
Dave Pletcher

EE564 – Midterm Paper

Design of the JavaEditor Class Hierarchy

In this paper, I will discuss the architecture of the Eclipse Platform’s JavaEditor

class in Eclipse Platform v3.2 and mention the roles of some of the more fundamental

classes and interfaces that operate in JavaEditor’s context. The total number of such

types isn’t small, and I found it would be impossible to do a thorough design analysis on

such a complicated class in only a few weeks. So, I will attempt to only refer to the most

fundamental types and their relationships amongst each other in the context of JavaEditor

throughout most of the paper.

The classes and interfaces that JavaEditor inherits from are mostly scattered

amongst three plug-ins: the UI part classes/interfaces are defined in org.eclipse.ui, the

editor-specific classes/interfaces for generic text editors are found in

org.eclipse.ui.texteditor, and JavaEditor (and its two concrete children subclasses) are

found in org.eclipse.jdt.internal.ui.javaeditor (which is part of the JDT plug-in). The

concrete subclasses are in a package marked internal to discourage clients from

attempting to create a new instance directly. The workbench has some sort of editor

registry in which JavaEditor should be registered as the associated handler for java

source/class files. This way, the workbench will instantiate the editor class and client

code will never be forced to directly interact with it. To understand how the JavaEditor

class works, we need to take at least a brief look at each class and interface in its super-

type hierarchy (Figure 1 in the appendix).

As specified by org.core.eclipse.runtime.IAdaptable, an instance of JavaEditor is

adaptable: that is, we can use it to supply and if necessary produce, instances of objects

that have been adapted to be compatible with a given class type. I’ll restrict my

comments on org.core.eclipse.runtime.IExecutableExtension to saying that this means

JavaEditor is a plug-in (that automatically executes its own initialization code I think) to

an extension point on another plug-in within Eclipse. The interface

org.eclipse.ui.IWorkbenchPart specifies a way for clients to access the Workbench,

register PropertyListeners, and control the lifecycle of the part. Then, its child interface,

org.eclipse.ui.IWorkbenchPart2 was added in Eclipse v3.0 to provide a way to retrieve

the part name and description. The class

org.eclipse.core.commands.common.EventManager was added near the base of the

subtype hierarchy in v3.2. It manages a list of generic Listener objects. I’m not certain

of the purpose of this class considering how many specialized Listener classes exist in

our context. The interface org.eclipse.ui.part.IWorkbenchPartOrientation provides a way

to retrieve the part’s visual orientation.

The class org.eclipse.ui.part.WorkbenchPart, ties together all the classes and

interfaces described so far, but provides mostly default implementations. However, this

is the first functionality we’ve seen implemented (aside from the overly-trivial

EventManager class), and at a glance, appears to provide the kind of functionality you

would expect from an abstract workbench part. Examples include a way to fire a

property-changed event. Also, the implementation of the getAdapter() method queries

the platform’s adapter manager when a client has requested an adapter, or more likely

because the original call was on a WorkbenchPart subclass that (along with any other

WorkbenchPart subclass in the chain) was unable to supply the requested adapter.

The interface org.eclipse.ui.ISaveablePart is implemented or adapted to by a

workbench part that we want to provide implementations of the save and “save as”

operations. The interface org.eclipse.ui.IEditorPart inherits from IWorkbenchPart and

ISaveablePart and specifies methods to retrieve the IEditorInput and the IEditorSite, as

well as initialize a new editor with a provided IEditorInput and IEditorSite.

The class org.eclipse.ui.part.EditorPart is similar to WorkbenchPart in that it is an

abstract class providing mainly default functionality. It inherits from WorkbenchPart and

IEditorPart, provides a mechanism for ensuring backward compatibility for clients of the

setTitle() method, which was replaced with the methods specified in IWorkbenchPart2.

The interface org.eclipse.ui.INavigationLocationProvider is implemented by

editor instantiations that add to the workbench’s navigation history. The interface

org.eclipse.ui.IReusableEditor inherits from org.eclipse.ui.IEditorPart and specifies a

method to change an editor’s IEditorInput at runtime.

