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A classical lazy random walk on cycles is known to mix with the uniform distribution.
In contrast, we show that a continuous-time quantum walk on cycles exhibits strong
non-uniform mixing properties. First, we prove that the instantaneous distribution of a
quantum walk on most even-length cycles is never uniform. More specifically, we prove
that a quantum walk on a cycle Cn is not instantaneous uniform mixing, whenever n
satisfies either: (a) n = 2u, for u ≥ 3; or (b) n = 2uq, for u ≥ 1 and q ≡ 3 (mod 4).
Second, we prove that the average distribution of a quantum walk on any Abelian
circulant graph is never uniform. As a corollary, the average distribution of a quantum
walk on any standard circulant graph, such as the cycles, complete graphs, and even
hypercubes, is never uniform. Nevertheless, we show that the average distribution of a
quantum walk on the cycle Cn is O(1/n)-uniform.

Keywords: Quantum walk; continuous-time; mixing; circulant.

1. Introduction

Quantum walk on graphs is a non-trivial and interesting generalization of the clas-
sical random walk on graphs. A mathematical theory of both has proved to be
relevant to physics, computer science, and more recently, to quantum information.
An excellent survey of quantum walk on graphs is given by Kendon.1 In this work,
we will focus on continuous-time unitary quantum walk on finite graphs. Our goal
is to show strong non-uniform mixing properties of a continuous-time quantum
walk on cycles and circulant graphs, which demonstrates a distinct behavior from
a classical lazy random walk on the same graphs.

A continuous-time quantum walk on a graph G = (V, E) is defined using
Schrödinger’s equation by treating the adjacency matrix of G as the Hamiltonian
of the quantum system. This treatment is standard in the physics literature (for
example, see Ref. 2), where G is commonly known as an infinite low-dimensional
lattice. This corresponds to a quantum analogue of the important investigations of
classical random walks on Z

d, for d ≥ 1, by Polya and others (see Ref. 3).
Yet, the case when G is a finite graph has only been analyzed recently due to

its potential applications in developing efficient quantum algorithms (see Refs. 4
and 5). An interesting mixing property of a continuous-time quantum walk on
the hypercube graphs was observed by Moore and Russell.6 They showed that a
continuous-time quantum walk on the hypercube is instantaneous uniform mixing;
that is, there are times when the probability distribution of the quantum walk, when
measured, exactly equals the uniform distribution on the vertices of the hypercube.
Although a classical random walk on the hypercube also mixes to uniform, a quan-
tum walk hits the uniform distribution asymptotically faster.

Subsequent works showed that several other natural family of graphs do not
share this uniform mixing property with the hypercube. For example, the complete
graphs7 and the Cayley graphs of the symmetric group8 are known to be not instan-
taneous uniform mixing. However, there is a very natural class of graphs whose
status remains open: the cycle graphs. Quantum walk on cycles has been studied
in the discrete-time setting.9,10 It is also known that the evolution of continuous-
time quantum walk on cycles can be expressed as a summation involving Bessel
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functions (see Refs. 2 and 11). Still, it is unknown if a continuous-time quantum
walk on cycles has the uniform mixing property.

In this work, we show that a continuous-time quantum walk on cycles exhibits
strong non-uniform mixing properties. First, we prove that on most even-length
cycles, the quantum walk is not instantaneous uniform mixing. The theorem applies
to cycles whose lengths n are either a power of two, say, 2u, where u ≥ 3, or a
product of a power of two and an odd number congruent to 3 modulo 4, that is,
n = 2uq, where u ≥ 1 and q ≡ 3 (mod 4). Our proof exploits spectral symmetries
of even-length cycles coupled with some number-theoretic arguments. In a sense,
our arguments only yield non-uniform mixing for half of the even lengths; a separate
argument seems to be required for the case when q ≡ 1 (mod 4).

