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1. INTRODUCTION. Quantum computers may be the next revolution in the com-
puter industry. Primitive quantum computers have already been constructed using
laser, ion trap, or nuclear magnetic resonance technology. Grover’s quantum search
algorithm is quadratically faster than any possible search algorithm for a classical
computer, and Shor’s quantum factorization algorithm is exponentially faster than
any known classical counterpart. These experimental and theoretical results indicate
that quantum computers are feasible and will be incredibly faster than conventional
computers. Moreover, since they operate at the atomic or nuclear scale, they will have
immensely larger memory. The hardware and software of a quantum computer are
based on the principles of quantum mechanics. For this reason, entirely new phenom-
ena such as superpositions of states, entangled states, and quantum uncertainty come
into play. As we shall see, these phenomena are important for the great power of
quantum computers.

In a nutshell quantum computers gain speed because of the following effect. A
conventional computer is limited to a computational space of n-bit strings of zeros
and ones. The quantum counterpart is an n-qubit system described by a unit vector
in a 2n-dimensional vector space. Cleverly designed quantum algorithms can exploit
this exponential explosion to perform very fast computations. Roughly speaking, a
quantum computer operates on a massively parallel scale that can compute 2n pieces
of information simultaneously.

Although the field of quantum computation is only about ten years old, quite a
few books and many research articles have been written on the subject. Unfortunately,
the existing books either have limited mathematical content (e.g., [2], [3], [6], [11],
or [12]) or they are written at an advanced level (e.g., [4], [5], [7], [8], or [10]). The
first group make interesting and entertaining reading but do not contain enough detail
to help one understand the subject in depth. While the books of the second group are
well written, they require a level of sophistication that is difficult for newcomers to
the field. In this article we try to tread an intermediate path. We do not present any
new results but attempt to give an introduction to the subject that is simple and still
conveys the essential ideas and principles. We assume only that the reader has some
basic knowledge of linear algebra.

To keep this article at a reasonable length and level, there are many important as-
pects of the subject that are not addressed. For example, we consider only pure states
and projective measurements and do not discuss the more general mixed states and
measurements. More seriously, we do not consider computational complexity in detail
and do not discuss error-correcting codes [9] or the physical construction of quan-
tum computers. Our main intent is to illustrate how elementary linear algebra can be
applied to the understanding and advancement of an exciting new field with great po-
tential.

2. LINEAR ALGEBRA. This section reviews the elements of linear algebra that
are needed in the sequel and introduces Dirac notation. Our main interest is the
vector space V = Cn , which is the space of all n-tuples of complex numbers. As
usual, addition and scalar multiplication are defined coordinate-wise. When we write
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v = (z1, . . . , zn) we do so to economize on printed space, but are actually thinking of
v as an n × 1 column vector with entries (or coordinates) z1, . . . , zn . The zero vector
is denoted by θ = (0, . . . , 0). A subspace of V is a subset W of V that is also a vector
space; that is, W is closed under addition and scalar multiplication.

We define the inner product 〈v | w〉 of two vectors v = (z1, . . . , zn) and w =
(y1, . . . , yn) by 〈v | w〉 = ∑

z∗
i yi , where z∗

i is the complex-conjugate of zi . Notice
that we are using the physicist’s definition in which the first argument is conjugated
instead of the second. The norm ‖v‖ of a vector v is the nonnegative real number de-
fined by ‖v‖ = √〈v | v〉. We say that v is a unit vector if ‖v‖ = 1. Two vectors v and
w are orthogonal (written v ⊥ w) if 〈v | w〉 = 0, and a set of vectors vi , i = 1, . . . , m,
is orthonormal if they are mutually orthogonal unit vectors. Thus {v1, v2, . . . , vm} is
an orthonormal set if

〈
vi | v j

〉 = δi j , where δi j is the Kronecker delta. An orthonormal
basis for V is an orthonormal set containing n elements. In the sequel, whenever we
speak of a basis for V we shall mean an orthonormal basis. If v1, . . . , vn is a basis, then
any v in V has the unique representation v = ∑ 〈vi | v〉vi . The standard basis for V is
v1 = (1, 0, . . . , 0), v2 = (0, 1, 0, . . . , 0), . . ., vn = (0, . . . , 0, 1). If v = (z1, . . . , zn),
the dual of v is the row vector v† = [z∗

1 · · · z∗
n]. Notice that in terms of matrix multipli-

cation 〈v | w〉 = v†w.
An operator on V is a function A: V → V that satisfies A(

∑
aivi ) = ∑

ai Avi

for all complex numbers a1, . . . , am and vectors v1, . . . , vm in V . If an operator is
specified on a basis for V , then it is completely determined by linearity. Two examples
of operators on V are the identity operator Iv = v and the zero operator 0v = θ for all
v in V . If A and B are operators on V , their composition is the operator B A: V → V
defined by (B A)v = B(Av). If A is an operator on V and B = {v1, v2 . . . , vn} is a
basis for V , then there exist unique complex numbers Ai j such that Av j = ∑

Ai jvi

for j = 1, . . . , n. The n × n matrix [Ai j ] is called the matrix representation of A
relative to the basis v1, . . . , vn and is denoted by [A]B. Since matrices themselves are
operators, this gives a correspondence between matrices and operators. We shall use
these two viewpoints interchangeably. It is easy to show that matrix multiplication and
operator composition are closely related in the sense that [B A]B = [B]B[A]B. Some
important matrices in quantum mechanics are the Pauli matrices

X =
[

0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
(1)

and the Hadamard matrix

H = 1√
2

(X + Z) = 1√
2

[
1 1
1 −1

]
.

