A
Report
on
Abstract Syntax Tree
of
Java Development Tooling Library

EE 564 — Enterprise Software Development

Submitted To:
Professor Daging Hou
Clarkson University

Submitted By:
Chandan Raj Rupakheti
Clarkson University

Date: March 26, 2007

Abstract

Java Document Object Model (JDOM) also known as Abstract Syntax Tree (AST) provides a tree
structure for the Java program elements for static as well as runtime operation on Java source code.
The library helps manipulation of Java source code as well as generation and compilation of the
created source code in Eclipse framework. Provided under Java Development Tooling library in
Eclipse, it works as primary tool for static program analysis of Java source code.

This report summarizes the detailed study performed on AST with the evolution trend of the framework
by comparing three versions of the library. It then further illustrates on the exception handling
mechanism and concludes by presenting the statistics of the explored packages and classes and
provides recommendation for a new user on how to approach the problem of learning big framework
like JDT AST library.

1. Introduction

The Eclipse platform is delivered with a full featured Java integrated development environment (IDE).
Java development tooling (JDT) allows users to write, compile, test, debug, and edit programs written
in the Java programming language. It's easiest to think of the JDT as a set of plug-ins that add Java
specific behavior to the generic platform resource model and contribute Java specific views, editors,
and actions to the workbench of Eclipse. Among the components of the library, AST serves as the
primary component for different kinds of operation on Java source code. A new source code can be
created on the fly or existing source code can be read and modified dynamically. All this is possible due
to AST library. Programmer has full control on creation and manipulation of source code through this
framework.

This report is divided into several section. Section 2 illustrates on JavaModel and its associated classes,
Section 3 presents the evolution trend of the software by comparing three versions of this library in
CVS repository, Section 4 illustrates on Exception Handling and associated classes, Section 5 contains
statistics on number of packages and classes studied, Section 6 provides recommendation for new user
on learning the framework and finally Section 7 concludes the report.

2. Java Model

The Java model is the set of classes that model the objects associated with creating, editing, and
building a Java program. The Java model classes are defined in org.eclipse.jdt.core. These classes
implement Java specific behavior for resources and further decompose Java resources into model
elements [1].

2.1 Java elements

The package org.eclipse.jdt.core defines the classes that model the elements that compose a Java
program. The JDT uses an in-memory object model to represent the structure of a Java program. This
structure is derived from the project's class path. The model is hierarchical. Elements of a program can
be decomposed into child elements [1].

The [Table 2.1] summarizes the different kinds of Java elements and [Figure 2.1] shows the segment of
inheritance hierarchy of IJavaElement interface.

Element Description

Represents the root Java element, corresponding to the workspace. The
[JavaModel parent of all projects with the Java nature. It also gives you access to the
projects without the java nature.

IJavaProject Represents a Java project in the workspace. (Child of IJavaModel)

Represents a set of package fragments, and maps the fragments to an
[PackageFragmentRoot |underlying resource which is either a folder, JAR, or ZIP file. (Child of

IJavaProject)
IPackaceFraement Represents the portion of the workspace that corresponds to an entire
g £ package, or a portion of the package. (Child of [PackageFragmentRoot)
ICompilationUnit Represents a Java source (.java) file. (Child of IPackageFragment)
IPackageDeclaration Repres'ents a pagkage declaration in a compilation unit. (Child of
ICompilationUnit)
. Represents the collection of package import declarations in a compilation
lImportContainer unit. (Child of ICompilationUnit)
MmportDeclaration Represents a s.1ng1e package import declaration. (Child of
IImportContainer)
Represents either a source type inside a compilation unit, or a binary type
IType . .
inside a class file.
IField Represents a field inside a type. (Child of IType)
IMethod Represents a method or constructor inside a type. (Child of IType)
IInitializer Represents a static or instance initializer inside a type. (Child of IType)
IClassFile Represents a compiled (binary) type. (Child of [PackageFragment)

Represents a type parameter. (Not a child of any Java element, it is obtained
ITypeParameter using [Type.getTypeParameter(String) or
IMethod.getTypeParameter(String))

Represents a local variable in a method or an initializer. (Not a child of any

ILocalVariable Java element, it is obtained using [CodeAssist.codeSelect(int, int))

Table 2.1: Different kinds of Java Element

fe 3
JavaElement, working set: Window Working Set

v W3, llavaElerment 1.35 (ASCIl -ko)
b ©f jJavaElement 1.123 (ASCI -ko)
b @, ImportContainer 1,12 (ASCII -ko)
b @, ImportDeclaration 1.21 (ASCIl -ko)
v @, |avaModel 1.24 (ASCIl -ko)
©,JavaModel 1.90 (ASCIl -ko)
b @, |avaProject 1.90 (ASCI -ko)
b @, lLocalvariable 1,10 (ASCI -kkv)
v @, Member 1.24 (ASCIl -ko)
b @fiMember 1.46 (ASCI -ko)
b @, IField 1.17 (ASCll -ko)
b @, linitializer 1.11 (ASCIl -ko)
v @,IMethod 1.25 [ASCIl -ko)
b G, BinaryMethod 1.92 (ASCIl -ke)
b @, SourceMethod 1.62 (ASCI ko)
b @,Mmype 157 (ASCI -ko)
b €, IPackageDeclaration 1.13 [ASCIl -ko)
b €, IPackageFragment 1.33 [ASCIl -ko)
b €, IPackageFragmentRoot 1.47 (ASCI -ko)
b @, MypeParameter 1.6 (ASCI -kkv)
v @, MypeRoot 1.4 (ASCIl -kkv)
b @, IiClassFile 1.23 (ASCII -ko)
v £3,1CompilationUnit 1.59 (ASCI -ko)
b @, CompilationUnit 1.237 (ASCII -ka)

Figure 2.1: IJavaElement inheritance hierarchy

All Java elements support the IJavaElement interface. Some of the elements are shown in the Packages
view. These elements implement the IOpenable interface, since they must be opened before they can be
navigated. The [Figure 2.2] below shows how these elements are represented in the Packages view[1].