Second, we consider average mixing of quantum walk on cycles. The notion of
average mixing is a natural quantum generalization of stationary or limiting dis-
tributions in classical random walks on graphs. We prove a very general theorem
stating that a continuous-time quantum walk on any Abelian group-theoretic cir-
culant (defined in Ref. 12) is not average uniform mixing. Since the class of Abelian
circulants include a natural family of graphs such as the cycles, complete graphs,
and even hypercubes, as a corollary, we obtain the same non-uniform average mix-
ing property for a continuous-time quantum walk on cycles. However, we also show
that, in a quantum walk on cycles, the average distribution is (1/n)-close to uniform
(in total variation distance). This property is not true for the family of complete
graphs.

Our work heavily exploits the circulant structure and spectral properties of the
underlying graphs. A more complete treatment of circulants and their beautiful
theory is given by Davis13 and Diaconis,14 while a different aspect of quantum walk
on circulant graphs is described by Saxena et al.15

2. Preliminaries

For a logical statement S, let [[S]] denote the characteristic function of S which
evaluates to 1 if S is true, and to 0 if it is false.

We only consider graphs G = (V, E) that are simple, undirected, and connected.
Let AG be the adjacency matrix of G, where AG[j, k] = [[(j, k) ∈ E]]. A graph G is
circulant if its adjacency matrix AG is circulant. A circulant matrix A is specified by
its first row, say [a0, a1, . . . , an−1], and is defined as A[j, k] = ak−j (mod n), where
j, k ∈ Zn:

A =




a0 a1 . . . an−1

an−1 a0 . . . an−2

...
... . . .

...

a1 a2 . . . a0


 . (1)

Here Zn denotes the group of integers {0, . . . , n − 1} under addition modulo n.
Note that a0 = 0, since our graphs are simple, and aj = an−j , since our graphs are
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Fig. 1. Some Abelian circulants and their quantum mixing properties. From left to right: (a)
smallest circulant K2; instantaneous and average uniform. (b) 3-cube or Z

3
2-circulant; instanta-

neous but not average uniform (Moore and Russell6). (c) cycle C8 or sparse Z8-circulant; not
instantaneous uniform, but average (1/n)-uniform (this work). (d) the complete graph K8 or
dense Z8-circulant; neither instantaneous nor average (1/n)-uniform (Ahmadi et al.7).

undirected. Most known families of circulant graphs include the complete graphs
and cycles (see Fig. 1).

All circulant graphs G are diagonalizable by the Fourier matrix F whose columns
|Fk〉 are defined as 〈j|Fk〉 = ωjk

n /
√

n, where ωn = exp(2πi/n):

F =
1√
n




1 1 1 . . . 1

1 ωn ω2
n . . . ωn−1

n

1 ω2
n ω4

n . . . ω
2(n−1)
n

...
...

... . . .
...

1 ωn−1
n ω

2(n−1)
n . . . ω

(n−1)2

n




. (2)

In fact, we have FAF−1 =
√

n · diag(FA0), for any circulant A, where A0 = A|0〉
is the first column of A (see Refs. 13 and 16). This shows that the eigenvalues of A

are given by

λj =
n−1∑
k=0

ak ω−jk
n . (3)

A continuous-time quantum walk on a graph G = (V, E) is defined using the
Schrödinger equation with the real symmetric matrix AG as the Hamiltonian (see
Farhi and Gutmann4). A classical random walk on a d-regular graph G is sensitive
to the choice of the stochastic transition matrix: either 1/dAG, for the simple walk,
or 1/2 I +1/2 dAG, for the lazy walk. In our quantum walk, this choice is irrelevant
since I and AG commute, which implies that e−it( 1

2 I+ 1
2d AG) = e−it/2e−i(t/2d)AG .

The first term e−it/2 is an irrelevant phase factor, while the second term involves a
time shift t/2d that may also be ignored. Thus, we may assume that our stochastic
transition matrix is simply AG. If |ψ(t)〉 ∈ C|V | is a time-dependent amplitude
vector on the vertices of G, then the evolution of the quantum walk is given by

|ψ(t)〉 = e−itAG |ψ(0)〉, (4)
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where i =
√−1 and |ψ(0)〉 is the initial amplitude vector. The amplitude of the

quantum walk of vertex j at time t is given by 〈j|ψ(t)〉. The instantaneous prob-
ability of vertex j at time t is pj(t) = |〈j|ψ(t)〉|2. Let Pt = 〈pj(t) : j ∈ V 〉 be the
instantaneous probability distribution of the quantum walk.

