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Abstract

We study the class of totally shattered graphs and their connection to strong universal
graphs. The class of totally shattered graphs is a graph-theoretic analogue of (n, k)-universal
set systems. We also consider the testing dimension of graphs, which is a natural extension of the
Vapnik-Chervonenkis dimension for graphs, and prove some extremal and structural properties
of graphs with specific testing dimensions. Finally, we explore a conjecture that totally shattered
graphs are quasirandom.

1 Introduction

Let G = (V, E) be a finite, simple, undirected graph. For a vertex v € V, the open (resp. closed)
neighborhood of v is defined as N (v) = {u | (u,v) € E} (resp. N(v) = N(v)U{v}). A set of vertices
S is shattered (resp. externally shattered) by G if for every subset A of S, there is a vertex v4 € V
such that A = N(v4) NS (resp. A= N(v4)NS). So shatterings use closed neighborhoods whereas
external shatterings allow only open neighborhoods. In this case, we also say that v shatters A
in S or that v4 yields the shattering of A within S. Unless otherwise stated, we refer to non-
external shatterings as simply shatterings. An easy but important observation is that, if A, B C S,
A # B, vy shatters A in S and vp shatters B in S, then v4 # vg. The Vapnik- Chervonenkis
(VC) dimension of a graph G is the size of the largest shattered subset of V(G). The testing
dimension of a graph G is the largest k so that every subset S C V of k vertices in G is shattered.
The notation VCdim(G) and tdim(G) are used to denote the VC and testing dimensions of G,
respectively. We use ztdim(G) to denote the ezternal testing dimension of G. The term shattering
means non-external shattering; when external shattering is meant, it will be explicitly mentioned.

The notion of shatterings for hypergraphs is well-studied in statistical learning theory and
combinatorial geometry Total shatterings in hypergraphs or set-systems was studied by Seroussi
and Bshouty [16] under the name of (n, k)-universal sets. Graph shatterings were considered earlier
by Anthony, Brightwell, and Cooper [2] and by Kranakis et al. [10]. The latter paper also contained
several nice generalizations and complexity results on these problems. Total shattering in graphs
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was explored in [9] in response to a remark made in [2] about this natural extension of the Vapnik-
Chervonenkis dimension of graphs. In fact, the external k-shattering condition is equivalent to the
k-extendible property in finite model theory [15].

Interestingly, there is a connection between totally shattered graphs and universal graphs, i.e.,
graphs which contain all small graphs as (induced) subgraphs. This connection was mentioned in
[9] but was used earlier in works on explicit construction of universal graphs [6]. Universal graphs
have been studied in the 1960s by Moon [11] and Chung and Graham [7] and others. These graphs
are important for applications in areas such as circuit design and testing, data representation, and
fault-tolerance in networks. In this work, we describe a stronger notion of universality for graphs
that gives a tight characterization of totally shattered graphs. Although this notion, which we call
hyperuniversality, has been studied as a property of random graphs (see Bollobas [4]), our interest
is to use it in characterizing totally shattered graphs.

Another main problem studied in this work is the determination of the function #(k) which is
defined as the minimum n so that there is a graph on n vertices with testing dimension k. In [9], it
was observed that 2 +k—1 < t(k) < k?2¥(140(1)). The lower bound is obtained by looking at how
many vertices are required to shatter a single set of k£ vertices. The upper bound is obtained by a
simple probabilistic argument on random graphs. Here, we improve the lower bound by exploiting
the fact that the minimum dominating set in a graph with testing dimension k¥ must be of size at
least k. Using this, we manage to show that ¢(k) = Q(k2*). Tt is an open question to determine
the exact asymptotics of ¢(k).

We describe some notation that we used throughout this note. We use [n] to denote the set
{1,2,... ,n}. For a graph G = (V, E) and for a subset U C V of vertices in G, let G[U] denote the
induced subgraph with vertex set U in G. The degree of a vertex v is denoted deg(v). We denote
0(G) to be the minimum degree of G (smallest degree of a vertex) and A(G) to be the maximum
degree of G (largest degree of a vertex). If G is a connected graph, then the vertex-connectivity of
G, i.e., the minimum number of vertices of G whose removal disconnects G, is denoted k(G). A
graph G is called k-connected if k(G) > k. A dominating set of G is a set D of vertices where each
vertex of G is either in D or adjacent to some vertex in D. The smallest dominating set of G is
denoted v(G).

2 Total Shatterings of Graphs

The smallest graph with a testing dimension equals 1 is K. In what follows we will deal only with
graphs of testing dimension of at least 2. We briefly review some observations made in [9] about
totally shattered graphs. For some of the claims, we have included some proof sketches.