=8
@ | B[g]”

lJavaProject — > & i sk ~
“E\ H} Com. iy Company, sample

1 [J] MyClass java s
[=)-B=, IRE Svskem Library [1BMIavasik-1.5.0_0

i Package Explorer X

lJavaModel (root)

ICompilationUnit

IPackageFragmentRoot L5 wrn.jar - C:\Pragram Files\IBM{IBM v
(here a jar) T L core.jar - Cr\Program Files\IEMIIEMa
£ com.ibm

2 com.ibm.bidiTools, bdlavout
4 com.ibm.converters

2 com.ibm.io
IPackageFragment B com.ibm.jvm

B com.ibm.jvm.io
\ B com.ibm.jvm.util
2 com.ibm.lang. management
4 com.ibm.math
B com.ibrm.misc
B com.ibm.nio
B com.ibrm.nio.cs
4 com.sun.beans
EE cam, sun. jarsigner
4 com.sun.java.util.jar. pack v

£ | *

Figure 2.2: Package view of Java Elements

package com.mvcompany.smple;w BR Y o N~

TG SETE, TRl s limportDeclaration

IType

public class NyClass { €—

L— at count ¢ ink
/ _— 8 lacalCount ; int
static int count = 0;

at My Class()

IField |
private int localCount; > oS man(Strngl]
= MyClass ()4 IMethod L~ & doSomethinal)

localCount = 0;

}

= public static void wain(3tri
new MyClass () .doSo ing i)

= void doSowething(){
count+t;
localCount++;

Figure 2.3: Java Compilation Unit in Outline View

The Java elements that implement IOpenable are created primarily from information found in the
underlying resource files. The same elements are represented generically in the resource navigator view.
Other elements correspond to the items that make up a Java compilation unit. The [Figure 2.3] above

shows a Java compilation unit and a content outliner that displays the source elements in the
compilation unit[1]. These elements implement the ISourceReference interface, since they can provide
corresponding source code. As these elements are selected in the content outliner, their corresponding
source code is shown in the Java editor.

IJavaModel can be considered the parent of all projects in the workspace that have the Java project
nature and therefore can be treated as an [JavaProject[1].

2.2 Abstract Syntax Tree (AST)

The Java DOM/AST is the set of classes that model the source code of a Java program as a structured
document. It is an umbrella owner and a factory for abstract syntax tree node. See [2] for more details
on factory method. An AST instance serves as the common owner of any number of AST nodes, and as
the factory for creating new AST nodes owned by that instance.

Abstract syntax trees may be hand constructed by clients, using the newTYPE factory methods to create
new nodes, and the various setCHILD methods to connect them together.

Each AST node belongs to a unique AST instance, called the owning AST. The children of an AST
node always have the same owner as their parent node. If a node from one AST is to be added to a
different AST, the subtree must be cloned first to ensures that the added nodes have the correct owning

AST.

There can be any number of AST nodes owned by a single AST instance that are unparented. Each of
these nodes is the root of a separate little tree of nodes. The method ASTNode . getRoot () navigates
from any node to the root of the tree that it is contained in. Ordinarily, an AST instance has one main
tree (rooted at a CompilationUnit), with newly-created nodes appearing as additional roots until they
are parented somewhere under the main tree. One can navigate from any node to its AST instance, but
not conversely.

The class ASTParser parses a string containing a Java source code and returns an abstract syntax tree
for it. The resulting nodes carry source ranges relating the node back to the original source characters.

Compilation units created by ASTParser from a source document can be serialized after arbitrary
modifications with minimal loss of original formatting. An example is shown in Figure 2.4.

Document doc = new Document ("import java.util.List;\nclass X {}\n");
ASTParser parser = ASTParser.newParser (AST.JLS3);
parser.setSource (doc.get () .toCharArray());

CompilationUnit cu = (CompilationUnit) parser.createAST(null);
cu.recordModifications () ;

AST ast = cu.getAST();

ImportDeclaration id = ast.newImportDeclaration();

id.setName (ast.newName (new String[] {"java", "util", "Set"});
cu.imports().add(id); // add import declaration at end
TextEdit edits = cu.rewrite(document, null);

UndoEdit undo = edits.apply(document) ;

Figure: 2.4: A code snippet for creating AST from ASTParser

2.3 AST Node

ASTNode is an abstract superclass of all Abstract Syntax Tree (AST) node types. An AST node
represents a Java source code construct, such as a name, type, expression, statement, or declaration.
Each AST node belongs to a unique AST instance, called the owning AST. The children of an AST
node always have the same owner as their parent node. If a node from one AST is to be added to a
different AST, the subtree must be cloned first to ensure that the added nodes have the correct owning
ASTI1].

When an AST node is part of an AST, it has a unique parent node. Clients can navigate upwards, from
child to parent, as well as downwards, from parent to child. Newly created nodes are unparented. When
an unparented node is set as a child of a node (using a serCHILD method), its parent link is set
automatically and the parent link of the former child is set to null. For nodes with properties that
include a list of children (for example, Block whose statements property is a list of statements), adding
or removing an element to/for the list property automatically updates the parent links. These lists
support the List.set method; however, the constraint that the same node cannot appear more than once
means that this method cannot be used to swap elements without first removing the node[1].

ASTs must not contain cycles. All operations that could create a cycle detect this possibility and fail.
ASTs do not contain "holes" (missing subtrees). If a node is required to have a certain property, a
syntactically plausible initial value is always supplied[1].