The average probability of vertex j is defined as

pj = lim
T→∞

1
T

∫ T

0

pj(t) dt. (5)

The average probability distribution of the quantum walk will be denoted P . This
notion of average distribution (defined in Ref. 9 for discrete-time quantum walks)
is similar to the notion of a stationary distribution in classical random walks.

Given two probability distributions P, Q on a finite set S, the total variation
distance between P and Q is defined as ||P − Q|| =

∑
s∈S |P (s) − Q(s)|. Let U be

the uniform distribution on the vertices V of G. For a given ε ≥ 0, we say that
G is instantaneous ε-uniform mixing if there is a time t so that the total variation
distance between Pt and U is at most ε, that is, ||Pt −U || ≤ ε. We also say that G

is average ε-uniform mixing if the total variation distance between P and U is at
most ε, that is, ||P − U || ≤ ε. Whenever ε = 0, we say that exact uniform mixing
is achieved.

For discrete-time quantum walk, Aharonov et al.9 showed that a graph with dis-
tinct eigenvalues is potentially average uniform mixing. A continuous-time adapta-
tion of this result is as follows. Suppose that G has eigenvalues λ0 ≥ · · · ≥ λn−1 with
corresponding orthonormal eigenvectors |z0〉, . . . , |zn−1〉. The average probability of
vertex � is

P (�) = lim
T→∞

1
T

∫ T

0

|〈�|e−itH |ψ(0)〉|2dt (6)

=
n−1∑

j,k=0

〈zj |0〉〈0|zk〉〈�|zj〉〈zk|�〉 lim
T→∞

1
T

∫ T

0

e−it(λj−λk)dt. (7)

Since limT→∞ 1/T
∫ T

0 e−it∆dt = [[∆ = 0]], this implies that

P (�) =
n−1∑

j,k=0

〈zj |0〉〈0|zk〉〈�|zj〉〈zk|�〉[[λj = λk]]. (8)

Moreover, if all eigenvalues are distinct, then P (�) =
∑n−1

j=0 |〈�|zj〉|2|〈zj |0〉|2.

3. Non-Uniform Instantaneous Mixing of Even-Length Cycles

In this section, we show that a continuous-time quantum walk on most even-length
cycles Cn is not instantaneous uniform mixing. Using Eq. (3), the eigenvalues of a
cycle Cn are given by

λk = 2 cos(2πk/n), k = 0, . . . , n − 1. (9)



December 27, 2007 9:26 WSPC/187-IJQI 00319

786 W. Adamczak et al.

Note that λ0 = 2, λn−k = λk, for 1 ≤ k < n/2, and λn/2 = −2, when n is even. Let
|ψn(t)〉 describe a continuous-time quantum walk on Cn starting at vertex 0. If A

is the circulant adjacency matrix of Cn, then

|ψn(t)〉 = e−iAt|0〉 = e−iAt
n−1∑
k=0

1√
n
|Fk〉 =

1√
n

n−1∑
k=0

e−iλkt|Fk〉. (10)

This shows that, for each j = 0, . . . , n − 1, we have

〈jψn(t)〉 =
1
n

∑
0≤k<n

e−iλktωjk
n . (11)

Fact 1. Let |ψn(t)〉 describe a continuous-time quantum walk on Cn, where n is
even. Then, for any j = 0, . . . , n − 1, we have

〈j|ψn(t)〉 =
1
n


e−2it + (−1)je2it + 2

∑
1≤k<n/2

e−iλkt cos(2πjk/n)


 . (12)

Proof. Using the eigenvalue symmetry λk = λn−k, for 1 ≤ k < n/2, combined
with Eq. (11), yields the claim.

The following lemma shows that some properties of a quantum walk on Cn can
be deduced from a quantum walk on Cm, if m divides n. This reduction will be
helpful in analyzing a quantum walk on even-length cycles.

