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a classical result for uniform algebras, due to Bishop, which ensures the existence of the Shilov boundary.
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Boundaries of Weak Peak Points in Noncommutative Algebras of Lipschitz Functions

1. Introduction

Let X be a compact Hausdorff space and C(X,F) the space (over R or C) of continuous F-valued functions on X,

where F is R, C, or H – the non-commutative division ring of quaternions. Given a subalgebra A ⊂ C(X,F), we

are interested in classifying boundaries for A, subsets B ⊂ X such that every f ∈ A attains its maximum modulus

on B. In the case that F = C and A is uniformly closed with complex scalars, it is well-known that there exists a

minimal closed boundary with respect to inclusion, the so-called Shilov boundary [15]. In fact, it has been shown

that the Shilov boundary exists for any point-separating subalgebra of C(X,C) with complex scalars, regardless

of whether it is uniformly complete or contains the constant functions [11, Theorem 3.3.2].

For uniform algebras – uniformly complete subalgebras of C(X,C) that contain the constant functions and separate

points in the sense that for each x, y ∈ X there exists a function f ∈ A with f(x) 6= f(y) – there are direct

methods for showing the Shilov boundary exists. For example, Bear [4] provided a topological approach that can

be generalized when points in the underlying domain have certain properties. A point x0 ∈ X is a peak point for

A ⊂ C(X,C) if there exists f ∈ A such that |f(x)| < |f(x0)| for all x ∈ X \ {x0}. Since f attains its maximum

modulus exclusively at x0, the point must be an element of every boundary of A. The maximizing set of f is the

set M(f) = {x ∈ X : |f(x)| = ‖f‖∞}, and x0 being a peak point is just to say that there exists f ∈ A such that

M(f) = {x0}. We are also interested in the actual values f attains on M(f); the peripheral range of f is the set

of range values of maximum modulus and is denoted by

Ranπ(f) = {λ ∈ Ran(f) : |λ| = ‖f‖∞} = f(M(f)).

In general, uniform algebras need not have any peak points. A weak peak point – also called a p-point or a strong

boundary point – is a point x0 such that {x0} = ∩f∈SM(f) for some family of functions S ⊂ A. It is well-known

that, for a uniform algebra A, the collection of weak peak points is the Choquet boundary and that the closure

of the Choquet boundary is the Shilov boundary. Algebras of continuous functions over R, however, need not

have a minimal closed boundary, even algebras that contain the (real) constant functions, separate points, and

are uniformly complete. Since the boundary behavior for algebras of continuous functions over R is substantially

different from the boundary theory for algebras of continuous functions over C, it is important to find sufficient

conditions that will ensure the existence of a minimal closed boundary for such algebras.

While there is an extensive literature on algebras of continuous functions over C, there are far fewer results on

algebras of continuous functions over R (with [12] being one of the few books on the subject), and fewer still on

algebras of quaternion-valued functions.

In [9], Jarosz defines a uniform algebra A as any Banach algebra satisfying the property ‖f2‖ = ‖f‖2 for all

f ∈ A. In the case that A is an algebra over C, it can be shown that this norm condition automatically implies

that A is commutative and has a classical representation as a uniform (function) algebra. In the case that A is

an algebra over R, it cannot be deduced that A is commutative, as the algebra of quaternions itself demonstrates.
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Nonetheless, it is shown in [9] that for any such algebra there is a compact Hausdorff spaceX ′ with a decomposition

X ′ = X1 ∪X2 ∪X3 such that A is isometrically isomorphic to a subalgebra of C(X1,R)⊕C(X2,C)⊕C(X3,H).

In particular, if A ⊂ C(X,H) for some compact Hausdorff space X, then the decomposition is natural in the

sense that X ′ ⊂ X. This shows that every Banach algebra satisfying the norm condition ‖f2‖ = ‖f‖2 has

a representation as an algebra of quaternion-valued, continuous functions – which suggests that algebras of

quaternion-valued functions are an important class of algebras to understand. Such real Banach algebras have

also been recently studied by Albiac and Briem [2, 3].