Fact 1 If a graph G = (V, E) has a k-dominating set, then tdim(G) < k.
Proof: There is no empty shattering for the set of dominating vertices. U

Proposition 2 Let G = (V, E) be a graph with tdim(G) = k > 2. Then (i) diam(G) = 2. (ii)
For eachv € V, 2671 — 1 <deg(v) < |V|—2F1 4+ 1. (iii) 2¢ 2 < w(Q) < |V| - 2F 1 + 1.

A graph G is called universal for a family of graphs H if G contains all graphs H € H as induced
subgraphs. The notion of universal graphs was studied by Moon [11] (see also Chung and Graham
[7]) and has been studied by others in relation to sparse graphs and small trees. We say that a
graph is k-universal if it is universal for all graphs with at most k vertices.



Proposition 3 Let k> 1. If G = (V, E) is a graph with tdim(G) = k, then G is k-universal.

Recall that #(k) is the minimum n such that there is a graph on n vertices with a testing
dimension of k. In [9], it was found that ¢(2) = 8. The problem of determining exact values for #(3)
and beyond is still an open question. Nevertheless, some information on the asymptotic behavior
of t(k) is available.

Proposition 4 For k> 2, 2% + k — 1 < t(k) < k22F(1 + o(1)).

Proof: (sketch) To see the lower bound, take a k-clique (which exists since G is k-universal).
There must exist 2 — 1 external vertices that yield all the shatterings (except for the full set)
for the k-clique. For the upper bound, use the probabilistic method and consider the probability
that a random graph G(n,1/2) is not externally k-shattered. This is at most (})2%(1 — 27%)n=F;
forcing this last expression to be strictly less than 1 and solving for n, we get the upper bound of
k22%(1 4 o(1)). The argument for non-external shattering is similar. O

3 Our Results

An easy extra fact is that the diameter of the complement of a graph with testing dimension & must
also be 2. So these graphs form a special subset of the well-studied class of graphs with diameter
2.

Lemma 5 (Deviation bounds) Let G = (V,E) be a graph with tdim(G) = k > 2. Then (i)
tdim(G\ {z}) > k—1, for every x € V. (ii) tdim(G\ N(z)) > k— 1. (iii) tdim(G) = k+ {0, +1}.

Proof: (i) Take S C V' \ {z} of size k — 1 and an arbitrary A C S. Consider the vertex v that
shatters A C S U {z}, where z € A, in G; note that v € N(x). Thus v also shatters A in S (over
G\ {z}). Thus S is shattered in G \ {z}. To prove (ii), we can use the same proof idea as in (i).
(iii) Let S C V be an arbitrary subset of size k — 1 and let A C S. Take a vertex z not in S
that yields the empty shattering for S in G, i.e., x is adjacent to none of the vertices in S. Consider
the vertex v that shatters (S\ A) U{z} in SU{z} (over G). Note that v shatters A in S (over G).

So tdim(G) > k — 1. Exchanging the roles of G and G, the testing dimension could increase by at
most one (or stays fixed). 0

3.1 Improved bounds on §(G) and t(k)

In this section we show a larger bound on the minimum degree §(G) which in turn could be used
to improve the lower bound on ¢(k) in graphs G with tdim(G) = k.

Lemma 6 Let G = (V,E) be a graph with tdim(G) = k > 3. Then §(G) > k2F2,

Proof: Let x € V be arbitrary and let S C V' \ {z} be of size k — 2. Let © be a vertex in G that
is adjacent to all of S U {z}. Fix a subset T' C S. For each y € V' \ S U {z}, let vr(y) be the
vertex that shatters T U {z} U {y} in SU {z} U {y}. Note, if Dr = [J{vr(y) | y € SU{z}}, then
Dr U {9} is a dominating set of G. Thus |Dr| > k. Also, note that Dy, N Dy, = 0, if T}, T, C S
and T; # Ty. Thus z is adjacent to at least k2F=2 vertices, for each subset 7" of S and each vertex
in the dominating set Dr. ]
Remark: The proof actually shows that §(G) > (y(G) —1)2*¥~2. We can improve x(G) by adapting
the above proof.



Theorem 7 For k > 2, t(k) > 6+ (k —1)2k~1.

Proof: Let G = (V, E) be any graph with tdim(G) = k. First, we present a proof that gives the
same asymptotic expression but does not give the sharpest bounds. Note that any vertex x € V is
adjacent to at most |V| — k2¥=2 (since it has to be non-adjacent to at least k2¥=2 other vertices,
by the same reasoning as in the proof of Lemma 6). Hence k2%~2 < deg(z) < |V| — k2¥~2 which
implies |V| > k2k~1.

The sharper proof begins by observing that (k) < t(k + 1) — (k + 1)2¥~1, by the neighborhood
deletion bound. Rearranging to t(k +1) > (k) + (k + 1)2%~1, this yields t(k) > #(2) + Z§:3 §2972,
Thus (k) > 6 + (k — 1)2F 1, O

The next corollary shows that there is a linear gap left between the lower and upper bounds for
t(k). An obvious open question is if this gap could be narrowed even further.