To properly discuss the interface org.eclipse.ui.texteditor.ITextEditor, we must

also examine some other interfaces it interacts with. It is specified here that it is intended

that a text editor obtain the textual representation of documents via an

org.eclipse.ui.texteditor.IDocumentProvider, so we’ll have to devote a moment to that

interface. The IDocumentProvider specification defines the following context: a domain

model (like a workspace or CVS repository’s file system structure), as well as domain

model elements (generally resources like files and folders). It then lays out the method

signatures for the functionality that can be used to map between domain model elements

(resources) and the data they actually contain. It also provides an annotation model for

the editor as well as the ability to listen for element state changes (i.e. changes in the

availability of resources). So when we see that ITextEditor specifies a

getDocumentProvider() method, we can assume that text editor instances aggregate a

document provider instance that can be accessed by subclasses. A similar situation exists

in how it handles selections: a method is provided to retrieve the editor’s selection

provider, so that subclasses or clients can listen for selections and access them when

needed. In addition, the foundations for range highlighting and getting / setting actions

(strategies for responding to specific user input) are specified in this text editor interface.

It is stated (in the interface specification) that to provide backward compatibility

for clients of text editor, extension interfaces are used to enhance the interface. This

makes perfect sense to me since we can’t change the text editor’s specification without

breaking existing code. What confuses me is that none of ITextEditor’s extension

interfaces actually extend ITextEditor. It seems only natural to me that they would, and I

can’t think of a scenario in which that would break anything. For now, I’ll assume this is

done so editors have the option of delegating the responsibilities specified in the

extension interfaces to completely different objects. In any case, the text editor interface

has 4 extension interfaces (also in package org.eclipse.ui.texteditor) that specify the

following features. ITextEditorExtension specifies: configuration of status fields, check

for read-only state, listen for ruler context menu events. ITextEditorExtension2 specifies

a way to ensure the editor’s input is in a persistently modifiable state as well as validate

the state of the editor’s input. ITextEditorExtension3 specifies that the editor will

implement insert mode management. ITextEditorExtension4 specifies a way to navigate

through the editor’s annotations and to display revision information for the document.

The class org.eclipse.ui.texteditor.AbstractTextEditor inherits from EditorPart and

all the interfaces we have discussed this far. Although this class is fairly lean, it provides

default implementations of lots of listeners and actions that subclasses and clients can use

or override, and it composes an org.eclipse.jface.text.source.SourceViewer, which is used

to separate the responsibility of the actual handling of SWT widgets from the editor

classes. It’s hard to focus in on exactly what is provided in this class. I’m hoping it will

suffice to say that everything you would expect to be implemented at this point in the

hierarchy seems to be here, or has foundations here. Sometimes the justification used for

how much of a foundation was laid for the development of subclass features with

arguable commonality is questionable, but for now I will defer this discussion until the

critique section.

The class org.eclipse.ui.texteditor.StatusTextEditor inherits only from

AbstractTextEditor, and adds very little compared to its children classes. It seems to

have been created as an alternative to popping up dialog boxes to alert users of a relevant

document status. If the status of the document is not ok (i.e. doesn’t exist in the file-

system, or read-only), a status message (and in subclasses, potentially, a means (swt

controls) to take action) are displayed in the area you would expect to see the editor

widgets. The only other noteworthy bit of information on this class is that it is not

abstract.

However, the next class down in the hierarchy,

org.eclipse.ui.texteditor.AbstractDecoratedTextEditor is abstract. This class provides

some of the decorative functionality you would expect to see in a good editor,

particularly features that a source code editor would use. Whether some functionality

found further down in the tree could be moved here is arguable. This will be discussed in

the critique and will be fairly speculative due to time constraints. Regardless, some

features partially or wholly implemented here include line numbers, change and overview

rulers, current line highlighting, and print margins. Generally speaking, I would say this

class provides complete implementations for a few features, and a few medium-sized

building blocks to allow for customization of additional functionality in subclasses. This

is opposed to AbstractTextEditor, which basically just provides a lot of smaller building

blocks that cover a broader range of overall functionality.