The first goal of this work is to provide a new proof, using the function algebra representation given in [9], that the

only associative normed algebras over R whose norm is multiplicative are R, C, and H. The proof, which is given

in Section 2, demonstrates that results on the boundaries of spaces of complex-valued functions will naturally

extend, at most, to spaces of quaternion-valued continuous functions, because the construction of boundaries via

weak points requires that the range of the functions have a multiplicative norm.

The second primary goal of this work is to analyze boundaries of algebras of Lipschitz functions – with specific

focus on H-valued functions. Let (X, d) be a compact metric space, and set

Lip(X,F) =

{
f ∈ C(X,F) : sup

x,y∈X, x 6=y

|f(x)− f(y)|
d(x, y)

<∞
}
.

This subalgebra of C(X,F) is complete with respect to the norm ‖f‖Lip(X) = ‖f‖∞ + L(f), where

L(f) = sup
x,y∈X, x 6=y

|f(x)− f(y)|
d(x, y)

.

It is also common to norm this space by the equivalent norm ‖f‖ = max{‖f‖∞, L(f)}. The value of the “sum”

form is that ‖fg‖Lip(X) ≤ ‖f‖Lip(X) ‖g‖Lip(X) for all f, g ∈ Lip(X,F), which is not the case for the “max” version

of the norm.

In Section 3, we introduce the background required for the study of boundaries of function algebras and prove

that some of the basic results on boundaries of weak peak points for complex-valued function algebras extend

to algebras of H-valued functions. One approach to characterizing boundaries of weak peak points in uniform

algebras is to use a classical result due to Bishop [5, Theorem 2.4.1], and Section 4 contains results extending

this to algebras of Lipschitz functions over R, including algebras of quaternion-valued functions. In particular,

we give a sufficient condition under which a subalgebra A of Lip(X,F) satisfies the results of Bishop – which

ensures that the algebra has a Shilov boundary – by developing a new notion of local Lipschitz number for a

function around a class of maximizing sets of other functions in the algebra. If the algebra A has sufficiently

many functions with “corner”-like structures, then the algebra must have a Shilov boundary. This is analogous

to the study of algebras of continuous functions, which are often analyzed under the condition that they contain

sufficiently many “peaking functions.”
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2. The Generality of the Quaternions as the Range of Contin-
uous Functions

When one generalizes from analyzing functions taking values in C to functions taking values in a larger set, it is

desirable to extend the range to as large a set as is reasonable. Many of the results characterizing boundaries

of function algebras via weak peak points require that the set in which functions take their values be a normed

algebra with a multiplicative norm, i.e. satisfying ‖xy‖ = ‖x‖‖y‖ for all x and y. It turns out that, for associative

algebras over R, the quaternions is the most general set with these properties. This fact has been known at least

since the 1960’s [18, Exercise 5.5.a] (perhaps much longer), but there are few proofs available in the literature.

We give a new proof here based on quite recent results [1].

Proposition 1.
Suppose that A is an associative, unital, normed algebra over R such that ‖fg‖ = ‖f‖ ‖g‖ for all f, g ∈ A. Then
A is a division algebra. In particular, A is isometrically algebra isomorphic to R,C, or H.

Proof. By hypothesis,
∥∥f2

∥∥ = ‖f‖2 for all f ∈ A, so, by Abel and Jarosz [1], there exists a compact Hausdorff

spaceX such thatA is isometrically isomorphic to a subalgebra Â of C(X,H) (under the uniform norm). Therefore

we identify A with its function algebra representation Â and f ∈ A with f̂ ∈ Â. The norm is understood as the

uniform norm on Â.