The hierarchy of AST node types has some convenient groupings marked by abstract superclasses:

- expressions - Expression

« names - Name (a sub-kind of expression)

+ statements - Statement

« types - Type

+ type body declarations - BodyDeclaration
Abstract syntax trees may be hand constructed by clients, using the newTYPE factory methods to
create new nodes, and the various setCHILD methods to connect them together.

The class ASTParser parses a string containing a Java source code and returns an abstract syntax tree
for it. The resulting nodes carry source ranges relating the node back to the original source characters.
The source range covers the construct as a whole.

Each AST node carries bit flags, which may convey additional information about the node. For
instance, the parser uses a flag to indicate a syntax error. Newly created nodes have no flags set.

Each AST node is capable of carrying an open-ended collection of client-defined properties. Newly
created nodes have none. getProperty and setProperty are used to access these properties.

AST nodes are thread-safe for readers provided there are no active writers. If one thread is modifying
an AST, including creating new nodes or cloning existing ones, it is not safe for another thread to read,
visit, write, create, or clone any of the nodes on the same AST. When synchronization is required, user
should consider using the common AST object that owns the node; that is, use synchronize
(node.getAST()) {...}.

AST also support the visitor pattern[3]; see the class AST Visitor [1] for details. [Figure 2.5] shows the
inheritance hierarchy of ASTNode.

v K3 ASTNode 1,72 (ASCI -ko)
©, AnonymousClassDeclaration 1.18 (ASCIl -ko)
b ©fBodyDeclaration 1.22 (ASCI -ko)
©, CatchClause 1.25 (ASCI -ko)
b @ comment 1.6 (ASCH -kkv)
©, compilationUnit 1.87 (ASCIl -ko)
b ®jExpression 1.12 (ASCI -ko)
©, ImportDeclaration 1.28 (ASCI -ko)
©,MemberRef 1,14 (ASCIl -kkv)
©,MembervaluePair 1.18 (ASCII -kkv)
©, Methodref 1.14 (ASCI -kkv)
©, MethodRefParameter 1,14 (ASCII -kkv)
©F Modffier 1.24 (ASCIl -ko)
©, PackageDeclaration 1.30 (ASCIl -ko)
b @fstatement 1.28 (ASCI -ko)
" TagElement 1.19 (ASCII -kkv)
©] TextElement 1.14 (ASCI -kkv)
b @4Type 1.12 (ASCI -ko)
©, TypeParameter 1.21 (ASCI -kkv)
b @ variableDeclaration 1.15 (ASCIl ko)
Figure a: ASTNode Hierarchy (Root)

< (3% BodyDeclaration 1.22 (ASCIl -ko)
< (@5 AbstractTypeDeclaration 1.15 (ASCI -kkv)

@, AnnctationTypeDeclaration 1.15 [ASCI -kkv)

@, EnumDeclaration 1.20 (ASCIH -kkv)
®, TypeDeclaration 1.45 (ASCI -ko)

&, AnnotationTypeMemberDeclaration 1.19 (ASCI -kkv)

&, EnumConstantDeclaration 1.23 (ASCI -kkv)
@, FieldDeclaration 1.38 (ASCI -ko)

@, Initializer 1.32 (ASCI -ko)

®, MethodDeclaration 1.50 [ASCI -ko)

Figure b: BodyDeclaration Node Hierarchy

— @4 comment 1.6 (ASCIH -kkw)

@fBlockCcomment 1.12 (ASCH -kkw)

@, Javadoc 1.34 (ASCl -ko)
@F Linecomment 1.11 (ascl -kkw)

Figure c: Comment Node Hierarchy

= (@fExpression 1.12 (ASCIl -ko)
b @%Annotation 1.14 (ASCH -kkw)

@, ArrayAccess 1.24 (ASCI -ko)
(3, ArrayCreation 1.29 (ASCI -ko)
@, Arrayinitializer 1.18 (ASCI -ko)
(&, Assignment 1.27 (ASCI -ko)
©, BooleanLiteral 1.19 (ASCI -ko)
(9, CastExpression 1.24 (ASCIl -ko)
©, CharacterLiteral 1.35 (ASCI -ko)
(3, ClassinstanceCreation 1.41 (ASCI -ko)
(3, conditionalExpression 1.24 (ASCIl -ko)
3, FieldAccess 1.29 (ASCI -ko)
(3, InfixExpression 1.30 (ASCI -ko)
@, InstanceofExpression 1.23 (ASCIl -ko)
(&, Methodinvocation 1.29 (ASCI -ko)
®4Name 1.15 (ASCI -ko)
@, qualifiedName 1.36 (ASCI -ko)
@, simpleMName 1.42 (ASCIl -ko)
&, Nullliteral 1.20 (AsCll -ke)
©, NumberLiteral 1.32 (ASCI -ko)
(3, ParenthesizedExpression 1.24 (ASCI -ko)
@, PostfixExpression 1.25 (ASCIl -ko)
(3, PrefixExpression 1.26 [ASCIl -ke)
(3, stringLiteral 1.37 (ASCIl -ko)

Figure d: Expression Node Hierarchy

— (&% sStatement 1.28 (ASCl -ko)
&, AssertsStaternent 1.26 (ASCI -ko)
@, Block 1.20 (AsCl -ka)
&, BreakStaterment 1.23 [(ASCH -ko)
(&, Constructorinvocation 1.24 (ASCI -ko)
&, continueStaterment 1.23 (ASCI -ko)
&, DosStaterment 1.28 (ASCIH -ko)
&, EmptysStaterment 1.21 (ASCIH -ko)
&, EnhancedForstatement 1.20 (ASCI -kkwv)
(3, ExpressionStaterment 1.26 (AScCl -ko)
@, Forstaterment 1.20 (ASCI -ko)
@, fstatement 1.28 (ASCl -ko)
(&, LabeledsStaterment 1.25 (ASCI -ko)
@, Returnstatement 1.23 (ASCI -ko)
&, SupercConstructorinvocation 1.27 (ASCH -ko)
@, switchcase 1.28 (ASCl -ko)
@, switchStatement 1.27 (ASCI -ko)
@, SynchronizedStaterment 1.26 (ASCI -ko)
&, Throwstaterment 1.26 [(ASCI -ko)
@, TrysStaterment 1.26 (ASCl -ko)
3, TypeDeclarationStaternent 1.33 (ASCl -ko)
(&, wariableDeclarationStaterment 1.36 (ASCl -ko)
@, whileStatemeant 1.27 (ASCI -ko)

Figure e: Statement Node Hierarchy

Figure 2.5: AST Node Inheritance Hierarchy

2.3 Creating Java element from scratch

It is possible to create a CompilationUnit from scratch using the factory methods on AST. These
method names start with new NODE. The following is an example that creates a HelloWorld class[1].