There is one last interface we must quickly mention before we can talk about the

JavaEditor itself, and that is

org.eclipse.jdt.internal.ui.viewsupport.IViewPartInputProvider. Its javadoc description

basically states that this interface is common to all view parts that provide an input.

JavaEditor’s implementation returns an adapter to the editor input that conforms to the

IJavaElement interface. I didn’t absorb all the implications of this, and feel there isn’t

enough time to research a more precise description.

Well, we can finally talk about the class JavaEditor now, which is part of the JDT

plug-in, and in package org.eclipse.jdt.internal.ui.javaeditor. Unfortunately, we’ve kind

of reached an anti-climax here: although JavaEditor provides all the functionality you

would find common to Java source editors, it’s not a concrete class! It has two

subclasses: ClassFileEditor and CompilationUnitEditor, which are both concrete, but

we’ll have to talk about JavaEditor first. It contains a variety of public inner classes that

implement assorted IActions and Listeners for use by clients and/or subclasses. Here, we

see code folding at least partially implemented. This requires the use of a

ProjectionViewer, which is an ISourceViewer that can be customized to project only

certain partitions of the document onto the view part. Other parts of this context include

an IJavaFoldingStructureProvider, which is intended to listen for projection events

generated by the viewer and then change the projection structure accordingly, and a

ProjectionSupport object that seems to tie everything together. It is arguable whether the

foundations for generic projection support could have been provided in

AbstractDecoratedTextEditor, and then customized appropriately for each subclass’s

source code type, but this will be discussed later. Other features that we see must be at

least partially implemented here include semantic highlighting, support for marking

various program constructs if desired, an outline page to summarize fields/methods for

the class we are currently editing, occurrence annotations, and much more that I must

omit for the sake of brevity.

Now, to wrap up this section, we’ll quickly discuss JavaEditor’s two concrete

subclasses. ClassFileEditor seems to be used to edit Java class files which contain the

source code as well as byte code. If source code is not attached, a source attachment

form is created. This allows the user the option of attaching the corresponding source to

this class file. However, when I try to open a random Java class file using the editor, I

get an internal error complaining that the editor cannot handle the input, so I must be

missing part of the picture here. The class CompilationUnitEditor is a little more

involved as it is generally used more often than ClassFileEditor, and is probably the

editor you actually see when developing Java source code within Eclipse. One thing I see

implemented here is an inner class that automatically adds the closing bracket right after

you (as the user) type an opening bracket. There is also support for tab conversions, and

reconciliation.

This is far from a complete picture of how the JavaEditor works, but I’ve

attempted to include the basics and to provide a general idea of how features are

implemented. In the next section, we’ll take a quick look at the evolution of these classes

and interfaces between Eclipse versions 1.0 – 2.0, and then 2.0 – 3.2.

Evolution of the JavaEditor Type Hierarchy

To analyze the evolution of the JavaEditor component as Eclipse itself matured,

we will begin by looking at v1.0. At this time, JavaEditor’s super-type hierarchy (see

Fig.1) was considerably less bulky as many of the features we now take for granted did

not yet exist or were designed differently. In all, I counted four interfaces in JavaEditor’s

super-type hierarchy that remained unchanged from v1.0 to v3.2: IAdaptable,

IWorkbenchPart, IExecutableExtension, and ITextEditor. Everything else was either

added or changed sometime after v1.0. We can see that JavaEditor descends directly

from AbstractTextEditor and ISelectionChangedListener. Features that seem to be

missing include text folding, semantic highlighting, change and overview rulers,

encoding support, and quickdiff support. The total number of lines of code in

JavaEditor’s super-type hierarchy in v1.0 is approximately 3.2kLOC (includes

comments/white space), and there are of course many more lines of code in various

classes and interfaces that are used in the context of our editor.