Fix f ∈ A, then f(x) = a(x) + b(x)i + c(x)j + d(x)k, with a, b, c, d ∈ C(X,R). For any r > 0, note that

‖(f +r)(f −r)‖∞ = ‖f +r‖∞‖f −r‖∞ implies that there exists yr ∈M(f +r)∩M(f −r). Given any x1, x2 ∈ X,

we may assume that a(x1) ≤ a(x2), which gives

0 ≤ a(x2)− a(x1) =
(a(x2) + r)2 + (a(x1)− r)2 − 2r2 − a(x2)2 − a(x1)2

2r

≤ ‖f + r‖2 + ‖f − r‖2 − 2r2 − a(x2)2 − a(x1)2

2r
≤ ‖f + r‖2 + ‖f − r‖2 − 2r2

2r

=
(a(yr) + r)2 + (a(yr)− r)2 + 2b(yr)

2 + 2c(yr)
2 + 2d(yr)

2 − 2r2

2r
=
|f(yr)|2

r
≤ ‖f‖

2

r
.

Since this holds for all r > 0 and every x1, x2 ∈ X, it must be that a(x1) = a(x2) for every x1, x2 ∈ X, i.e. the

real part of f is constant.

Since A is unital, it contains the real constant functions. Thus the fact that Re(f) is constant implies Re(f) ∈ A.

Therefore f = 2 Re(f)− f ∈ A, which implies ff = |f |2 ∈ A. Since ff is real and A contains only functions with

constant real part, |f |2 is constant. If f 6≡ 0, then f−1 = 1
|f |2 f ∈ A, meaning A is a division algebra.

Fröbenius proved [6] that every finite-dimensional, associative, unital, normed division algebra over R is isomorphic

to R, C, or H. This was improved by Hurwitz [8], and the general theorem – which does not depend on the

assumption of finite dimensions – can be found in Rickart [14, Theorem 1.7.6] and in Żelazko [18, Theorem 5.5].

Since A is a unital, normed, associative, division algebra, A is isomorphic to R, C, or H, completing the proof.
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Since, as will be seen in the sections that follow, the study of boundaries via weak peak points is only natural

when the range of the functions being analyzed is a unital algebra over R with a multiplicative norm, this result

shows that H is the most general set to which the results apply.

The primary algebras of interest in this work are algebras of Lipschitz functions. While the results in [9] demon-

strating that Banach algebras satisfying ‖f2‖ = ‖f‖2 are function algebras give the most comprehensive analysis

of algebras of quaternion-valued functions, these results do not apply to algebras of Lipschitz functions, since the

Lipschitz norm does not satisfy ‖f‖2 = ‖f2‖, except in trivial cases.

3. Boundaries of Function Algebras

Following arguments detailed in [13], it is possible to construct boundaries for an algebra A ⊂ C(X,F) from the

maximizing sets of the functions in A. An m-set is a nonempty set E ⊂ X such that E = ∩f∈SM(f) for some

family of functions S ⊂ A, and a straightforward application of Zorn’s Lemma – along with the compactness of

the underlying domain – gives the existence of minimal m-sets with respect to inclusion. The collection of all

minimal m-sets is denoted by E0, and we set δA =
⋃
E∈E0 E. If a minimal m-set E is a singleton {x0}, then {x0}

is a weak peak point. If all the minimal m-sets are singletons, then δA is a boundary for A consisting exactly of

weak peak points. The next result generalizes [13, Lemma 3.4], from whose proof it is immediate, and we note

that it holds for any family of continuous F-valued functions, regardless of algebraic structure.

Lemma 3.1.
Let A ⊂ C(X,F) be any family of functions. Then δA is a boundary for A.

If A is a point-separating, uniformly closed subalgebra of C(X,C) over C – where X is a compact metric space

– then δA is the minimal boundary [7], but there are few other sufficient conditions on an algebra A ensuring

that δA is minimal in any sense. Nonetheless, there are conditions on the m-sets of A guaranteeing that δA is

contained in every closed boundary, which implies that the intersection of all closed boundaries is a boundary.

For algebras of complex-valued continuous functions over C, it is not necessary to study weak peak points in order

to guarantee that there exists a minimal closed boundary. It can be shown that every subalgebra of C(X,C) over

C that separates points has a minimal closed boundary [11, Theorem 3.3.2]. As the next example shows, this is

not the case for algebras of continuous functions over R.