If A is an operator on V , then there exists a unique operator A† on V such that
〈v | Aw〉 = 〈

A†v | w
〉

for all v and w in V . We call A† the adjoint of A. In terms
of matrix representation, we have (A†)i j = A∗

j i . An operator U on V is unitary if
U †U = I (which implies that UU † = I as well). The Pauli and Hadamard matrices
are unitary. Since

〈Uv | Uw〉 = 〈v | U †Uw〉 = 〈v | w〉,
we see that unitary operators preserve both the inner product and the norm. An eigen-
vector of an operator A on V is a nonzero vector v such that Av = λv where λ is
the complex number (the eigenvalue of A corresponding to v). It is easy to check that
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the eigenvalues of a unitary operator have modulus 1. A projection operator P on V
satisfies P = P† = P2. We say that P is the projection onto its range, i.e., onto the
subspace W = {v ∈ V : Pv = v}.

If W = Cm and V = Cn , there is a natural mapping T : W × V → Cmn defined by

T ((x1, . . . , xm), (y1, . . . , yn)) = (x1(y1, . . . , yn), . . . , xm(y1, . . . , yn))

= (x1 y1, . . . , x1 yn, . . . , xm y1, . . . , xm yn).

We use the notation w ⊗ v to symbolize T (w, v) and call w ⊗ v the tensor product
of w and v. The reader should check the following elementary properties of the tensor
product:

(1) a(w ⊗ v) = (aw) ⊗ v = w ⊗ (av) for all a in C;
(2) (w1 + w2) ⊗ v = w1 ⊗ v + w2 ⊗ v;
(3) w ⊗ (v1 + v2) = w1 ⊗ v1 + w ⊗ v2;
(4) 〈w1 ⊗ v1 | w2 ⊗ v2〉 = 〈w1 | w2〉〈v1 | v2〉.

We denote the pair (Cmn, ⊗) by W ⊗ V and call W ⊗ V the tensor product of W
and V . We can think of W ⊗ V as the vector space consisting of all finite formal sums∑

ai jwi ⊗ v j , where wi and v j are in W and V , respectively, and the operation ⊗
satisfies (1)–(4). It follows from (4) that if wi , i = 1, . . . , m, and v j , j = 1, . . . , n,
are bases for W and V , respectively, then the set of vectors wi ⊗ v j forms a basis for
W ⊗ V . If A and B are operators on W and V , respectively, we define the operator
A ⊗ B on W ⊗ V by

(A ⊗ B)
(∑

ai jwi ⊗ v j

)
=
∑

ai j Awi ⊗ Bv j .

We extend this definition to higher order tensor products V1 ⊗ · · · ⊗ Vn in the natural
way. In case V1 = · · · = Vn = V , we abbreviate V ⊗ · · · ⊗ V to V ⊗n . We also use the
notation v⊗n = v ⊗ · · · ⊗ v and A⊗n = A ⊗ · · · ⊗ A.

We now introduce the physics Dirac notation for two reasons. First, this is the no-
tation that is almost always employed in the quantum computation literature, and a
reader who wants to study the subject further must be familiar with this notation. Sec-
ond, Dirac notation provides a convenient and compact way of writing outer products
and tensor products. In this notation, we denote a column vector in V by |v〉. Notice
that the entire symbol |v〉 denotes the vector and that now the letter v serves as a label.
Any convenient label is permissible in |·〉. For example, |x〉, |y〉, |1〉, and |2〉 denote
vectors, where x , y, 1, and 2 are not vectors but are labels for designating vectors. The
dual row vector |v〉† is then denoted by 〈v|. The relationship between our two nota-
tions is specified by 〈v| |w〉 = 〈v | w〉. The left side of the previous equation is the
matrix product of the row vector 〈v| with the column vector |w〉, and the right side is
shorthand for the inner product of the two vectors |v〉 and |w〉. If A is an operator on
V , the Dirac notation for 〈v | Aw〉 is 〈v|A|w〉. The outer product of |v〉 and |w〉 is the
operator |v〉〈w| on V defined by

(|v〉〈w|) |v′〉 = 〈w | v′〉|v〉.
More generally, we define the operator

∑
ai |vi 〉〈wi | on V by(∑

ai |vi 〉〈wi |
)

|v′〉 =
∑

ai 〈wi | v′〉|vi 〉.
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Let |i〉, i = 1, . . . , n, be a basis for V . Since (|i〉〈i |) |v〉 = 〈i | v〉|i〉, we have that(∑
|i〉〈i |

)
|v〉 =

∑
〈i | v〉|i〉 = |v〉,

and this gives the completeness equation
∑ |i〉〈i | = I . Moreover, if A is an operator

on V , then applying the completeness equation twice gives A = ∑ 〈i |A| j〉|i〉〈 j |. This
shows that any operator has an outer product representation and that the entries of the
associated matrix for the basis |i〉 are Ai j = 〈i |A| j〉. It is not difficult to show that the
projection onto a subspace W has the form P = ∑k

j=1 | j〉〈 j |, where the vectors | j〉
furnish a basis for W .