The first snippet is the generated output:

package example;
import java.util.*;
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello" + " world");
}

The following snippet is the corresponding code that generates the output.

AST ast = new AST();

CompilationUnit unit = ast.newCompilationUnit();
PackageDeclaration packageDeclaration = ast.newPackageDeclaration();
packageDeclaration.setName (ast.newSimpleName ("example")) ;

unit.setPackage (packageDeclaration);
ImportDeclaration importDeclaration = ast.newImportDeclaration();
QualifiedName name = ast.newQualifiedName (

ast.newSimpleName ("java"),

ast.newSimpleName ("util"));
importDeclaration.setName (name) ;
importDeclaration.setOnDemand (true) ;
unit.imports () .add(importDeclaration);
TypeDeclaration type = ast.newTypeDeclaration();
type.setInterface(false);
type.setModifiers (Modifier .PUBLIC) ;
type.setName (ast.newSimpleName ("HelloWorld")) ;
MethodDeclaration methodDeclaration = ast.newMethodDeclaration();
methodDeclaration.setConstructor (false);
methodDeclaration.setModifiers (Modifier .PUBLIC | Modifier.STATIC);
methodDeclaration.setName (ast.newSimpleName ("main"));
methodDeclaration.setReturnType (ast.newPrimitiveType (PrimitiveType.VOID)) ;
SingleVariableDeclaration variableDeclaration = ast.newSingleVariableDeclaration();
variableDeclaration.setModifiers (Modifier .NONE) ;
variableDeclaration.setType (ast.newArrayType (

ast.newSimpleType (ast.newSimpleName ("String"))));
variableDeclaration.setName (ast.newSimpleName ("args"));
methodDeclaration.parameters () .add(variableDeclaration);
org.eclipse.jdt.core.dom.Block block = ast.newBlock();
MethodInvocation methodInvocation = ast.newMethodInvocation() ;
name = ast.newQualifiedName(ast.newSimpleName ("System"),

ast.newSimpleName ("out"));

methodInvocation.setExpression (name) ;
methodInvocation.setName (ast.newSimpleName ("println"));
InfixExpression infixExpression = ast.newInfixExpression();
infixExpression.setOperator (InfixExpression.Operator.PLUS) ;
StringLiteral literal = ast.newStringLiteral();
literal.setlLiteralValue ("Hello");
infixExpression.setLeftOperand(literal);
literal = ast.newStringLiteral();
literal.setLiteralValue (" world");
infixExpression.setRightOperand(literal);
methodInvocation.arguments () .add(infixExpression) ;
ExpressionStatement expressionStatement =
ast.newExpressionStatement (methodInvocation);

block.statements () .add (expressionStatement) ;
methodDeclaration.setBody (block) ;
type.bodyDeclarations () .add (methodDeclaration);
unit.types () .add(type);

2.4 Adding new concrete AST node types

There are several things that need to be changed when a new concrete AST node type is added to AST
hierarchy. Lets call it FooBar. Here are the steps that should be considered:

1. Create the FooBar AST node type class. The most effective way to do this is to copy a similar
existing concrete node class to get a template that includes all the framework methods that must
be implemented.

2. Add node type constant ASTNode.FOO_BAR. Node constants are numbered consecutively.

Add the constant after the existing ones.

Add entry to ASTNode.nodeClassForType(int).

Add AST.newFooBar() factory method.

Add AST Visitor.visit(FooBar) and endVisit(FooBar) methods.

Add ASTMatcher.match(FooBar,Object) method.

Ensure that SimpleName.isDeclaration() covers FooBar nodes if required.

Add NaiveASTFlattener.visit(FooBar) method to illustrate how these nodes should be

serialized.

9. Update the AST test suites. The next steps are to update AST.parse* to start generating the new
type of nodes, and ASTRewrite to serialize them back.

NN AW

3. Evolution

This part of the report focuses on the evolution trend of the AST library. The comparison is made
between the latest version (Mar 22, 2006-head) with version 300 and version 235 of org.eclipse.jdt.core
library from CVS repository.

3.1 AST Re-write

AST re-write is needed for modifying code by describing changes to AST nodes. The AST rewriter
collects descriptions of modifications to nodes and translates these descriptions into text edits that can
then be applied to the original source. The key thing is that this is all done without actually modifying
the original AST, which has the virtue of allowing one to entertain several alternate sets of changes on
the same AST. The rewrite infrastructure tries to generate minimal text changes, preserve existing
comments and indentation, and follow code formatter settings.