Example 3.1.
Let D be the open unit disk in the complex plane, D′ = {z + 3 : z ∈ D}, and X = D ∪ D′. The disk algebra,
A(D) is the collection of functions that are continuous on D and analytic on D. We extend each f ∈ A(D) to D′
by conjugation, i.e. given f ∈ A(D), we set

f̂(z) =

{
f(z) z ∈ D
f(z − 3) z ∈ D′

, and define A =
{
f̂ : f ∈ A(D)

}
.
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It is clear that A is closed under addition and pointwise multiplication, since A(D) is and conjugation is both
additive and multiplicative. Moreover, A is closed under real scalar multiplication and contains the real constant
functions. It does not contain the complex constant functions, nor is it closed under complex scalar multiplication.
It is not difficult to show that A is uniformly complete, so A is a uniformly complete, point-separating algebra of
continuous functions over R.

Since each f̂ ∈ A is analytic on D, the maximum modulus principle gives that the maximum modulus of f̂ is
attained on the boundary of D, and it is clear that this same maximum modulus is attained on the boundary of
D′. Let z ∈ D with |z| = 1, then |f̂(z)| = |f̂(z + 3)| for all f ∈ A. The minimal m-sets of A therefore cannot
be singletons; each contains at least the two points {z, z + 3}. In fact, the minimal m-sets are exactly the pairs
{z, z + 3}, where |z| = 1. Since the unit circle centered at 0 and the unit circle centered at 3 are two disjoint
closed boundaries for A, the intersection of all closed boundaries is empty and thus clearly not a boundary.

This is the canonical example of a real function algebra in the sense of Kulkarni and Limaye [12], and a real

uniform algebra in the sense of Jarosz [9].

This example shows that the boundary theory for algebras over R is significantly different from the boundary

theory for algebras over C. Given that our interest in this work is algebras of quaternion-valued functions – which

are algebras over R – it is necessary to provide sufficient conditions under which the minimal closed boundary

does exist, and the minimal m-sets can provide such a condition. The next theorem is proven in [13, Theorem

3.11] for algebras of complex-valued functions. The proof here applies to algebras of functions taking values in

F = R, C, and H. We begin with two lemmas, which generalize and whose proofs follow from results in [13].

Lemma 3.2.
Suppose that A ⊂ C(X,F) is an algebra and that E is a minimal m-set for A. If f ∈ A attains its global maximum
modulus on E, then f is constant on E.

Lemma 3.3.
Suppose that A ⊂ C(X,F) is an algebra and that E is a minimal m-set for A. Then for every open set U
containing E there exists h ∈ A such that h is constant on E and E ⊂M(h) ⊂ U .

We now proceed with the main result of this section.

Theorem 1.
Suppose that X is a compact Hausdorff space and that A ⊂ C(X,F) is a subalgebra whose minimal m-sets are
singletons, then δA is contained in every closed boundary. In particular, the intersection of all closed boundaries
is a closed boundary.

Proof. Let B be a closed subset of X, and suppose that there exists a minimal m-set E such that E ∩B = ∅.

Then E ⊂ X \B, which is open, and by Lemma 3.3 there exists f ∈ A such that E ⊂M(f) ⊂ X \B. Therefore

M(f) ∩ B = ∅, proving B is not a boundary for A. Thus, if B is a closed boundary for A, then B ∩ E 6= ∅ for

every minimal m-set E. Since the minimal m-sets are singletons, by assumption, we must have that E ⊂ B for

every minimal m-set E, i.e. δA ⊂ B. Since δA is a boundary – by Lemma 3.1 – that is contained in every closed

boundary, the closure of δA is the minimal closed boundary.
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Therefore, for an algebra A ⊂ C(X,F), it is sufficient to show that the minimal m-sets are singletons in order

that the Shilov boundary exist.

