Policy.subMonitorFor(monitor, 1)
switch (kind) {
case IZaveContext.FULL SAVE

LT UIIUoTL L L LT
removellnusedSafeTabhles () ;
removellnusedTreeFiles () ;
workspace.getFiledystenmManager () .getHistoryStore () .clean(Folicy. subMonitc
ff write out all metainfo (e.g., workspace/project descriptions)
gaveMetalnfo (warnings, FPolicy.subMonitorFor (monitor, 1)) :
break:
case ISaveContext.SNAPSHOT
anapTree (workapace.getElementTree (), Folicy.subMonitorFor (monitor, 1)1):
// snapshot the markers and syne info for the workspace
persistMarkers = 01;
persisti3ynclInfo = 01;
wizithndInap (wvorkspace.getRoot (1]
monitor.worked (1) :
if (Policy.DEBUG SAVE)] |
Policy.debug("Total Snap Markers: " + persistMarkerzs + "ws"): 7/ SNON-
Folicyv.debug("Total 3nap Svnc Info: "™ + persisct3vnocInfo + "ms™): /750
¥
collapseTrees () 2
clearSavedbeltal) ;
Jf write out all metainfo (e.qg., workspace/project descriptions)
zaveMetalnfo (warning=s, FPolicy.subMonitorFor (monitor, 1)):
break:;

-59 -

break:
}
/{ smve contexts
commit (contexts)
if (kind == I3aveContext.FULL ZAVE)
removeClearbeltalarks () ;
Sfthiz pust be done after committing save contexts to update participant save n

savelasterTable (1 ;
broadecastLifecycle (DONE SAVING, conteXts, warnings, Policy.subMopitorFor(monitoy
hookEnd3ave (kind, project, start):
return warnings;

t catch (CoreException e} {
broadecastLifecyele (ROLLBACK, contexts, warnings, Policy.subMonitorFor(monitor,

f4 rollhack ResourcesFlugin master table
restoreMasterTable () ;
throw =; // re-throw

1

}
} catch [(OperationCanceledException =) !
workspace.getWorkManager () .operationCanceled() ;
throw e;
¥ finally
workspace.endOperation(rule, false, Policy.monitorForinull)):;
i
} finally |
isfaving = false:
mohitor.done (] ;

F

Fragment 48: The save method of o.e.core.internal.resources.SaveManager has a
“throws” clause also, but it has the call to collapseTrees in a try statement and the
CoreException is caught in a catch statement afterwards.

-60 -