Lemma 2. Let m, n > 0 be integers so that m|n. Then, for each 0 ≤ a < m we
have ∑

0≤j<n

[[j ≡ a (mod m)]]〈j|ψn(t)〉 = 〈a|ψm(t)〉. (13)

Proof. Using Eq. (11), after switching summations, we get:∑
0≤j<n

[[j ≡ a (mod m)]]〈j|ψn(t)〉 =
1
n

∑
0≤k<n

e−iλkt
∑

0≤j<n

[[j ≡ a (mod m)]] × ωjk
n .

(14)

Rewriting the inner index j as mj̃ + a, as j̃ varies in 0 ≤ j̃ < n/m, we get (after
renaming j̃ back to j):

1
n

∑
0≤k<n

e−iλkt
∑

0≤j<n/m

ω(mj+a)k
n =

1
n

∑
0≤k<n

e−iλktωak
n

∑
0≤j<n/m

ωjk
n/m. (15)

Next, we note that
∑n−1

j=0 ωj
n = n × [[k ≡ 0 (mod n)]]. This yields:

1
m

∑
0≤k<n

[[k ≡ 0 (mod n/m)]] × e−iλktωak
n =

1
m

∑
0≤k<m

e−iλktωak
m , (16)

which equals 〈a|ψm(t)〉.
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A quantum walk on C2, which is a multigraph on two vertices with two distinct
edges connecting the vertices, is given by:

|ψt〉 = exp
(
−it

[
0 2
2 0

])
|0〉 =

1
2

{
e−2it

[
1
1

]
+ e2it

[
1

−1

]}
=

[
cos(2t)

−i sin(2t)

]
. (17)

Thus, we have Pt =
[
cos2(2t) sin2(2t)

]T
. Applying the previous lemma to even-

length cycles, a quantum walk on C2n behaves in a similar manner to a quantum
walk on a 2-vertex cycle. More specifically, the sum of the amplitudes on the vertices
with even (respectively, odd) indices in a quantum walk on C2n corresponds exactly
to the amplitude of vertex 0 (respectively, 1) in a quantum walk on C2.

Corollary 3. Let |ψn(t)〉 describe a continuous-time quantum walk on Cn, where
n is even. Then,∑

0≤j<n/2

〈2j|ψn(t)〉 = cos(2t),
∑

0≤j<n/2

〈2j + 1|ψn(t)〉 = −i sin(2t). (18)

Proof. Since n is even, apply Lemma 2 with m = 2.

A further eigenvalue symmetry on even-length cycles yields a useful simplifica-
tion on the amplitude expression given by Fact 1.

Lemma 4. Let |ψn(t)〉 describe a continuous-time quantum walk on Cn, where n

is even. Then,

〈j|ψn(t)〉 =
1
n


ε

(n)
j,0 (t) + 2

∑
1≤k<n/4

ε
(n)
j,k (t) cos(2πjk/n) + 2δ

(n)
j


 , (19)

where ε
(n)
j,k (t) = e−iλkt + (−1)jeiλkt, and δ

(n)
j = [[4|n and 2|j]](−1)j/2.

Proof. Using Fact 1 and the eigenvalue symmetry λn/2−k = −λk, for 1 ≤ k < n/4,
we obtain the following expression for 〈j|ψn〉(t):

1
n


e−2it + (−1)je2it + 2

∑
1≤k<n/4

(e−iλkt + (−1)jeiλkt) cos
(

2πjk

n

)
+ 2δ

(n)
j




(20)

since cos(2πj(n/2−k)/n) = (−1)j cos(2πjk/n). The term involving δ
(n)
j exists only

when n is divisible by 4 and has the value of e−iλn/4 cos(jπ/2) = [[2|j]](−1)j/2, since
λn/4 = 0.

Using the previous lemma, we may deduce that the amplitude values on the ver-
tices in a quantum walk on an even-length cycle are purely real or purely imaginary;
moreover, this is completely determined by the parity of the vertex index.
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Corollary 5. Let |ψn(t)〉 describe a continuous-time quantum walk on Cn, where n

is even. Then, 〈j|ψn(t)〉 is a real number, if j is even, and is an imaginary number,
if j is odd.

Proof. Using Lemma 4, we note that e−iλkt + (−1)jeiλkt equals 2 cos(λkt), when-
ever j is even, and equals −2i sin(λkt), if j is odd. Also, note that the term δ

(n)
j is

always real and is non-zero only when j is even.