4. Boundaries for Algebras of Lipschitz Functions over R

Constructing boundaries via m-sets is only useful if there is a systematic method for showing that the minimal

m-sets are singletons. One technique for doing this in uniform algebras is to use a classical result, due to Bishop

[5, Theorem 2.4.1]. The version given here is a generalization due to Yates [17]. Recall that Ranπ(f) is the

peripheral range of f , i.e. the set of range values of maximum modulus.

Theorem 2 ([17], Lemma 3.4.3).
Let A ⊂ C(X,C) be a uniform algebra, x0 ∈ δA, and f ∈ A with f(x0) 6= 0. Then there exists h ∈ A such that
x0 ∈M(h) ∩M(fh), Ranπ(h) = {1}, and Ranπ(fh) = {f(x0)}.

The proof given by Bishop – and subsequently adapted and generalized in several directions – is unique to algebras

complete with respect to the uniform norm. Nonetheless, the result carries in certain other algebras. Moreover,

it is not necessary that the range be C; the result also carries when F = R or F = H. The particular algebras that

we are most interested in are the algebras of Lipschitz functions on compact metric spaces.

Lemma 4.1.
If (X, d) is a compact metric space, x0 ∈ X, and f ∈ Lip(X,F) with f(x0) 6= 0, then there exists h ∈ Lip(X,F)
such that x0 ∈M(h) ∩M(fh), Ranπ(h) = {1}, and Ranπ(fh) = {f(x0)}.

A proof of this result for complex-valued Lipschitz functions can be found in [10], and that proof applies to this

case as well. Unfortunately, the result does not hold in subalgebras of Lip(X,F), even norm-complete subalgebras.

Example 4.1.
Let A = C1([0, 1],R) be the algebra of real-valued continuous functions on [0, 1] with continuous first derivative.
This is a complete subalgebra of Lip([0, 1],R) that contains the constant functions and separates points (cf. [16]).
A straightforward application of the product rule shows that Lemma 4.1 does not hold in this algebra. Suppose
that x0 ∈M(h) ∩M(fh) ∩ (0, 1) for some nonzero h. Then h′(x0) = 0 and (fh)′(x0) = 0, so

0 = (fh)′(x0) = f(x0)h′(x0) + f ′(x0)h(x0) = f ′(x0)h(x0).

Since h(x0) 6= 0 (as x0 ∈M(h)), it must be that f ′(x0) = 0. Thus for x0 ∈ (0, 1) we can only find an (nonzero) h
such that h and fh are both maximized when f ′(x0) = 0.
To see that δA = [0, 1], note that for any x0 ∈ [0, 1] the function fx0(x) = 1 − (x − x0)2 attains its maximum
modulus exclusively at x0, which is sufficient to ensure that {x0} is a minimal m-set.

The problem in C1([0, 1],R) is that it is, in general, not possible to find h such that both h and fh are maximized

at a specified point x0. The smoothness of the differentiable functions is what causes the result to fail, which

means that, in subalgebras of Lip(X,F), we will require sufficiently many non-smooth functions in order to ensure
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that Lemma 4.1 holds. In order to show that each point is a minimal m-set, we only need to find a function h

such that fh is maximized exclusively at x0,

The theorem that follows gives a criterion on subalgebras of C(X,F) that will ensure that the minimal m-sets are

singletons.

Theorem 3.
Let X be a compact Hausdorff space, A ⊂ C(X,F) a point-separating algebra, and E ⊂ X a minimal m-set for
A. If for every f ∈ A with f |E 6≡ 0 there exists h ∈ A with M(h)∩E 6= ∅, Ranπ(h) = {1}, and M(fh)∩E 6= ∅,
then E is a singleton.

Proof. Suppose that the hypotheses of the theorem all hold, and fix f ∈ A with f |E 6≡ 0. Also, choose x0 ∈ E,

and set λ = f(x0). By hypothesis there exists h ∈ A such that Ranπ(h) = {1}, M(h)∩E 6= ∅, and M(fh)∩E 6= ∅.