The following code snippet illustrated usage of this class:

Document document = new Document ("import java.util.List;\nclass X {}\n");
ASTParser parser = ASTParser.newParser (AST.JLS3);
parser.setSource(doc.get () .toCharArray());

CompilationUnit cu = (CompilationUnit) parser.createAST (null);

AST ast = cu.getAST();

ImportDeclaration id ast.newImportDeclaration();

id.setName (ast.newName (new String[] {"java", "util", "Set"}));
ASTRewrite rewriter = ASTRewrite.create(ast);
TypeDeclaration td = (TypeDeclaration) cu.types().get(0);

ITrackedNodePosition tdLocation = rewriter.track(td);

ListRewrite lrw = rewriter.getListRewrite(cu, CompilationUnit.IMPORTS_PROPERTY) ;

lrw.insertLast (id, null);

TextEdit edits = rewriter.rewriteAST (document, null);

UndoEdit undo = edits.apply(document) ;

assert "import java.util.List;\nimport java.util.Set;\nclass X {}".equals
doc.get () .toCharArray());

// tdLocation.getStartPosition() and tdLocation.getLength()

// are new source range for "class X {}" in doc.get ()

The versions 235 and 300 do not have AST Rewrite functionality while the latest version have it. The
packages org.eclipse.jdt.core.dom.rewrite.* and org.eclipse.jdt.internal.core.dom.rewrite. * contains
this functionality that are missing in version 235 and 300 inside org.eclipse.jdt.core.dom.* package.

3.2 ASTNode

~ K34 ASTNode 1.6 (ASCI -ko) < B4 ASTNode 1.27 (ASCI -ko) v K9] ASTNode 1.72 (ASCI -ko)

&, AnonymousClassDeclaration 1.1
b @%BodyDeclaration 1.2 (ASCI -ko)

@, catchclause 1.3 (Ascll -ko)

@, compilationUnit 1.6 (ASCIl -ko)
b &~ Expression 1.2 (ASCIl -ko)

@, ImportDeclaration 1.4 (ASCI -ko

@, javadoc 1.4 [ASCI -ko)

(3, AnonymousClassDeclaration 1.5
@} BodyDeclaration 1.4 (ASCI -ko)
&, catchClause 1.8 (ASCIl -ko)

(&, CompilationUnit 1.29 (ASCIl -ko)
@ Expression 1.4 (ASCI -ko)

&, ImportDeclaration 1.10 (ASCI -k
&,)avadoc 1.14 (ASCI -ko)

@, AnonymousclassDeclaration 1.18
&4 BodyDeclaration 1.22 (ASCI -ko)
®, catchClause 1.25 (ASCl -ko)
®fcomment 1.6 (ASCH -kkw)

@, compilationUnit 1.87 (ASCI -ka)
®? Expression 1.12 (ASCI -ko)

©, ImportDeclaration 1.28 (ASCIl -ko

&, PackageDeclaration 1.4 (ASCI -k @, PackageDeclaration 1.10 (ASCI
b &% statement 1.2 (ASCIH -ko) b @4staterment 1.18 [ASCIl -ko)
b O%Type 1.2 (ASCl -ko) b ®LType 1.2 (ASCH ko)
b ®{ variableDeclaration 1.3 (Asci -k b &%variableDeclaration 1.8 (ASCH -k
Figure 3.1.a: Version 235 Figure 3.1.b: Version 300

©, MemberRef 1.14 (ASCI -kkwv)

@, Methodref 1.14 (ASCI -kkv)

@] Modifier 1.24 (ASCI -ko)

@, MembervaluePair 1.18 (ASCI -ki

&, MethodrefParameter 1.14 (ASCI

@, PackageDeclaration 1.30 (ASCH -

There has been major changes in the ASTNode hierarchy. [Figure b @fstatement 1.28 [ASCIl -ko)
3.1] shows the inheritance hierarchy for ASTNode for the three @ TagElement 1.19 (ASCI -kkv)
versions. Versions 235 and 300 have same inheritance structure O} TextElement 1.14 (ASCII -kkv)
whereas the recent version has added nodes like Comment, b @fType 1.12 (ASCI -ko)
MemberRef, MethodRef, MethodRefParameter, Modifier,
TagElement, TextElement and TypeParameter as direct subclass of

ASTNode. Figure 3.1.c: Version Head

Comment is an abstract base class for all AST nodes that represent
comments. There are exactly three kinds of comment that is represented by three concrete AST Nodes:
line comments (LineComment), block comments (BlockComment), and doc comments (Javadoc).

MemberRef is an AST node for a member reference within a doc comment (Javadoc). The principal
uses of these are in "@see" and "@link" tag elements, for references to field members (and
occasionally to method and constructor members).

MethodRef is an AST node for a method or constructor reference within a doc comment (Javadoc).
The principal uses of these are in "@see" and "@link" tag elements, for references to method and
constructor members.

MethodRefParameter is an AST node for a parameter within a method reference (MethodRef). These
nodes only occur within doc comments (Javadoc).

Modifier is an AST node that represents access modifier like private, public, protected, etc.
TagElement and TextElement are respectively the Javadoc tags and text in comments.

TypeParameter node represents parameterized type that has been added in JLS3 API.

@, TypeParameter 1.21 (ASCI -kkv)
b ©fvariableDeclaration 1.15 (ASCH -k

3.3 BodyDeclaration

. = (3% BodyDeclaration 1.22 (ASCIl -ko)
~ (9 BodyDeclaration 1.2 (ASCIl-| < G'j BodyDeclaration 1.4 (ASCI = (@4 AbstractTypeDeclaration 1.16 (ASCI -kkv,

®, FieldDeclaration 1.7 (ASCI
©,initializer 1.3 (ASCI -ko)
®,MethodDeclaration 1.7 (A

@_,FieldDecIaratinn 1.14 (AsS &, AnnotationTypeDeclaration 1.15 (ASCI

@_,Initializer 1.9 (ASCIH -ko) &, EnumDeclaration 1.20 (ASCIl -kkv)
®, TypeDeclaration 1.46 (ASCIl -ko)

@, MethodDeclaration 1.23 | _)
©, AnnotationTypeMemberDeclaration 1.19

&, TypeDeclaration 1.10 (ASC
Figure 3.2.a: Version 235

@, TypeDeclaration 1.18 (AS
Figure 3.2.b: Version 300

&, EnumconstantDeclaration 1.23 (ascl -k}
@, FieldDeclaration 1.38 (AscCl -ko)

& Initializer 1.32 (ASCI -ko)

®, MethodDeclaration 1.50 (ASCI -ko)

Figure 3.2.c: Version Head
Body declaration remained same in versions 235 and 300 but has gone through major revision in latest
version as shown in [Figure 3.2]. AbstractTypeDeclaration has been added as abstract node type that is
furthered subclassed into AnnotationTypeDeclaration, EnumDeclaration and TypeDeclaration.
TypeDeclaration has been removed from direct inheritance hierarchy of BodyDeclaration and has been
moved AbstractTypeDeclaration as its subclass. Other nodes added in the hierarchy are
AnotationTypeMemberDeclaration and EnumConstantDeclaration.