By Eclipse Platform v2.0, the number of lines of code in JavaEditor and its

ancestry is roughly 5.6kLOC. Notable changes in this version since v1.0 include addition

of interface ITextEditorExtension, which specifies support for status fields, editor input

status, and ruler context listeners. The experimental interface IReusableEditor was

created, and allows the workbench to change the editor’s input dynamically. I couldn’t

figure out why EditorPart seemingly preemptively declared the same “void

setInput(IEditorInput)” method specified in IReusableEditor, but because the interface

was initially experimental, this makes sense. AbstractTextEditor was nearly doubled in

size, but still provides mostly default implementations for many of the methods specified

by its super-types. It does provide support for new types of IActions and Listeners. The

class StatusTextEditor is also an addition since v1.0. It displays editor status messages in

the editor instead of in a dialog, and remains virtually unchanged as of v3.2. JavaEditor

was enhanced with encoding support and line numbers, and now aggregates an

ISelectionChangedListener instead of inheriting from it.

Presently, with the Eclipse Platform at v3.2._, we are at about 13.6kLOC. The

functionality associated with the save-ability of a workspace part has been separated into

interface ISaveablePart. Another change is that IWorkbenchPart has essentially been

replaced with IWorkbenchPart2, which extends IWorkbenchPart. IWorkbenchPart2

provides part name and part content description to clients and/or subclasses. Also, the

class org.eclipse.core.commands.common.EventManager was added near the root of the

sub-type hierarchy (between Object and WorkbenchPart). This class is used to manage a

list of generic listeners, so no notification mechanism is explicitly defined. I believe, that

within the context of the editor, this class is used exclusively by WorkbenchPart to notify

property listeners of property changes. WorkbenchPart had this functionality in v2.0, but

it wasn’t inherited like it is now. Upon closer inspection, I see that it notifies

IPropertyListeners of property changes, but then AbstractTextEditor composes a

PropertyChangeListener that it uses to observer its preferences store.

One common theme that seemed to gain in popularity in our context as the

Eclipse platform evolved is the use of ArrayLists of “something”-dependent IActions,

whose elements’ update methods are called by the editor in response to a “something”-

changed event. This allows AbstractTextEditor to update the action’s availability due to

a recent change of state (usually signaled by the capture of some type of event). I

originally thought this was used to effectively replace listeners in certain situations by

grouping related strategies for event handling, but these features don’t seem to be used in

that manner.

Three more extension interfaces for ITextEditor emerged at some point since

v2.0. They were discussed in the first section. However, I’d like to speculate that

perhaps this functionality was singled out into interfaces as a way for subclasses/clients

to determine which features are present in an ITextEditor, without using some other kind

of introspection. I also must be honest and admit that I didn’t have time to make sure the

functionality defined in the above mentioned extension interfaces wasn’t specified or

perhaps just implemented elsewhere in previous Eclipse versions.

According to its source code,

org.eclipse.ui.texteditor.AbstractDecoratedTextEditor was added to the hierarchy in v3.0.

I believe its existence is justified because it captures for reuse at least the foundations of

some of the more common features found in heavy-weight editors. The interface

org.eclipse.jdt.internal.ui.viewsupport.IViewPartInputProvider is fairly confusing, and

quickly looking where it’s used, seems to support a utility method that inspects a

structured selection to find an instance of IJavaElement.

The size of the JavaEditor source file more than quadrupled since v2.0, going

from ~820 to ~3840 LOC. A lot of this has to do with new responsibilities laid upon it

by its altered ancestry. There are lots of additional classes and interfaces now that are

used exclusively by JavaEditor to provide its new features. One thing I just quickly

looked at is semantic highlighting. I don’t have an exact understanding of how it works,

but there are several classes (new as of v3.0), internal to the JDT plug-in, that are used to

support semantic highlighting. The class that installs itself onto JavaEditor and its

Viewer is called SemanticHighlightingManager, and it composes a

SemanticHighlightingPresenter and a SemanticHighlightingReconciler which work

together. I think it’s possible that the reconciler determines how to decorate the editor

when the text in its document changes and the presenter does the actual decorating.