Since E ∩M(h) is an m-set – and E is minimal – it must be that E ⊂ M(h) and E ⊂ M(fh). Since fh attains

its maximum modulus on E, Lemma 3.2 gives that fh is constant on E. Since h(x) = 1 for all x ∈ E, it must be

that (fh)(x) = f(x) = λ for all x ∈ E. Thus every f ∈ A that is not identically 0 on E is constant on E. Clearly

every function f ∈ A that is identically 0 on E is also constant on E, so every f ∈ A is constant on E. Since A

separates points, it must be that E is a singleton.

In particular, if this theorem holds for all E ∈ E0, then all minimal m-sets are singletons and Theorem 1 provides

the existence of a minimal closed boundary.

4.1. The Shilov Boundary in Subalgebras of Lip(X,F)

In this section we generalize to a specific class of algebras of Lipschitz functions and prove the existence of the

Shilov boundary via weak peak points for these subalgebras of Lip(X,F), where throughout this section X is

assumed to be a compact metric space. Constructing boundaries via the minimal m-sets for such algebras is an

appropriate technique whenever one can guarantee the existence of certain functions that isolate the points of the

minimal m-sets.

Suppose that E is a minimal m-set and that h is a function such that E ⊂ M(h) and h|E ≡ γ for some γ ∈ F.

We say that h has a “corner” on E if

`E(h) := sup
ε>0

{
inf

0<d(x,E)<ε

| |h(x)| − |γ| |
d(x,E)

}
> 0.

It is possible that there exists a value of ε0 such that the set {x ∈ X : 0 < d(x,E) < ε} is empty for all ε ≤ ε0. If

that is the case, then we define `E(h) = +∞. Note that the hypothesis that h|E ≡ γ is not really an assumption,

since E ⊂ M(h) automatically implies that h is constant on E, by Lemma 3.2. Furthermore, in the case that h

has a corner on E, then E and M(h) \ E must be separated, and we may assume without loss of generality that

M(h) = E.
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Lemma 4.2.
Let E ⊂ X be a minimal m-set for an algebra A ⊂ Lip(X,F) and h ∈ A be such that E ⊂ M(h). If `E(h) > 0,
then there exists k ∈ A such that `E(k) > 0 and M(k) = E.

Proof. Suppose that inf {d(x,E) : x ∈M(h) \ E} = 0. Since h attains its maximum modulus on E, h is

constant on E, and we denote by γ the value h takes on E. Since inf {d(x,E) : x ∈M(h) \ E} = 0, for any ε > 0

there exists xε ∈M(h) \E such that d(xε, E) < ε. Moreover, as xε ∈M(h), |h(xε)| − |γ| = 0, which implies that

`E(h) = 0.

Thus `E(h) > 0 implies inf {d(x,E) : x ∈M(h) \ E} = δ > 0, and U = {x ∈ X : d(x,E) < δ/2} is an open set

such that E ⊂ U and (M(h)\E)∩U = ∅. By Lemma 3.3, there exists a function g ∈ A such that E ⊂M(g) ⊂ U .

Since E ⊂ M(h), it is also true that E ⊂ M(hg), but U ∩ (M(h) \ E) = ∅ implies that |h(x)g(x)| < ‖hg‖∞ on

X \ E. Set k = hg, then M(k) = E. Finally, g is also constant on E, and we denote the value of g on E by η.

Then

||h(x)g(x)| − |γ||η||
d(x,E)

=
|γ||η| − |h(x)g(x)|

d(x,E)
= |h(x)| |η| − |g(x)|

d(x,E)
+ |η| |γ| − |h(x)|

d(x,E)
,

which implies that `E(k) = `E(hg) ≥ |η|`E(h) > 0.

This leads to an immediate corollary.

Corollary 1.
Suppose that {x0} is a minimal m-set for an algebra A ⊂ Lip(X,F) and that h ∈ A is such that {x0} ⊂ M(h)
and `{x0}(h) > 0. Then there exists k ∈ A such that M(k) = {x0}; in particular every weak peak point is a
strong peak point.