On the tensor product space V1 ⊗ · · · ⊗ Vn , instead of writing |v1〉 ⊗ · · · ⊗ |vn〉 we
frequently use the notation |v1〉|v2〉 · · · |vn〉 or |v1, v2, . . . , vn〉 or simply |v1v2 · · · vn〉.
Notice that

|v1v2 · · · vn〉† = 〈v1v2 · · · vn| = 〈v1| ⊗ · · · ⊗ 〈vn|.
An important case for quantum computation occurs when V1 = · · · = Vn = V = C2,
giving rise to the space V ⊗n = C2n

. If |0〉 (= (1, 0)) and |1〉 (= (0, 1)) are Dirac nota-
tions for the standard basic vectors for C2, the computational basis for V ⊗n is

|0 · · · 00〉, |0 · · · 01〉, |0 · · · 010〉, |0 · · · 011〉, . . . , |1 · · · 11〉,
where each vector contains n bits and each bit is 0 or 1. We have written these vectors
in binary order. If x is an integer satisfying 0 ≤ x ≤ 2n − 1 and if x is given in its
binary representation, then |x〉 becomes an element of this basis. We can thus write
the computational basis as |x〉 for 0 ≤ x ≤ 2n − 1. An important operator on V ⊗n is
the Hadamard transform H⊗n . The Hadamard operator on V = C2 has outer product
representation

H = 1√
2

(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|) = 1√
2

∑
x,y

(−1)x ·y|x〉〈y|,

where x and y belong to {0, 1} and x · y signifies ordinary multiplication. (In other
words, it is the operator on C2 corresponding to the Hadamard matrix.) We then have

H⊗2 = 1√
22

∑
x,y,x ′,y′

(−1)x ·y+x ′·y′∣∣xx ′〉 〈yy′∣∣ = 1√
22

∑
x ′′,y′′

(−1)x ′′ ·y′′∣∣x ′′〉 〈y′′∣∣,
where now x ′′ and y′′ lie in the binary set {00, 01, 10, 11} and x ′′ · y′′ indicates the
bitwise inner product modulo 2. For example,

01 · 11 = 0 · 1 + 1 · 1 = 1,

11 · 11 = 1 · 1 + 1 · 1 = 0 (mod 2).

Alternatively, we can express H⊗2 in the manner

H⊗2 = 1√
22

∑
x,y

(−1)x ·y|x〉〈y|,

where x, y = 0, 1, 2, or 3, |0〉, |1〉, |2〉, |3〉 lists the standard basis of C4 in the “usual”
order, and x · y is the bitwise inner product modulo 2 of the binary expansions of x
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and y. Continuing this process we have

H⊗n = 1√
2n

∑
x,y

(−1)x ·y|x〉〈y|,

where x, y = 0, 1, 2, . . . , 2n − 1. Although Dirac notation is useful and compact, in
certain situations it becomes awkward. In such situations, we revert to standard math-
ematical notation.

3. QUANTUM MECHANICS. Quantum mechanics is a theory that describes
atomic and subatomic particles (quantum particles) and their interactions. Examples
of quantum particles are electrons, protons, neutrons, and photons (particles of light).
A physical system consisting of one or more quantum particles is called a quantum
system. To completely describe a quantum particle requires an infinite-dimensional
Hilbert space. For quantum computation purposes we shall need only a partial descrip-
tion given by a finite-dimensional inner product space. For example, if the spin of an
electron is measured in a specific direction in ordinary three-dimensional space R3,
one obtains just two possible outcomes called “spin up” and “spin down.” If we are
concerned only with the spin of a single electron, then the state (or condition) of the
electron is represented by a unit vector in C2. For example, if the spin is measured
in the z-direction, then the “spin up” state is given by (1, 0) and the “spin down”
state is given by (0, 1). In this restricted partial description we say that the electron
has a two-dimensional state space. A quantum system is called finite-dimensional if
we are considering only a partial description in a finite-dimensional state space. The
dimension of the state space depends on the quantum system being described. For
example, a single electron has a two-dimensional state space and, as we shall see, a
pair of electrons has a four-dimensional state space. In the sequel, when we speak
of a quantum system we shall always mean a finite-dimensional quantum system. A
quantum system is isolated if it does not interact with other physical systems.

Postulate 1. Associated with an isolated quantum system is an inner product space
V = Cn called the “state space” of the system. The system at any given time is de-
scribed by a “state,” which is a unit vector in V .