JavaEditor now contains quite a few non-private inner classes, mostly for listeners

and actions that are specific to a JavaEditor. These are usually appropriately configured

by subclasses. It often seems that when one looks to find the meat of a significant

feature, it’s usually another object altogether that’s installed on the viewer and whatever

else is involved in the context of the feature. One class like this that I happened to notice

is SourceViewerDecorationSupport (v2.1). It observes a preference store for changes,

and acts on those changes by activating/deactivating features like matching character

highlighting, current line highlighting, print margins, and annotations.

The information provided in this section is far from complete, but I tried to give a

feel for not just how much the overall structure has changed, but how much more

complicated things got as a result of trying to manage the inevitable complexities of the

java editor.

Evolution of the Editor / Overview Interaction

In this section I will try to concisely describe the notification mechanisms that are

used to update the selection in the editor when a user clicks on a java element in the

outline page. In light of the complexity inevitably encountered when doing code traces

involving such large components, I have decided to let class-interaction diagrams explain

the finer details. They are included in the appendix.

Within Eclipse v1.0 (see Fig. 4), the JavaEditor listens to its aggregated

JavaOutlinePage for selection-changed events. The JavaOutlinePage is itself propagating

selection-change events that it receives from its JavaOutlineViewer. It uses the inherited

method getSelectionChangedListener() to listen to its source viewer, but this is for the

purpose of updating the available actions (copy, cut, paste) based on the new selection.

Although the response functionality seems to be there, the outline does not react to

selection changes in the editor until sometime after v1.0 I think, but the archived version

of Eclipse platform v1.0 has a broken eclipse.exe, so I can’t be 100% sure. I’ve learned

that the outline does react to selection changes in the type hierarchy’s method view, but

only because the type hierarchy delegates an object to listen to it, which then sets the

proper selection in the editor outline via JavaEditor, via EditorUtility.

The interaction in v2.0 is different because functionality has been added to update

the outline (but not the type hierarchy method view) based on the cursor position within

the editor (see Fig. 5). Instead of listening for selection changes on the outline page

itself, JavaEditor delegates this duty to an inner SelectionChangedListener class. Again

I’m seeing functionality that can be used to set the selection in the outline page, but just

like with v1.0, for our purposes, selection changes generated by the editor seem to be

ignored. It is the cursor position that dictates the editor overview’s selection.

In v3.2, the interaction is of roughly the same complexity as v2.0, but the logic is

organized more sensibly (see Fig. 6). The editor overview’s selection is still

synchronized with the selection in the editor, but the means to achieve this are different.

Although we continue to use cursor-listening as a strategy for listening for selections in

our source viewer, this functionality is wrapped up in a IPostSelectionProvider many

super-classes up, and all JavaEditor needs from the viewer (for our current purpose) is

IPostSelectionProvider ancestry. Note that in all versions, the JavaEditor must

temporarily uninstall itself as a listener from the outline page when programmatically

setting the outline’s selection.

Design Critique

To me, the java editor’s design initially seemed somewhat overcomplicated.

However, the more I studied it I saw that the design was carefully crafted for reuse.

When objects were coupled together in a seemingly unintuitive fashion, closer inspection

usually showed this was done to loosen their coupling without losing an accurate

representation of the context. For instance, the reasons a text editor is configured with a

document provider instead of a document are varied. It promotes editor reusability (one

editor can display multiple documents), and it separates responsibility: the document

provider is responsible for actually reading the data from the resource and providing it to

the editor in a unified format (org.eclipse.jface.text.IDocument). This is an example of

loose coupling in that it allows for flexibility regarding the origin of our document’s data.

The use of EventManager functionality by WorkbenchPart (v3.2) to notify

property listeners of property changes seems to me an arbitrary choice of implementation

for that particular listener type. Given how widely this class is used in other classes that

provide only one event type (and therefore notify only one type of listener), I suppose it

makes sense to reuse this functionality in the most appropriate place (as close to the root

of the sub-type hierarchy as possible and in a class that supports only one kind of

listener).

The use of the Editor, Viewer, and Page hierarchies to separate responsibilities

within the editor seems like a natural design choice. The viewer composes the text

widget that displays the document, and provides functionality related to this purpose to

the editor. The Editor and Page objects compose a viewer and provide extra functionality

related to an editor (like rulers, annotations and highlighting), and to a Page (possibly

display some kind of structure, like a tree, to assist in the viewing of structured data)

respectively.