We need one final lemma before we proceed with the main result.

Lemma 4.3.
Suppose that E is a minimal m-set for A, h ∈ A, E ⊂ M(h), ‖h‖∞ = 1, and 0 < `E(h) < +∞. Then
`E(hn) = n`E(h). If `E(h) = +∞, then `E(hn) = +∞.

Proof. In the case that `E(h) = +∞, then there exists ε > 0 such that {x ∈ X : 0 < d(x,E) < ε} = ∅, which

is independent of h. Thus `E(hn) = +∞ for all n ∈ N.

If 0 < `E(h) < +∞, then note that

1− |hn(x)| = (1− |h(x)|)
(
1 + |h(x)|+ |h2(x)|+ . . .+ |hn−1(x)|

)
≤ (1− |h(x)|)n,

which implies that `E(hn) ≤ n`E(h). Since E ⊂ M(h) and ‖h‖∞ = 1, Lemma 3.2 gives that |h(x)| = 1 for all

x ∈ E, which means that 1+ |h(x)|+ |h2(x)|+ . . .+ |hn−1(x)| = n for all x ∈ E. Since h is continuous, given η > 0

there exists ε > 0 such that 1 + |h(x)| + |h2(x)| + . . . + |hn−1(x)| ≥ n − η whenever 0 < d(x,E) < ε. Therefore

1 − |hn(x)| ≥ (1 − |h(x)|)(n − η) whenever 0 < d(x,E) < ε. Thus `E(hn) ≥ `E(h)(n − η), which, by the liberty

of choice of η, gives that `E(hn) ≥ n`E(h).
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We can characterize a class of algebras over R of F-valued Lipschitz functions for which there exists a minimal

closed boundary.

Theorem 4.
Let (X, d) be a compact metric space and A a subalgebra of Lip(X,F). If for every minimal m-set E ⊂ X there
exists h ∈ A such that E ⊂M(h) and `E(h) > 0, then for every f ∈ A with f |E 6≡ 0 there exists k ∈ A such that
E ⊂M(k) and M(fk) = E.

Proof. Without loss of generality we may assume that ‖h‖∞ = 1, so by Lemma 4.2 we may also assume that

M(h) = E. Fix f ∈ A, then it is further without loss of generality that we assume max
x∈E
|f(x)| = 1, since f and

1
max
x∈E

|f(x)|f have the same maximizing set.

Firstly, suppose that L(f) = 0. Then f is constant on X, so |f(x)| = ‖f‖∞ for all x ∈ X. Therefore |h(x)f(x)| <

|f(x)| = ‖f‖∞ for all x 6∈ E and |h(x)f(x)| = |f(x)| = ‖f‖∞ for all x ∈ E, so M(fh) = E.

On the other hand, suppose that L(f) 6= 0. If `E(h) = +∞, then E is open, which implies that there exists n ∈ N

such that |hn(x)| < 1
‖f‖∞ for all x ∈ X \ E, so |hn(x)f(x)| < 1

‖f‖∞ |f(x)| ≤ 1, i.e. M(fhn) = E.

If 0 < `E(h) < +∞, then by Lemma 4.3 there exists n ∈ N such that `E(hn) > 2L(f), so there is also an ε > 0

such that

inf
0<d(x,E)<ε

1− |hn(x)|
d(x,E)

> 2L(f).

Choose ε1 > 0 so that ε1 ≤ min
{
ε, 1

2L(f)

}
, then 1−|hn(x)|

d(x,E)
> 2L(f) for all x ∈ V := {x ∈ X : 0 < d(x,E) < ε1}.