Next, we show a lemma which connects the sum of amplitudes on a pair of
vertices in a quantum walk on C2n to the amplitude on a single vertex in a quantum
walk on Cn. This lemma will be useful in deducing the type of amplitude expressions
involved in a quantum walk on C2u , for some u ≥ 1.

Lemma 6. Let |ψn(t)〉 describe a continuous-time quantum walk on Cn, where n

is even. Then, for all 0 ≤ j < n, we have

〈j|ψ2n(t)〉 + 〈n − j|ψ2n(t)〉 = 〈j|ψn(t)〉. (21)

Proof. Note that cos(2π(n− j)k/(2n)) = (−1)k cos(2πjk/(2n)). By Lemma 4, the
sum 〈j|ψ2n(t)〉 + 〈n − j|ψ2n(t)〉 equals

1
n


ε

(2n)
j,0 (t) + 2

∑
1≤k<n/2

[[k even]] cos
(

2πjk

2n

)
ε
(2n)
j,k (t)


 . (22)

Since ε
(2n)
j,2k (t) = ε

(n)
j,k (t), we get

1
n


δ

(n)
j,0 + 2

∑
1≤k<n/4

cos(2πjk/n)ε(n)
j,k (t)


 . (23)

Again by Lemma 4, the last expression equals 〈j|ψn(t)〉.

Finally, we are ready to state and prove a theorem showing that a continuous-
time quantum walk with most even-length cycles is not instantaneous exactly uni-
form mixing. The proof uses several observations stated in the previous lemmas.

Theorem 7. The family of cycles Cn is not instantaneous uniform mixing, where
n satisfies either (a) n = 2u, where u ≥ 3; or (b) n = 2uq, where u ≥ 1 and q ≡ 3
(mod 4).

Proof. Assume that there is a time t for which |〈j|ψ(t)〉|2 = 1/n. By Corollary 5,
we have

〈j|ψ(t)〉 =
{±1/

√
n if j is even

±i/
√

n if j is odd.
(24)
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Also, we have

cos(2t) =
∑

0≤j<n/2

〈2j|ψ(t)〉 =
n

2
1√
n
− 2k√

n
=

(n − 4k)
2
√

n
, (25)

where k is the number of j’s for which 〈2j|ψ(t)〉 is negative. Similarly, we have

−i sin(2t) =
(n − 4�)

2
√

n
, (26)

where � is the number of j’s for which 〈2j + 1|ψ(t)〉 is negative. Since cos2(2t) +
sin2(2t) = 1, we obtain

(n − 4k)2 + (n − 4�)2 = 4n. (27)

Let ak = n − 4k and a� = n − 4�. There are two cases to consider: one of ak or a�

is zero, or both are non-zero.
If one of them is zero, say ak = 0, then a2

� = 4n. If n = 2uq, where u ≥ 1 and
q ≡ 3 (mod 4), we have a contradiction since 2uq is not a square, if u is odd or
q ≡ 3 (mod 4). Otherwise, u is even and q = 1, and, by repeated applications of
Lemma 6, we observe that 〈0|ψ8(t)〉 = a/

√
n = a/2m, for some integers a, m ∈ Z.

But, by Lemma 4, we have

〈0|ψ8(t)〉 =
1
4

cos(2t) +
1
2

cos(
√

2t). (28)

Since cos(t) = 0 or sin(t) = 0 in this case, we must have t = k(π/2), for some
k ∈ Z. However, cos(kπ/

√
2) is not rational, for any integer k, since (ei(π/2)

√
2)k is

transcendental, by the Gelfond-Schneidera theorem (see Ref. 17).
Next, we consider the case when both ak and a� are non-zero. If both terms

are odd, then considering Eq. (27), the left-hand size satisfies a2
k + a2

� ≡ 2(mod 4)
whereas the right-hand side satisfies 4n ≡ 0 (mod 4); this is a contradiction. Other-
wise, if both terms are even, then a factor of 4 can be removed from both sides of
Eq. (27). Continuing this process, we arrived at a case where either the right-hand
side is q ≡ 3 (mod 4) or both ak and a� are odd. In either case, we arrive at a
contradiction modulo 4.