The simplest quantum system has state space V = C2 and is called a qubit. If |0〉
and |1〉 form a basis for V , then an arbitrary qubit state has the form |x〉 = a|0〉 + b|1〉,
where a and b in C have |a|2 + |b|2 = 1. Notice that we do not write x = a|0〉 + b|1〉
because this would be inconsistent with Dirac notation. The states |0〉 and |1〉 are
analogous to the bits 0 and 1. A qubit state differs from a bit because “superpositions”
|x〉 = a|0〉 + b|1〉 are possible, and we cannot say that the system is definitely in the
state |0〉 or definitely in the state |1〉. As we shall later show, all we can say is that
the system is in state |0〉 with probability |a|2 and in state |1〉 with probability |b|2.
In general, if |ψi 〉 are given states, which need not be mutually orthogonal, we call
a state of the form

∑
ai |ψi 〉 a superposition of the states |ψi 〉 with corresponding

amplitudes ai . For example, the qubit state (|0〉 − |1〉) /
√

2 is a superposition of |0〉
and |1〉 with amplitudes 1/

√
2 and −1/

√
2, respectively.

Postulate 2. The evolution of an isolated quantum system is described by a unitary
operator on its state space. That is, the state |ψ(t1)〉 at time t1 is related to the state
|ψ(t2)〉 at time t2 by a unitary operator Ut1,t2 , i.e., |ψ(t2)〉 = Ut1,t2 |ψ(t1)〉.
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The main reason that unitary operators are employed is that they preserve the norm
and hence map states into states. Moreover, the superposition principle, which says that
evolutions preserve superpositions, requires that U be linear. Of course, no physical
system is really isolated except the universe as a whole. However, isolation can be
achieved to good approximation. We may want to observe or make a measurement on
a system to find out what is happening inside it. In this case the measurement apparatus
interacts with the system, so the system is no longer isolated. We shall only consider
measurements that have a finite number of possible outcomes, which we usually label
by m = 1, 2, . . . , n. One of the basic tenants of quantum mechanics states that the
outcome of a measurement can only be predicted probabilistically.

Postulate 3. Quantum measurements are described by a finite set {Pm} of projections
acting on the state space of the system being measured. The index m refers to the mea-
surement outcomes that may occur. The projections satisfy the completeness equation∑

Pm = I . If the state of the system is |ψ〉 immediately before the measurement, then
the probability that result m occurs is given by p(m) = 〈ψ |Pm |ψ〉; if the result m
occurs, then the state of the system immediately after the measurement is

Pm |ψ〉
〈ψ |Pm |ψ〉1/2 = Pm |ψ〉√

p(m)
.

The completeness equation ensures that probabilities sum to one:∑
m

p(m) =
∑

m

〈ψ |Pm |ψ〉 = 〈ψ |
∑

Pm |ψ〉 = 〈ψ | ψ〉 = 1.

As an example, consider a qubit with basis states |0〉 and |1〉. Let {P0, P1} be the
measurement in which P0 = |0〉〈0| and P1 = |1〉〈1|. Suppose the state being measured
is |ψ〉 = a|0〉 + b|1〉. Then the probability of obtaining outcome 0 (or the probability
of state |0〉) is

p(0) = 〈ψ |P0|ψ〉 = |〈0 | ψ〉|2 = |a|2

and similarly p(1) = |b|2. The states after measurement in the two cases become
|a|−1 P0|ψ〉 = a |a|−1 |0〉 and |b|−1 P1|ψ〉 = b |b|−1 |1〉, respectively. As we shall see,
multipliers like a/ |a| that have modulus 1 can effectively be ignored, so the two post-
measurement states are |0〉 and |1〉. We call {P0, P1} a measurement in the computa-
tional basis.

If φ is a real number, we say that state eiφ|ψ〉 is equal to state |ψ〉 up to a phase
factor eiφ . Two such states give the same measurement statistics, so we consider them
to be physically identical. Indeed, if {Pm} is a measurement, then the probability that
outcome m occurs is〈

eiφψ
∣∣Pm

∣∣eiφψ
〉 = e−iφeiφ〈ψ |Pm |ψ〉 = 〈ψ |Pm |ψ〉.

If we combine several quantum systems, the total system is called a composite quan-
tum system and the individual quantum systems that are combined are called compo-
nents.

Postulate 4. The state space of a composite quantum system is the tensor product
of the state spaces of its components. If systems numbered 1 through n are pre-
pared in states |ψi 〉, i = 1, . . . , n, then the joint state of the composite total system is
|ψ1〉 ⊗ · · · ⊗ |ψn〉.
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Suppose a composite system consists of n qubits, each with computational basis
|0〉 and |1〉. The composite system is called an n-qubit and has computational ba-
sis |i1 · · · in〉 with i j in {0, 1}, or written another way, |x〉 for x = 0, 1, . . . , 2n − 1.
When we speak of making a measurement in the computational basis for an n-qubit,
we mean the measurement given by the set of projections {Px : x = 0, 1, . . . , 2n − 1},
where Px = |x〉〈x |.