Now, in v3.2, the location of most features within the editor’s super-type

hierarchy seem reasonable, given the course of the design’s evolution. One feature that

seems to be completely implemented in the context of JavaEditor and possibly its

subclasses is code folding. I believe that the super-structure for such a feature could have

been specified in a less evolved class in such a way that could have prevented duplication

of code in JavaEditor and any other plug-in that provides code folding for java editor or

any other source editor. Projection support within the viewer hierarchy occurs in a

descendant of SourceViewer called ProjectionViewer, but wouldn’t mainly source

viewers desire it? Why not specify out the language-specific functionality in an interface

such that with the aid of a third (and possibly more) helper class, all the interface

implementer needs to provide is a means to determine what kind of code structures are

foldable and whatever other language-specific issues I can’t presently think of. The

helper class(es) would provide the remaining functionality and yet be completely

customizable. Since the feature did not yet exist prior to v3.0, backward compatibility

shouldn’t have been an issue, but doing it this way would have required the author(s)

(who was working on the JDT plug-in) to have submitted a significant portion of code to

the org.eclipse.ui.texteditor plug-in. However, there are definitely features that logically

belong elsewhere in the hierarchy except that this would destroy backward compatibility.

The semantic highlighting manager could have been designed to be abstract and couple

together an abstract text editor and source viewer. Then the JDT developers would have

extended it into a java-specific, concrete, semantic highlighting manager whose only new

functionality would map certain language-specific keywords to an object that describes

the highlighting details for that keyword. Even the outline page could have conceivably

been partially implemented for all source editors (probably in

AbstractDecoratedTextEditor), as long as a feature is included to deactivate it when

appropriate. Unfortunately, one of the drawbacks to creating a reusable platform such as

Eclipse is that dependent code can get broken in a hurry if the issue of backward

compatibility is ignored.

 In my opinion, the editor / overview interaction is an example of a feature that

evolved nicely. In v1.0, even though all the current functionality doesn’t appear to be

there, it’s still a reasonable design. In v2.0, I think the functionality is essentially the

same as in v3.2 (updates to the outline from the editor are toggled off by default), but the

logic used to achieve it seems more convoluted than necessary. Selection updates sent

from the outline and the type hierarchy view part are handled in a pretty straightforward

way, but having the editor send selection updates directly in cursor-listening code seems

like we’re using code that is much more low-level than us. The solution to this in v3.2 is

to wrap the cursor-listening with selection provider functionality, so that the higher-level

text editors don’t have to worry about cursor changes, only selection changes. Little

changes like this can accumulate to effectively manage the complexity of such

interactions. Alternately, by over-generalizing code to promote reusability, depending on

the circumstances, one may risk presenting an overwhelmingly complicated interface to

clients (this may be more accurate in the context of enterprise-scale software

development).

I enjoyed researching Eclipse’s java editor. I think I bit off more than I could

chew in terms of the size and complexity of the component, but once I gained enough

familiarity and confidence with the design, I really got a lot out of examining its

structure.

Appendix

Figure 1

Figure 2

Figure 3

Figure 4.

ISelectionChangedListener

JavaEditor
setSelection(ISourceReference, boolean)
selectionChanged(SelectionChangedEvent)
setSelection(ISourceReference)

JavaOutlinePage
fOutlineViewer
fireSelectionChanged(ISelection)
select(ISourceReference)

listens to
listens to

JavaEditor – JavaOutlinePage Interaction Diagram (v1.0)

invokes
invoke

TypeHierarchyViewPart
fMethodsViewer.fireSelectionChanged ()

methodSelectionChanged(Event)

revealElementInEditor(Object)

Anonymous Inner
SelectionChangedListener
selectionChanged(Event)

listens to

invokes invokes

EditorUtility
revealInEditor ()

invokes

inv
oke

s

invokes

SourceViewer
setSelectedRange ()

invokes
composes

invokes

Figure 5.