Corollary 8 For k> 2, 6+ (k — 1)25~! < #(k) < k22%(1 + o(1)).

3.2 Hyperuniversality

In this section we show a close connection between a stronger notion of universality and the notion
of externally shattered graphs.

Definition 1 A graph G = (V, E) is k-hyperuniversal if for each graph H with at most k vertices,
for each subset A C V(H), where |A| < k, and for each B C V(G) for which there is an isomorphism
g : H[A] — G[B], there is an embedding f : H — G that completes g, i.e., fla = g.

Next we describe the notion of external shatterings. Recall that this is shatterings when only
open neighborhoods are allowed. So we say that a subset S C V is externally shattered if every
shattering of subsets of S is yielded by vertices from V'\ S. The external testing dimension ztdim(G)
is the largest k such that all k-subsets of G are externally shattered. We state and prove a tight
characterization of totally (externally) shattered graphs with hyperuniversal graphs in the next
result.

Theorem 9 Let G = (V,E) be a graph and let k > 1. Then G is k-hyperuniversal if and only if
ztdim(G) =k — 1.

Proof: (Ouly if) Let G be k-hyperuniversal. Let S C V(G) be a subset of size k — 1 and let
A C S be arbitrary. Set H = ([k], Eg) to be a graph on k vertices such that H[{1,... ,k —1}] and
G|[S] are isomorphic through the isomorphism g. Then let vertex k in H be connected only to the
vertices in g7'(A). Since G is k-hyperuniversal, there is an embedding f : H < G that completes
g. Thus f(k) is a vertex in G that shatters A in S. Thus ztdim(G) = k — 1.

(If) By induction on k£ > 1. The base case is trivial. Assume that the claim is true for £ < k
and we now establish the claim for £ = k+ 1. Let G be a graph with ztdim(G) = k. To prove that
G is (k + 1)-hyperuniversal, let H be any graph on k + 1 vertices, let A C V(H) be any subset
with |A| < k+ 1, let B C V(G) be such that there is an isomorphism g whereby H[A] = G[B].
If |A| = k + 1, we are done; otherwise let x € V(H) \ A. By inductive hypothesis, there is an
embedding f : H[V(H) \ {z}] — G that completes g. Set S = f(V(H) \ {z}); note that S C V(G)
is of size k and hence is externally shattered in G. Let A = f(N(z)) be the image set of the
neighbors of z in H. Since ztdim(G) = k, there is a vertex y € V(G) that externally shatters A
in S. We can now complete the embedding f to f : H < G by setting f(v) = f(v), if v # , and
f(z) = y. Thus G is k-hyperuniversal. O



3.3 Graphs with small testing dimension

In this section we consider #(k), for kK = 2,3. The exact value for ¢(2) was given in [9]. The exact
values for #(3) and beyond are unknown; although one can given some lower and upper bounds.

Lemma 10 ¢(2) = 8.

Proof: (sketch) The upper bound is given by two 3-regular graphs on 8 vertices as shown in
Figure 1. The lower bound uses the fact that a graph G with tdim(G) = k is 2-connected and has

Figure 1: The (only) two minimal graphs with testing dimension 2.

d(G) > 3. Thus, by a result of Dirac, it must have a simple cycle of length at least 25(G) > 6.
Then, one can show that graphs with 6 and 7 vertices that has a 6-cycle cannot shatter all 2-sets.
O

To lower bound #(3), we will use some counting arguments (especially on triples) on graphs with
testing dimension 3. Our goal is to show that #(3) > 17. For upper bounds, it is known that the
Paley graph Pyg gives t(3) < 29.

Lemma 11 (Triple inequalities) Let G = (V, E) be a graph with tdim(G) = k > 2, where |V| = n,
with degree sequence di > ... > d,. Then

()= (") =55 ()= (5 ) =)

Proof: Each triple of vertices must be shattered and hence must belong to some neighborhood of a
vertex. Likewise, each triple of vertices must be avoid by some vertex (and hence its neighborhood).
O

3.4 Preservation properties of external shatterings

We observe some well-behaved properties of externally shattered graphs.

Proposition 12 Let G = (V, E) be a graph with ztdim(G) = k. Then (i) ztdim(G[N(z)]) = k-1,
for each x € V. (ii) ztdim(G[V \ N(z)]) = k — 1, for each z € V. (iii) ztdim(G) = k.

Proof: (i) Let z € V be arbitrary. Let S C N(z) be a subset of size k — 1 and let A C S be an
arbitrary subset of S. Consider the vertex v that externally shatters AU {z} C S in G. Note that
v € N(z)\ S. Thus ztdim(G[N(z)]) = k — 1.