A state |ψ〉 in the state space V ⊗n is called a product state if it has the form
|ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉. If a state cannot be written as a product state, it is said to
be entangled. For example, the 2-qubit state |ψ〉 = (|00〉 + |11〉) /

√
2 is entangled.

Indeed, suppose |00〉 + |11〉 = |a〉 ⊗ |b〉 for some |a〉 and |b〉. Taking inner prod-
ucts with |00〉, |11〉, and |01〉 and applying property (4) of tensor products gives
〈0 | a〉〈0 | b〉 = 1, 〈1 | a〉〈1 | b〉 = 1, and 〈0 | a〉〈1 | b〉 = 0, respectively. Since nei-
ther 〈0 | a〉 nor 〈1 | b〉 is 0, this gives a contradiction.

Suppose that a 2-qubit is in the state

|ψ〉 = a0|00〉 + a1|01〉 + a2|10〉 + a3|11〉,
where

∑ |ai |2 = 1. What does it mean to measure the first qubit in the computational
basis? Remember that a qubit is a 2-dimensional quantum system (say a photon) and
a 2-qubit is a composite of two qubits (say two photons). When we measure the first
qubit in the composite system, the measuring apparatus interacts with the first qubit
and leaves the second qubit undisturbed. Thus, we apply the measurement {P0, P1}, in
which P0 = |0〉〈0| ⊗ I and P1 = |1〉〈1| ⊗ I . We obtain the result 0 with probability

p1(0) = 〈ψ |P0|ψ〉 = 〈ψ |a0|00〉 + 〈ψ |a1|01〉 = |a0|2 + |a1|2 ,

leading to the post-measurement state

∣∣ψ0
1

〉 = P0|ψ〉√
p1(0)

= a0|00〉 + a1|01〉√
|a0|2 + |a1|2

.

Similarly, we obtain the result 1 with probability

p1(1) = 〈ψ |P1|ψ〉 = |a2|2 + |a3|2 ,

resulting in the post-measurement state

∣∣ψ1
1

〉 = P1|ψ〉√
p1(1)

= a2|10〉 + a3|11〉√
|a2|2 + |a3|2

.

In the same way, if we measure the second qubit we obtain

p2(0) = |a0|2 + |a2|2 ,
∣∣ψ0

2

〉 = a0|00〉 + a2|10〉√
|a0|2 + |a2|2

,

p2(1) = |a1|2 + |a3|2 ,
∣∣ψ1

2

〉 = a1|01〉 + a3|11〉√
|a1|2 + |a3|2

.

In particular, if the 2-qubit is in the entangled state |ψ〉 = (|00〉 + |11〉) /
√

2, then

p1(0) = p1(1) = p2(0) = p2(1) = 1

2

March 2003] QUANTUM COMPUTATION 187



and ∣∣ψ0
1

〉 = ∣∣ψ0
2

〉 = |00〉, ∣∣ψ1
1

〉 = ∣∣ψ1
2

〉 = |11〉.
Thus, a measurement of the second qubit always gives the same result as a measure-
ment of the first qubit even if the two qubits are far apart and cannot communicate in
the time between the two measurements. We then say that the two measurements are
perfectly correlated.

4. QUANTUM CIRCUITS. Classical computer circuits consist of wires and logic
gates. The wires are used to carry information in the form of current around the circuit,
while the logic gates convert the information from one form into another. The computer
has an internal clock that marks time at equal time steps. At each time step, the state
(or internal configuration) of the computer is transformed by a logic gate into another
state according to a program prescription. The operation of a classical computer can
be described by a set of logic gates that act sequentially on the state, together with
input and output data. At the end of the program, the output data is observed and the
computation is completed.

A quantum computer acts in a similar way, except now the wires represent the state
evolution of a quantum system and the logic gates are replaced by quantum gates that,
in accordance with Postulate 2, are described by unitary operators on the state space.
A finite sequence of unitary operators called quantum gates acting on the state space
of an n-qubit is said to be a quantum circuit. In order to observe output data we also
allow a quantum circuit to contain measurements that are usually placed at the end of
the sequence. We define a quantum computer to be a quantum circuit that can be used
to perform a computation. Quantum gates for single qubits are easily constructed in
the laboratory, and more complex quantum gates are usually implemented by tensor
products of these simple gates. All the quantum gates that we shall present can be
efficiently constructed. The efficient construction of more complex quantum gates has
been studied (for example, in [1]) but will not be considered here.

Can a quantum computer perform any computation that a classical computer can
perform? It can be shown that the answer is yes. The main problem in answering this
question is that a logic gate may be irreversible (not one-to-one), whereas quantum
gates are reversible because they are given by unitary operators. For example, the clas-
sical AND-gate transforms the 2-bits 00, 01, 10, and 11 to the 1-bits 0, 0, 0, and 1,
respectively. Denoting the Cartesian product {0, 1} × {0, 1} by {0, 1}2, the AND-gate
is described by the function f : {0, 1}2 → {0, 1} given by f (x, y) = xy, which is not
one-to-one. The reason the AND-gate is described by the function f is that the truth
table for the AND-gate is identical to the table of values for f .

x y x AND y f (x, y)

0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

However, there are universal logic gates such as the Toffoli gate that are reversible.
That is, any logic gate can be simulated by a finite number of Toffoli gates. The Toffoli
gate is described by the function g: {0, 1}3 → {0, 1}3 given by g(x, y, z) = (x, y, z ⊕
xy), where ⊕ signifies addition modulo 2. Notice that g ◦ g is the identity mapping.
Hence, g is its own inverse, so g is one-to-one. It turns out that there is a quantum
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gate that simulates a classical Toffoli gate, thus ensuring that quantum computers are
at least as powerful as classical computers.