This completes the proof of the theorem.

4. Non-Uniform Average Mixing on Abelian Circulants

Our main theorem in this section shows that the average distribution of a
continuous-time quantum walk on any cycle, except for C2, is never uniform. In
fact, we prove a much stronger theorem stating that the average distribution of
a continuous-time quantum walk on any G-circulant, for any Abelian group G (as
defined in Ref. 12) is never uniform, except for C2.

aThe Gelfond-Schneider theorem states that αβ is transcendental, if α and β are algebraic numbers
with α �= 0 and α �= 1, and if β is not a real rational number.
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Diaconis12 described the following interesting group-theoretic generalization of
circulants. Let G be a group of order n and let f : G → C be a class function of
G (that is, it is constant on the conjugacy classes of G). Consider the matrix Mf

G
defined on G × G as Mf

G [s, t] = f(st−1). Note that with G being the cyclic group
Zn of order n, we recover the standard circulant graphs, whereas with G = Zn

2 , we
obtain the hypercube graphs.

Let ρ : G → GL(n, C) be a representation of G with dimension n. The Fourier
transform of f at a representation ρ is defined as

f̂(ρ) =
∑
x∈G

f(x)ρ(x). (29)

As usual, Fourier inversion reconstructs f from its Fourier transform at all irre-
ducible representations ρ1, . . . , ρm of G with dimensions d1, . . . , dm, respectively:

f(x) =
1
|G|

m∑
j=1

djTrace(ρj(x−1)f̂(ρj)). (30)

For each irreducible representation ρj , we define a d2
j × d2

j block matrix Dj

as Dj = diag(f̂(ρj)). Next, let D = diag(D1, . . . , Dh) be a |G| × |G| matrix,
since |G| =

∑m
j=1 d2

j . Also, we define the vector ψj of length d2
j as ψj(x) =

(
√

dj)/(|G|)〈ρj(x)[s, t] : 1 ≤ s, t ≤ dj〉 and the vector ψ(x) = 〈ψj(x) : 1 ≤ j ≤ m〉
of length |G|. Finally, we define the matrix X = [ψ(x1) . . . ψ(xn)], where x1, . . . , xn

are the elements of G.

Theorem 8 (Diaconis12). If f : G → C is a class function of a finite group G,

then Mf
G is unitarily diagonalized by X , that is, Mf

G = X †DX , where, for each
j = 1, . . . , m, we have Dj = λjId2

j
, χj(x) = Trace(ρj(x)) is the character of ρj at

x, and the eigenvalue is

λj =
1
dj

∑
x∈G

f(x)χj(x). (31)

We are interested in applying Theorem 8 for an Abelian group G, where all of its
group representations have dimension one. Our main result shows that the spectral
gap of Mf

G , for any Abelian group G, is zero. This shows that average uniform
mixing is impossible.

The Hadamard matrix Hn (of Sylvester type) is defined recursively as:

H2 =
[
1 1
1 −1

]
, and Hn =

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
, n > 2. (32)

We call graph G a Hadamard circulant if it is diagonalized by some Hadamard
matrix Hn. Alternatively, these are G-circulant matrices for G = Zn

2 . Although
Eq. (8) suggests that a graph with distinct eigenvalues diagonalized by Hadamard
matrices might be average uniform mixing, the following lemma disproves this
possibility.
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Lemma 9. Let G be a graph diagonalized by a Hadamard matrix Hn, for n > 2.
Then G has spectral gap zero.

Proof. Consider the characters of Zn
2 defined for each a ∈ Zn

2 as χa(x) =
∏n

j=1(1−
2ajxj). From Eq. (31), we get λa =

∑
x∈Z

n
2

f(x)χa(x), where f : Zn
2 → {0, 1} defines

the first column of the adjacency matrix of G. Let |f | = {x 	= 0n : f(x) = 1}.
Assume that |f | < 2n − 1, otherwise we get the complete graph which has only 2
distinct eigenvalues. If |f | is even, then λa ∈ {0,±2, . . . ,±|f |}. Since the eigenvalues
can take at most |f | + 1 < 2n values, by the pigeonhole principle, there exist two
non-distinct eigenvalues. If |f | is odd, then λa ∈ {±1,±3, . . . ,±|f |}. Similarly, the
eigenvalues range on at most |f | < 2n − 1 values, and again there exist two non-
distinct eigenvalues.