Set X1 = {x ∈ X : |f(x)| ≥ 1}, then clearly |hn(x)f(x)| < 1 for each x ∈ X \X1, so let x ∈ V ∩X1 and choose

xe ∈ E such that d(x,E) = d(x, xe). Then |f(x)| ≥ 1 implies

1− |f(xe)| ≤ |f(x)| − |f(xe)| ≤ |f(x)− f(xe)| ≤ L(f)d(x, xe) < L(f)ε1 ≤
1

2
,

which gives |f(xe)| > 1
2
. As xe ∈ E and max

y∈E
|f(y)| = 1, it follows that 1 ≤ 1

|f(xe)| < 2. Since x ∈ V ,

1

|f(xe)|
− |hn(x)| ≥ 1− |hn(x)| > 2L(f)d(x, xe) >

1

|f(xe)|
L(f)d(x, xe) ≥

1

|f(xe)f(x)|L(f)d(x, xe)

≥ |f(x)− f(xe)|
|f(xe)f(x)| =

∣∣∣∣ 1

f(xe)
− 1

f(x)

∣∣∣∣ .
Therefore

|hn(x)| <
∣∣∣∣ 1

f(xe)

∣∣∣∣− ∣∣∣∣ 1

f(xe)
− 1

f(x)

∣∣∣∣ ≤ ∣∣∣∣ 1

f(xe)
−
(

1

f(xe)
− 1

f(x)

)∣∣∣∣ =
1

|f(x)| ,

which proves |hn(x)f(x)| < 1. Thus |hn(x)f(x)| < 1 for all x ∈ V , so we set U = V ∪E = {x ∈ X : d(x,E) < ε1},

which is an open neighborhood of E such that |hn(x)f(x)| ≤ 1 for all x ∈ U and |hn(x)f(x)| = 1 implies x ∈ E.

By Lemma 3.3, there exists a function g ∈ A such that E ⊂ M(g) ⊂ U , and it is without loss of generality

that we assume ‖g‖∞ = 1. There also exists m ∈ N such that max
x∈X\U

|g(x)|m < 1
‖f‖∞ . Thus, (i) for x ∈ E,
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|hn(x)gm(x)f(x)| ≤ (1)(1)(1) = 1, (ii) for x ∈ V , |hn(x)gm(x)f(x)| ≤ |hn(x)f(x)| < 1, and (iii) for x ∈ X \ U ,

|hn(x)gm(x)f(x)| ≤ |gm(x)f(x)| < 1
‖f‖∞ ‖f‖∞ = 1. As max

x∈E
|hn(x)gm(x)f(x)| = 1, it follows that k = hngm

implies M(fk) ⊂ E. Since E is a minimal m-set, it must actually be that E = M(fk), which is what was to be

shown.

Remark: As was previously noted, these kinds of arguments are made in uniform algebras by assuming the

completeness of the algebra. In the setting of Lipschitz algebras, the hypothesis that there exist functions h ∈ A

with `E(h) > 0) for every minimal m-set E should be viewed as a replacement for the assumption of completeness.

This leads to the final result concerning the Shilov boundary for algebras of Lipschitz functions that satisfy the

hypotheses of Theorem 4.

Corollary 2.
If A is a point-separating subalgebra of Lip(X,F) such that for every minimal m-set E there exists h ∈ A with
E ⊂M(h) and `E(h) > 0, then the intersection of all closed boundaries is a closed boundary.

Proof. Let E be a minimal m-set for A, and let f ∈ A be any function. If f is identically 0 on E, then f is

clearly constant on E, so assume that f is not identically 0 on E.

By Theorem 4, there exists k ∈ A such that E ⊂ M(k) and M(fk) = E. By Lemma 3.2, every function that

attains its maximum modulus on E is constant on E, so k and fk are both constant on E. Since both k and fk

are constant on E – and k is not 0 on E – it must be that f is also constant on E.

By assumption, the algebra A separates the points of X, so the fact that every function f ∈ A is constant on E

implies that E is a singleton. Since all minimal m-sets are singletons, Theorem 1 gives that the closure of δA is

the minimal closed boundary.

This corollary shows that the Shilov boundary exists for all subalgebras of Lip(X,F) that satisfy the hypotheses

of Theorem 4, regardless of whether the range of the functions is R, C, or H.
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