As an indication that quantum computers are actually more powerful than classical
computers, we point out that no classical computer can generate bits that are truly
random. For a quantum computer, on the other hand, just start by preparing a qubit
in the state |0〉, send it through a Hadamard gate H to produce (|0〉 + |1〉) /

√
2, and

then measure the state in the computational basis. The result will be |0〉 or |1〉, each
with probability exactly 1/2. As another indication, there is only one nontrivial logic
gate for a 1-bit system. This is the NOT-gate that transforms 0 to 1 and 1 to 0, which
is called a bit flip. By contrast, there are infinitely many unitary operators and hence
infinitely many quantum gates for a 1-qubit system.

We now briefly discuss some quantum gates. Since the Pauli matrix X satisfies
X |0〉 = |1〉 and X |1〉 = |0〉, we call X the quantum NOT-gate. An important 2-qubit
gate is the controlled-NOT or CNOT-gate. This gate has two input qubits, known as
the control qubit and the target qubit. If the control qubit is |0〉, the target qubit is left
alone. If the control qubit is |1〉, the target qubit is flipped. This can be summarized
as |x〉|y〉 → |x〉|x ⊕ y〉, where x and y belong to {0, 1}. The unitary matrix for the
CNOT-gate is

UC N =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

When a quantum gate has multiple wires entering it (and leaving it), each wire repre-
sents a qubit state and the combined wires represent the tensor product of the individual
wires. The CNOT-gate is illustrated in Figure 1.

|y〉 d |x ⊕ y〉

|x〉 s |x〉

Figure 1. CNOT-gate.

If U is a unitary operator acting on an n-qubit state space, the controlled-U -gate
acts on an (n + 1)-qubit state space and is a natural extension of a CNOT-gate. Such
a gate has a single control qubit and n target qubits. If the control qubit state is |0〉,
then nothing happens to the target qubits. If the control qubit state is |1〉, then U is
applied to the target qubit states. If we let U = X , then the controlled-U -gate is just
a CNOT-gate. The controlled-U -gate is illustrated in Figure 2, where �n indicates
that there are n wires.

�n U �n

s

Figure 2. Controlled-U -gate.
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Besides quantum gates, the other important component of a quantum circuit is a
measurement device represented by M , as in Figure 3. This device performs the oper-
ation of converting a qubit state |ψ〉 = a|0〉 + b|1〉 into a probabilistic classical bit x
(written as a double-line wire) that is 0 with probability |a|2 and 1 with probability |b|2.
In general, a measurement with n possible outcomes has n wires leaving it.

|ψ〉 M
x

Figure 3. Measurement.

Figure 4 depicts a useful quantum circuit. This circuit diagram tells us that H ⊗ I
is applied to |x〉|y〉 and then the CNOT-gate is applied to the result. Letting x and y
belong to {0, 1}, we have

|00〉 → 1√
2

(|00〉 + |10〉) → 1√
2

(|00〉 + |11〉) = |β00〉,

|01〉 → 1√
2

(|01〉 + |11〉) → 1√
2

(|01〉 + |10〉) = |β01〉,

|10〉 → 1√
2

(|00〉 − |10〉) → 1√
2

(|00〉 − |11〉) = |β10〉,

|11〉 → 1√
2

(|01〉 − |11〉) → 1√
2

(|01〉 − |10〉) = |β11〉.

The entangled states
∣∣βxy

〉
are called Bell states. We can write

∣∣βxy

〉 = |0y〉 + (−1)x |1y〉√
2

,

where y is the negation 1 − y of y. This simple quantum circuit shows that Bell states
can easily be prepared in the laboratory.

|y〉 d
∣∣βxy

〉|x〉 H s

Figure 4. Bell state generator.

The unitary matrix for the quantum circuit in Figure 4 is given by:

UC N (H ⊗ I ) = 1√
2




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




= 1√
2




1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0


 .
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We now illustrate the difficulty in copying an unknown quantum state. To be precise,
given an unknown quantum state |ψ〉 we would like to reproduce |ψ〉 together with an
exact copy of |ψ〉. A classical CNOT-logic-gate, which is the same as in Figure 1 with
the vector brackets deleted, can be used to copy an unknown bit x . Just let x be the
control bit, and let 0 be the target bit to obtain x0 → xx . That is, the input to the gate
is the pair of bits x, 0 and the output is the pair of bits x, x . We have thus reproduced
x and a copy of x . Let us try to copy a qubit in the unknown state |ψ〉 = a|0〉 + b|1〉
in the same way using a quantum CNOT-gate. The input state is

(a|0〉 + b|1〉) |0〉 = a|00〉 + b|10〉,
and the output state becomes a|00〉 + b|11〉. If we had copied |ψ〉, we would have the
output state |ψ〉|ψ〉. But

|ψ〉|ψ〉 = a2|00〉 + ab|01〉 + ab|10〉 + b2|11〉.
These two output states are not the same unless ab = 0. Thus, we can copy an un-
known state by this method only if it is |0〉 or |1〉. We now show that no method will
work, a state of affairs described as the “no-cloning theorem.”