ISelectionChangedListener

JavaEditor
fSelectionChangedListener.selectionChanged ()
setSelection(ISourceReference, boolean)
setSelection(ISourceReference)
doSelectionChanged ()
synchronizeOutlinePageSelection ()
fUpdater.run ()
handleCursorPositionChanged ()
getCursorListener.keyReleased ()
getCursorListener.mouseUp ()

JavaOutlinePage
fOutlineViewer
fireSelectionChanged(ISelection)
select(ISourceReference)

listens to

JavaEditor – JavaOutlinePage Interaction Diagram (v2.0)

invokes

TypeHierarchyViewPart
fMethodsViewer.fireSelectionChanged ()

doSelectionChanged(Event)

methodSelectionChanged(Event)

revealElementInEditor(Object)

Anonymous Inner
SelectionChangedListener
selectionChanged(Event)

listens to

invokes invokes

EditorUtility
revealInEditor ()

invokes

inv
oke

s

invokes

SourceViewer
setSelectedRange ()

invokes

composes

invokes

invokes

invokes
invokes

invokes
invokes

invoke

invokes

invokes

Figure 6.

ISelectionChangedListener
selectionChanged ()

JavaEditor
fEditorSelectionChangedListener.selectionChanged ()
fOutlineSelectionChangedListener.selectionChanged ()
setSelection(ISourceReference, boolean)
setSelection(ISourceReference)
doSelectionChanged ()
selectionChanged ()
synchronizeOutlinePageSelection ()
synchronizeOutlinePage(ISourceReference)
getSelectionProvider ()

JavaOutlinePage
fOutlineViewer.firePostSelectionChanged ()
fireSelectionChanged(ISelection)
select(ISourceReference)
firePostSelectionChanged ()

JavaEditor – JavaOutlinePage Interaction Diagram (v3.2)

TypeHierarchyViewPart
fMethodsViewer.fireSelectionChanged ()
doSelectionChanged(Event)
methodSelectionChanged(Event)
revealElementInEditor(Object)

Anonymous Inner
SelectionChangedListener
selectionChanged(Event)

EditorUtility
revealInEditor ()

JavaSourceViewer
setSelectedRange ()
getSelectionProvider ()
firePostSelectionChanged ()
setSelectedRange ()

IPostSelectionProvider
addPostSelectionChangedListener ()

AbstractSelectionChangedListener
install(ISelectionProvider)
uninstall(ISelectionProvider)

ISelectionProvider
addSelectionChangedListener ()
getSelection()
setSelection ()

composes

invokes

invokes invokes

invokes

invokes

invokes

wraps

listens
to

lis
te

n
s
 to

invokes
invokes

invokes
invoke

invo
kes

invokes

invoke

invokes

invokes

invokes

Resources

1. http://archive.eclipse.org/eclipse/downloads/index.php - from here we can download

archived versions of the eclipse platform. They seem to contain most of the source code

in the plugins directory. It can be imported by clicking File => Import => Plug-ins and

Fragments. Here you can choose the plugins directory specific to the platform version

you wish to import. I probably should have used this opportunity to learn more about

CVS, but I think I learned more about Eclipse by not having to fiddle with it.

2. The following Eclipse Platform v3.2 classes and interfaces:

 Type Name LOC
IAdaptable 40
IWorkbenchPart 220
IWorkbenchPart2 50
IExecutableExtension 120
IWorkbenchPartOrientation 40
EventManager 100
WorkbenchPart 460
IEditorPart 100
EditorPart 310
INavigationLocationProvider 40
IReusableEditor 30
ITextEditor 200
AbstractTextEditor 5700
text editor extension interfaces 230
StatusTextEditor 220
AbstractDecoratedTextEditor 1900
JavaEditor 3840
CompilationUnitEditor 1850
IDocument 650
IDocumentProvider 220
TypeHierarchyViewPart 1650
SemanticHighlightingManager 600
IStatus 190
JavaOutlinePage 1400
ISourceViewer 200
IPostSelectionProvider 50

All of the files that are longer than 500 lines were probably only partially read, but there

were a lot of other classes and interfaces that I referred to in the course of my journey.