(iii) Since all shatterings are external, they exist symmetrically in G. O

The next observation generalizes the neighborhood projection bounds to an arbitrary collection.

Proposition 13 Let G = (V, E) be a graph with xtdim(G) = k. Let v1,... ,v; € V be any collec-
tion of vertices. Let N(v;) be either the neighborhood of v; or the complement of the neighborhood
of vi. Then ztdim(G[N!_;N(v;)]) = k —t.



3.5 Internal versus External Shatterings

In this section we study some properties that link the two types of shatterings.

Proposition 14 Let G = (V,E) be a graph with ztdim(G) = k. If tdim(G) = k + 1 then
ztdim(G) = k.

Let zt(k) be the minimum n such that there is a graph G on n vertices with ztdim(G) = k.

Conjecture 15 limy o zt(k)/t(k) = 1.

3.6 Quasirandomness

Quasirandom graphs were studied by Chung, Graham, and Wilson [8]. They listed six equivalent
properties that define this class of graphs. In this section, we make the following observation.

Proposition 16 If there is a family of graphs G = {Gg}k, where tdim(Gy) = k and |V(Gy)| =
O(k2F) then G is quasirandom.

Not all family of quasirandom graphs have non-trivial testing dimension. Note that if one proves
that totally k-shattered graphs are not quasirandom then ¢(k) = w(k2*) (an indirect argument for
a better lower bound).

4 Explicit constructions

The proof using probabilistic methods showed that graphs with arbitrary testing dimension k exists
for graph sizes beyond n > k22*. If one asks for an explicit construction, it turns out that we can
appeal to Paley graphs [12]. A Paley graph P, = (V, E) is defined on V = [p], where p is a prime
congruent to 1 modulo 4, and where (z,y) € E if and only if z — y is a quadratic residue modulo p.
The following proposition is apparently implicit in Bollobas and Thomason [6] (a basic exposition
of this idea was given in Alon [1]) whose main concern was to construct explicit universal graphs;
our main source of reference is Blass, Exoo, and Harary [5].

Theorem 17 For all k > 0, if p > k2222 then tdim(P,) > k.

Proof: (adapted from [1, 5]) Let P, = (V, E) be a Paley graph, for some prime p congruent to 1
modulo 4 (this can be generalized to prime powers as well). Take S C V to be a subset of k vertices
and let A C S be arbitrary. Denote the quadratic character over Z, by x : Z; — {—1,1}. Recall
that z is adjacent to y if and only if x(x — y) = 1; this yields an undirected graph since —1 is a
quadratic residue modulo p. We need the following deep theorem of A. Weil (1948).

Claim 18 (A. Weil) Let x : F; — C* be a nontrivial character of the finite field Fy on q elements
and let f be a degree d polynomial with at most t zeros. Then } . |x(f(2))] < (d—1),/q.

We can express the condition for (external) shattering of A in S via a polynomial g defined as
follows.

9(8) =>_ [ +x@-w) [[ @ —xz—yv)

¢S yeA yeS\A



So A is shattered in S if and only if g(S) > 0. Next consider another polynomial h that is defined
as follows.

=Y J[a+x-») J] @-x(@-1v)
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Note that h(S) — ¢g(S) < k2¥~1. Also note that
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Therefore, g(S) > h(S) — k28~ > p+ /pl(k — 2)25~1 + 1] — k2*~1. By choosing p > k?2%%=2, we
can ensure that g(S) > 0 for arbitrary S and A C S. O

We found that ztdim(P,) = 3, whenever p > 29; in fact, 29 is the smallest size graph of testing
dimension 3 (external or otherw1se) that we are aware of. We also verified that ztdim(P,) = 4,
whenever p > 89. These bounds are smaller than what is predicted using Theorem 17. We are
not aware of any explanation of why the Paley graphs behave monotonically with respect to the
testing dimension. Also, is there an elementary proof for why large Paley graphs have high testing
dimension (without using Weil’s theorem)?

5 Conclusions

We conclude this note with the following open questions and conjectures. (i) What is the correct
asymptotic expression for ¢(k)? (ii) Is the minimal totally shattered graph regular or Hamiltonian
or vertex-transitive? (iii) Is there recursive, explicit non-Paley construction for (minimal) totally
shattered graphs? (iv) What is the complexity of computing the testing dimension of graphs?
Papadimitriou and Yannakakis [14] proved that the complexity of computing the VC dimension of
a (hyper)graph is LOGNP-complete. (v) There is a result of Promel and Rodl [13] showing that if
a graph and its complement don’t contain logn-clique then it is log n-universal; these graphs are
called non-Ramsey graphs. Is there a connection between non-Ramsey graphs and totally shattered
graphs?
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