Suppose we have a quantum copying machine (quantum circuit) that copies un-
known states |ψ〉 and starts out in some standard state |s〉. The initial state is |ψ〉|s〉
and some unitary evolution implements the copy procedure: U (|ψ〉|s〉) = |ψ〉|ψ〉.
Suppose this machine works for two particular states |ψ〉 and |φ〉. Then U (|ψ〉|s〉) =
|ψ〉|ψ〉 and U (|φ〉|s〉) = |φ〉|φ〉. Taking inner products of both sides gives 〈ψ | φ〉 =
〈ψ | φ〉2. Hence 〈ψ | φ〉 = 0 or 1, so either |ψ〉 = |φ〉 or |ψ〉 ⊥ |φ〉. Thus, if the ma-
chine copies |ψ〉, then it cannot copy a state that is not orthogonal to |ψ〉. We conclude
that it is highly unlikely that the machine will copy an arbitrary unknown state |φ〉.
5. SUPERDENSE CODING AND TELEPORTATION. We begin with the prob-
lem of distinguishing quantum states. Like many ideas in this subject, distinguishabil-
ity is most easily understood using the metaphor of a game involving two parties,
say Alice and Bob. Alice chooses a state

∣∣ψ j

〉
from some fixed set of states |ψi 〉,

1 ≤ i ≤ n, known to both parties. She gives
∣∣ψ j

〉
to Bob, whose task is to iden-

tify the index j . If the states are mutually orthogonal, Bob can distinguish the states
with the measurement {Pi : i = 0, 1, . . . , n}, where Pi = |ψi 〉〈ψi | for i = 1, . . . , n, and
P0 = I − ∑n

i=1 Pi . In this case, p( j) = 〈
ψ j

∣∣Pj

∣∣ψ j

〉 = 1 and p(i) = 〈
ψ j

∣∣Pi

∣∣ψ j

〉 = 0
for i �= j , so the outcome j occurs with certainty and he identifies the state as

∣∣ψ j

〉
re-

liably. Bob is thus able to distinguish the orthogonal states |ψi 〉. The next result shows
that this cannot be done for nonorthogonal states. Thus if you have one of the two
nonorthogonal states |ψ1〉 and |ψ2〉, then no measurement will allow you to tell with
certainty which state you have.

Theorem 1. No measurement can reliably distinguish two nonorthogonal states |ψ1〉
and |ψ2〉.
Proof. Suppose that a measurement {Pi : i = 1, 2, . . . , n} can reliably distinguish |ψ1〉
and |ψ2〉. If the measurement has outcome j , then it must be possible to decide
whether the state is |ψ1〉 or |ψ2〉. Thus, there exists a function f : {1, . . . , n} → {1, 2}
such that f ( j) = 1 if the state is |ψ1〉 and f ( j) = 2 if the state is |ψ2〉. Define
Qi = ∑{

Pj : f ( j) = i
}

for i = 1, 2. Because of reliability, we have 〈ψ1|Q1|ψ1〉 =
〈ψ2|Q2|ψ2〉 = 1. Since Q1 + Q2 = I , we also have

〈ψ1|Q1|ψ1〉 + 〈ψ1|Q2|ψ1〉 = 〈ψ1|I |ψ1〉 = 〈ψ1 | ψ1〉 = 1.
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Hence 〈Q2ψ1 | Q2ψ1〉 = 〈ψ1|Q2|ψ1〉 = 0, implying that Q2|ψ1〉 = θ . Now we can
write |ψ2〉 = a|ψ1〉 + b|φ〉, where ‖φ‖ = 1, |φ〉 ⊥ |ψ1〉, |a|2 + |b|2 = 1, and (because
|ψ1〉 �⊥ |ψ2〉) |b| < 1. Then Q2|ψ2〉 = bQ2|φ〉. Since

〈φ|Q2|φ〉 ≤ 〈φ|Q1|φ〉 + 〈φ|Q2|φ〉 = 〈φ | φ〉 = 1,

we find that

〈ψ2|Q2|ψ2〉 = 〈Q2ψ2 | Q2ψ2〉 = |b|2 〈φ|Q2|φ〉 ≤ |b|2 < 1.

This is a contradiction.

In superdense coding, Alice and Bob are a long way from one another, and Alice
wants to transmit some classical information in the form of a 2-bit to Bob. We shall
show that this can be achieved with Alice sending a single qubit to Bob. (This can be
generalized to sending a 2n-bit using an n-qubit.) Superdense coding provides a means
for communicating classical information in terms of a “smaller amount” of quantum
information.