3.4 Expression

v (&fExpression 1.12 (ASCI -ka)

b @4 Annotation 1.14 (ASCH -kkv)
©, ArrayAccess 1.24 (ASCI -ko)
®, ArrayCreation 1.29 (ASCIl -ko)
©,, Arrayinitializer 1.18 (ASCI -ko)
®, Assignment 1.27 (ASCIl -ko)
(©, BooleanLiteral 1.19 [ASCI -ko)
(9, CastExpression 1.24 (ASCI -kc

= (3% Expression 1.4 [ASCIl -ko)
@, ArrayAccess 1.9 (ASCI -ko)
&, ArrayCreation 1.11 [ASCI -ko

= (34 Expression 1.2 (ASCI -ko)
®, ArrayAccess 1.3 (ASCIl -ka)
&, ArrayCreation 1.3 (ASCI -ko

©, Arrayinitializer 1.3 (ASCI -ke ©, Arrayinitializer 1.6 (ASCIl ko)

©, Assignment 1.11 (ASCI -ko)
@, BooleanLiteral 1.7 (ASCI -ko)
©, CastExpression 1.9 (ASCI -k

&, Assignment 1.3 (ASCI -ko)
©,BooleanLiteral 1.3 (ASCI -ke
(9, CastExpression 1.3 [ASCI -

©, CharacterLiteral 1.7 (ASCll -
@JclasslnstanceCreation 15 [
&, ConditionalExpression 1.3 (4
@, FieldAccess 1.3 [ASCI -ko)
&, InfixExpression 1.3 (ASCI -k
®, Methodinvocation 1.3 (ASCI
b @5Name 1.2 (ASCH -ko)

@, NullLiteral 1.3 (ASCH -ko)

&, NumberLiteral 1.7 (ASCIl -ke
©, ParenthesizedExpression 1.3
3, PostfixExpression 1.3 [(ASCII
&, PrefixExpression 1.3 (ASCI -
&, StringLiteral 1.7 (AsCll -ke)
3, SuperfieldAccess 1.3 (ASCI
©, superMethodinvocation 1.3
3, ThisExpression 1.3 (ASCI -k
©, TypeLiteral 1.3 (ASCI -ko)

Figure 3.3.a: Version 235

©, characterLiteral 1.18 (ASCI -
@JclasslnstanceCreation 1.13 (s
(&, ConditionalExpression 1.9 (AS
© FieldAccess 1.10 (ASCI -ko)
@, InfixExpression 1.15 (ASCI -ki
@JlnstanceofExpression 1.8 (AS
®, Methodinvocation 1.12 (ASCl
®4Name 1.4 (ASCI -ko)

@, NullLiteral 1.7 (ASCI -ko)
&, NumberLiteral 1.16 (Ascl -ke
®, ParenthesizedExpression 1.9
@, PostfixExpression 1.10 (ASCI
@, prefixExpression 1.11 (ASCI -
® stringLiteral 1.18 (ASCIl -ko)
©, superFieldAccess 1.10 (ASCI
@, superMethodinvocation 1.12
(&, ThisExpression 1.10 (ASCI -k

Figure 3.3.b: Version 300

®, characterLiteral 1.35 (ASCI -ki
@JclasslnstanceCreation 1.41 (&
®, conditionalExpression 1.24 (As
©, FieldAccess 1.29 (ASCI -ko)
®, InfixExpression 1.30 (ASCI -ko,
@JlnstanceofExpression 1.23 (AS
®, Methodinvocation 1.32 [ASCI -
®4Name 1.15 (ASCH -ko)

®, NullLiteral 1.20 (ASCl -ko)
©, NumberLiteral 1.32 [ASCIl -ko)
(®, ParenthesizedExpression 1.24
@, PostfixExpression 1.25 (ASCI -
®, PrefixExpression 1.26 (ASCl -k
®, stringLiteral 1.37 (ASCll -ko)
(3, SuperFieldAccess 1.27 (ASCI -
®, superMethodinvocation 1.31 (i

Figure 3.3.c: Version Head

The difference between versions 235 and 300 is that there is addition of InstanceofExpression nodes in
the subclass hierarchy of Expression nodes in version 300 as shown in [Figure 3.3].

The difference between 300 and latest version are addition of Annotation node and its subclass tree
containing MarkerAnnotation, NormalAnnotation and SingleMemberAnnotation.

3.5 Statement

~ (3 statement 1.2 (ASCI -ke)

@, AssertStatement 1.3 (ASCIl -ko)
®,Block 1.3 (ASCI -ko)

@, Breakstaterment 1.3 (ASCIl -ko)
GJConstructorlnuocation 1.4 (AscH
@, continueStatement 1.3 (ASCIl -k
@, DoStatement 1.3 (ASCIl -ko)
@, EmptyStatermnent 1.3 (ASCIl -ko)
@JExpressionStatement 1.3 (AsCl
@, Forstatemnent 1.3 (ASCIl -ko)
@, fstatement 1.3 (ASCI -ko)

@, Labeledstaterment 1.3 (ASCIl -ke
& ReturnStaternent 1.3 (ASCI -ko)
&, superConstructorinvocation 1.4
&, switchCase 1.5 (ASCI -ko)

@, switchStaternent 1.3 (ASCIl -ko)
®, synchronizedstaternent 1.3 (AS
@, Throwstatement 1.3 (ASCIl -ko)
@, Trystatement 1.3 (ASCIl -ko)
'-9JTypeDecIarationStatement 1.3 (4
@, variableDeclarationStatement 1.