Theorem 10. For any Abelian group G, no G-circulant, except for C2, is average
uniform mixing.

Proof. Let G = Zn1 × · · · × Znk
be an Abelian group. If all elements of G have

order 2 (except for the identity), we appeal to Lemma 9. Otherwise, fix a ∈ G with
order greater than 2. The character corresponding to a is χa(x) =

∏k
j=1 χaj (xj).

From Eq. (31),

λa =
∑
x �=0

f(x)χa(x) =
∑
x �=0

f(x)χ−a(−x) =
∑
x �=0

f(−x)χ−a(−x) = λ−a. (33)

Thus, the spectral gap of Mf
G is zero. Finally, since G is Abelian, its characters are

complex roots of unity; thus, applying Eq. (8), we obtain the claim.

The above theorem implies that the n-cube and the standard circulant graphs
are not average uniform mixing, as stated in the following corollary.

Corollary 11. No Zn
2 -circulant and no Zn-circulant, except for C2, is average

uniform mixing.

Next, we relax our requirement of exact uniform average mixing and allow mix-
ing to be (1/n)-uniform. We observe that the cycle graphs and the complete graphs
behave differently with respect to average near uniform mixing.

Theorem 12. The cycle Cn is average (1/n)-uniform mixing.

Proof. Let ω = exp(2πi/n). Using Eq. (8) for circulants, we have

P (�) =
1
n2

n−1∑
j,k=0

ω(j−k)�[[λj = λk]] =
1
n

+
1
n2

∑
j �=k

ω(j−k)�[[λj = λk]]. (34)



December 27, 2007 9:26 WSPC/187-IJQI 00319

792 W. Adamczak et al.

A result of Diaconis and Shahshahani (see Ref. 14) states that ||P − U || ≤
1/4

∑
ρ |P̂ (ρ)|2, where the sum is over non-trivial irreducible representations. The

characters of Zn are given by χa(x) = ωax, and thus, for a 	= 0,

P̂ (a) =
∑

�

P (�)χa(�) =
1
n2

∑
j �=k: λj=λk

∑
�

ω(j−k+a)� =
1
n

. (35)

The last equality holds because there is a unique pair (j, k) such that j−k+a = 0;
this pair contributes n to the sum while the other pairs contribute 0 to the sum.
Therefore, ||P − U || ≤ (n − 1)/4n2 < 1/4n.

In contrast, the average distribution of a quantum walk on the complete graphs
Kn is not near uniform.

Theorem 13 (Ahmadi et al.7). The complete graph Kn is not average (1/n)-
uniform mixing.

Proof. As shown in Ref. 7, for � 	= 0, we have P (�) = 2/n2, and P (0) = 1− 2(n−
1)/n2. Thus ||P − U || = 2(1 − 1/n)(1 − 2/n) 
 1/n.

5. Conclusions

In this work, we have shown that a continuous-time quantum walk on cycles exhibits
strong non-classical mixing characteristics. First, we prove that a continuous-time
quantum walk on most even-length cycles is not instantaneous uniform mixing. This
partially settles a conjecture made in Ref. 7. Second, we prove that a continuous-
time quantum walk on any cycle is not average uniform mixing. The latter result is
obtained as a corollary of a stronger theorem for a continuous-time quantum walk
on any Abelian circulant graph. This class of graphs include the natural families of
cycles, complete graphs, hypercubes, and others. In contrast, classical lazy random
walks on the same graphs mix to the uniform distribution.

We leave the case of the odd-length cycles as well as cycles of length 2uq, with
u ≥ 1 and q ≡ 1(mod 4), for future work. Also, we are curious to investigate if there
is something interesting about the quantum mixing status of prime-length cycles.
Finally, the only known class of graphs with instantaneous uniform mixing is the
hypercube family, and the only graph known to be average uniform mixing is the
connected two-vertex graph. It is conceivable that these are the two lone examples
of uniform mixing in circulants.
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