@, whileStaterment 1.3 (ASCIl -ko)

= (94 statement 1.18 (ASCIl -ko)

GJAsser‘tStatement 1.11 (Ascl -l
®,Block 1.8 (ASCI -ko)
®,Breakstatement 1.10 (ASCI -k
@JConstructorInvocation 1.10 (Af
&, continueStatement 1.10 (ASC
®,Dostatement 1.12 (ASCIl -ko)
&, EmptyStatement 1.9 (ASCI -k«
@JExpressionStatement 1.11 (As
&, Forstatement 1.13 (ASCI -ko)
®, Ifstatement 1.12 (ASCI -ko)
®, Labeledstaternent 1.9 (ASCI -
@JReturnStatement 1.10 (AsCl -l
®, superConstructorinvocation 1.
®, switchCase 1.13 (ASCIl -ko)
®, switchStatement 1.11 (ASCll -|
@, synchronizedStatement 1,11 (
&, Throwstatement 1.11 (ASCI -k
®, TryStatement 1.11 (ASCIl -ko)
@JTypeDeclarationStatement 1.11
®, variableDeclarationStaternent

®,whileStatement 1.11 (ASCI -k«

< (@) statement 1.28 (ASCIl -ko)

@, AssertStatement 1.26 (ASCI -ko)
®,Block 1.20 (ASCI -ko)

@, Breakstatement 1.23 (ASCll -ko)
@JCOnstructorInvocation 1.24 (ASCI -k
@, continueStatermnent 1.23 (ASCI -ko)
©,DoStatement 1.28 (ASCI -ko)

(&, EmptyStatement 1.21 (ASCI -ko)
&, EnhancedForstatement 1.20 (ASCI
@JExpressionStatement 1.26 (ASCI -k
@ ForStaternent 1.30 (ASCll -ko)

@ fstatement 1.28 (ASCI -ko)

@ Labeledstatement 1.25 (ASCIl -ko)
& ReturnStatement 1.23 (ASCH -ko)
@JSuperConstructorInvocation 1.27 (A
©, switchCase 1.28 (ASCIl -ko)

@, switchStaternent 1.27 (ASCll -ko)
@, synchronizedsStatement 1.26 (ASCI
@, Throwstatement 1.26 (ASCI -ko)
@, TryStatement 1.26 (ASCI -ko)
@JTypeDecIarationStatement 1.33 (As
© variableDeclarationStaternent 1,36
@, whileStaternent 1.27 (ASCIl -ko)

Figure 3.4.a: Version 235 Figure 3.4.b: Version 300

Figure 3.4.c: Version Head

There is no difference in the subclass hierarchy of versions 235 and 300. However, there is an addition
on EnhancedForStatement 1n latest version that is not present in the former two versions as shown in
[Figure 3.4].

EnhancedForStatement AST node type is added in JLS3 API. It has following structure:
EnhancedForStatement:

for (FormalParameter Expression)
Statement

3.6 Type

- @/ Type 1.2 (ASCI -ko)
©, ArrayType 1.5 (AS
@&, PrimitiveType 1.5 |
@, simpleType 1.5 (A

Figure 3.5.a: Version 235

v (9 Type 1.2 (ASCI -ko)
®, ArrayType 1.11 (AS
®, PrimitiveType 1.12 |

®, simpleType 1.11 (A
Figure 3.5.b: Version 300

Versions 235 and 300 have same subclass hierarchy for Type

class as shown in [Figure 3.5]. However, latest version has added Figure 3.5.c: Version Head
ParameterizedType, QualifiedType and WildCardType in the

subclass hierarchy of Type node.

w (3% Type 1.12 (ASCI -ko)

&, ArrayType 1.27 (ASCI -ke
&, ParameterizedType 1.23
©, PrimitiveType 1.24 (ASCI
©, qualifiedType 1.20 (ASCI
©, simpleType 1.28 (ASCIl -l
&, wildcardype 1.16 (ASCI

ParameterizedType is added in JLS3 API. These nodes are used for type references (as opposed to
declarations of parameterized types.) Its structure is as follows:

ParameterizedType:

Type < Type { , Type }

QualifiedType is added in JLS3 API. It has following structure:

QualifiedType:
Type . SimpleName

WildCardType is added is JLS3 API. It has following structre:

WildcardType:
? [(extends | super)

Type]

4. Exception Handling

Exception handling in JDT framework has not changed much. There has been very little revisions in
exception handling which includes addition of new error state constants and change in Javadoc. Here
are the few exception classes used in JDT:

4.1 ClassFormatException

Exception thrown by a class file reader when encountering a error in decoding information contained in
a .class file. Exception hierarchy is shown in [Figure 4.1].

< @ object
+ @ Throwable
< @ Exception
¥2, ClassFormatException 1.6 (ASCI -ko)

Figure 4.1: ClassFormatException Hirarchy

4.2 CoreException

It is a checked exception that represents a failure. Core exceptions contain a status object describing the
cause of the exception. Exception hierarchy is shown in [Figure 4.2].

v (O oObject
v (3 Throwable
w (@ Exception
< K9 CoreException

& DebugException
©, JavaUlException 1.8 (ASCI -ko)
& ResourceException
@ TeamException
®, validateEditException 1.6 (ASCIl -ko)
@ validateStateException

- @ workbenchException

©® PartinitException

Figure 4.2: CoreException Hierarchy

4.3 DOMEXxception

Unchecked exception thrown when an illegal manipulation of the JDOM is performed, or when an
attempt is made to access/set an attribute of a JDOM node that source indexes cannot be determined for
(in case the source was syntactically incorrect). It is now deprecated as the JDOM was made obsolete
by the addition in of the more powerful, fine-grained DOM/AST API found in the
org.eclipse.jdt.core.dom package after 2.0 version of Eclipse. Exception hierarchy is shown in [Figure
4.3].

w (@ oObject
< @ Throwable
— @ Exception
w & RuntimeException
K3, DOMException 1.14 (ASCIl -ko)
Figure 4.3: DOMEXxception Hierarchy

4.4 JavaModelException

JavaModelException is a checked exception representing a failure in the Java model. Java model
exceptions contain a Java-specific status object describing the cause of the exception.

This class is not intended to be subclassed by clients. Instances of this class are automatically created
by the Java model when problems arise, so there is generally no need for clients to create instances.
Exception hierarchy is shown in [Figure 4.4].

= k2 CoreException
©® javaModelException
© JavaUlException
(@ ResourceException
@ walidateEditException
@ walidateStateException
w @ workbenchException

& PartinitException
Figure 4.4: JavaModelException

4.5 InvalidinputException

Exception thrown by a scanner when encountering lexical errors. This class is not intended to be
instantiated or subclassed by clients.

v (3 Object
v @ Throwable
< @ Exception
K9, InvalidinputException 1.19 (ASCIl -ko)
Figure 4.5: InvalidInputException Hierarchy

Apart from these, java.lang's IllegalArgumentException and RuntimeException are most popular
exception that has been used throughout JDT library.

5. Statistics

[Table 5.1] summarizes the list of packages and their classes that has been studied for this project.

Package Name ClassName LOC
org.eclipse.jdt.core.dom Annotation 182
org.eclipse.jdt.core.dom AnonymousClassDeclaration 190
org.eclipse.jdt.core.dom ArrayType 240
org.eclipse.jdt.core.dom Assignment 441
org.eclipse.jdt.core.dom AST 2868
org.eclipse.jdt.core.dom ASTNode 2741
org.eclipse.jdt.core.dom ASTParser 1147
org.eclipse.jdt.core.dom AST Visitor 2574
org.eclipse.jdt.core.dom CompilationUnit 1058
org.eclipse.jdt.core.dom Comment 130
org.eclipse.jdt.core.dom Expression 140
org.eclipse.jdt.core.dom ImportDecleration 377
org.eclipse.jdt.core.dom MemberRef 271
org.eclipse.jdt.core.dom MethodRef 316
org.eclipse.jdt.core.dom Modifier 707
org.eclipse.jdt.core.dom Type 172
org.eclipse.jdt.core.dom.rewrite ASTRewrite 659
org.eclipse.jdt.core.compiler InvalidInputException 39
org.eclipse.jdt.core.compiler [Problem 1273
org.eclipse.jdt.core.compiler IScanner 151
org.eclipse.jdt.core ICompilationUnit 734
org.eclipse.jdt.core [JavaElement 366
org.eclipse.jdt.core [JavaModel 259
org.eclipse.jdt.core JavaModelException 174
org.eclipse.jdt.core JavaCore 4644
org.eclipse.jdt.core.util ClassFormatException 55
org.eclipse.core.runtime CoreException 99
org.eclipse.jdt.core.jdom DOMException 40

Table 5.1: List of packages and classes studied with their lines of code.

6. Recommendation

Understanding a big framework is not an easy task. First and foremost, these frameworks document
tend to become incomplete and the programmers will have no choice than to look at the source code for
deeper understanding of these framework. Similarly, to understand Abstract Syntax Tree/JDOM library,
the first approach would be to look at the sample examples given in the help files. Once a programmer
gets familiar with the underlying code then the first class to explore would be AST and then ASTNode.
These two classes are the key classes for whole AST library as they have factory methods for producing
children of other concrete types. After one can understand these two classes then classes like
ASTVisitor, ASTParser can be explored for further details on other functionality provided in the library.
Slowly and steadily, the library implementation becomes clearer at each study.

7. Conclusion

AST library is a part of bigger framework called Java Development Tooling Framework. It has number
of classes and packages delivering specific functionality to the programmer. The document of the
framework only provides the starting information on the library and the library has capacity to do
beyond what is illustrated in these documentation. To understand these functionality, one has to study
the provided source code of the framework. The report presents on few of the starting classes for the
exploration with code snippets and pictures wherever possible. The evolution trend discussed in the
Section 3 clearly presents how a framework tends to evolve over time. The causes may be the update of
Java Language Specification or the bugs detected in the library usage, this frameworks has gone
through lots of major revisions. Section 5, clearly summarizes how a framework component are linked
with one another. To understand AST, one has to also understand other associated libraries.

In this way, the report summarizes an effort of understanding Abstract Syntax Tree provided under Java
Development Tooling framework in Eclipse.

References

[1] http://help.eclipse.org/help32

[2] http://en.wikipedia.org/wiki/Factory_method
[3] http://en.wikipedia.org/wiki/Visitor_pattern

	Abstract
	1. Introduction
	2. Java Model
	2.1 Java elements
	2.2 Abstract Syntax Tree (AST)
	2.3 AST Node
	2.3 Creating Java element from scratch
	2.4 Adding new concrete AST node types

	3. Evolution
	3.1 AST Re-write
	3.2 ASTNode
	3.3 BodyDeclaration
	3.4 Expression
	3.5 Statement
	3.6 Type

	4. Exception Handling
	4.1 ClassFormatException
	4.2 CoreException
	4.3 DOMException
	4.4 JavaModelException
	4.5 InvalidInputException

	5. Statistics
	6. Recommendation
	7. Conclusion
	References