Alice and Bob initially share a 2-qubit in the entangled state

|ψ〉 = (|00〉 + |11〉)√
2

.

(Remember that a 2-qubit is just a pair of quantum particles.) Alice keeps the first qubit
(particle), while Bob keeps the second qubit (particle) and then moves far away. Note
that |ψ〉 is a fixed state and it is not necessary for Alice to send any qubits to Bob to
prepare this state. For example, a third party may prepare the entangled state ahead of
time, sending one of the qubits to Alice and the other to Bob. In either case this state
|ψ〉 = |β00〉 can be prepared by employing the Bell state generator of Figure 4.

If Alice wishes to send the 2-bit 00 to Bob, she just transmits her qubit. If she wishes
to send 01, she applies the quantum gate X (recall the Pauli matrices (1) in section 2) to
her qubit and transmits it to Bob. If she wants to send 10, she applies the Pauli matrix
Z to her qubit and transmits it. Finally, if she wants to send 11, she applies iY to her
qubit and transmits it. The four resulting states are:

00: (I ⊗ I )|ψ〉 = |ψ〉 = |β00〉,
01: (X ⊗ I )|ψ〉 = |β01〉,
10: (Z ⊗ I )|ψ〉 = |β10〉,
11: (iY ⊗ I )|ψ〉 = |β11〉.

These entangled states are the Bell states considered earlier. They constitute a basis
for C4, hence they can be distinguished by an appropriate measurement. Since Bob
is in possession of both qubits, he can perform a measurement on this Bell basis and
reliably determine which of the four possible 2-bits Alice sent. Classically, this task
would be impossible to perform if Alice transmitted a single bit. (N.B. Superdense
coding has been performed in the laboratory.)

In science fiction shows like Star Trek, people are teleported (transported) from
one location to another. We now know that this is theoretically possible. Although
single qubits have been teleported in practice, it would be prohibitively expensive to
teleport the immense n-qubit describing a person, at least with present technology. We
have seen that an unknown qubit state |ψ〉 cannot be copied. However, as we shall
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see, |ψ〉 can be teleported through a classical channel, destroying the original state in
the process. Alice wants to transmit |ψ〉 to Bob by sending him classical information
(bits). This looks impossible: even if she knew |ψ〉, describing it precisely would take
an infinite amount of classical information because |ψ〉 takes values in the continuous
space C2.

The teleportation procedure begins as in superdense coding. Beforehand, Alice and
Bob generate a 2-qubit Bell state |β00〉 = (|00〉 + |11〉) /

√
2. Alice takes the first qubit

(particle), and Bob moves with the other to a different location. At a later time, when
Alice wants to teleport |ψ〉 to Bob, she combines the qubit in the state |ψ〉 with her
qubit and measures the resulting 2-qubit in her possession, thereby obtaining one of the
four classical results 00, 01, 10, or 11. She sends this information to Bob. Depending
on Alice’s classical information, Bob performs one of four operations on his qubit and
amazingly can recover the original state |ψ〉.

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉
X y Z x |ψ〉

|β00〉
{ d M2

y s

|ψ〉 s H M1
x s

Figure 5. Teleportation circuit.

Quantum teleportation employs the quantum circuit in Figure 5. The top two wires
represent Alice’s system, the bottom wire Bob’s. The state to be teleported is |ψ〉 =
a|0〉 + b|1〉, where a and b are unknown complex amplitudes. The input state to the
circuit is the 3-qubit state

|ψ0〉 = |ψ〉|β00〉 = 1√
2

[a|0〉 (|00〉 + |11〉) + b|1〉 (|00〉 + |11〉)] ,

in which the first two qubits (particles) belong to Alice and the third qubit (particle) to
Bob. Alice applies a CNOT-gate, given by Figure 1, to her two qubits to obtain

|ψ1〉 = 1√
2

[a|0〉 (|00〉 + |11〉) + b|1〉 (|10〉 + |01〉)] .

She then applies a Hadamard gate to the first qubit, resulting in

|ψ2〉 = 1√
2

[a (|0〉 + |1〉) (|00〉 + |11〉) + b (|0〉 − |1〉) (|10〉 + |01〉)]

= 1√
2

[|00〉 (a|0〉 + b|1〉) + |01〉 (a|1〉 + b|0〉) + |10〉 (a|0〉 − b|1〉)
+ |11〉 (a|1〉 − b|0〉)] .

In each of these four terms the 2-qubit state on the left is Alice’s and the qubit state on
the right is Bob’s. Notice that information about |ψ〉 that was originally the first qubit
state has miraculously moved to Bob’s third qubit state, which is represented by the
third (bottom) wire of Figure 5. Alice now measures her 2-qubit in the computational
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basis to get 00, 01, 10, or 11. In each case there is only one possibility for Bob’s qubit
state |ψ3〉:

00 ⇒ |ψ3〉 = a|0〉 + b|1〉, 01 ⇒ |ψ3〉 = a|1〉 + b|0〉,
10 ⇒ |ψ3〉 = a|0〉 − b|1〉, 11 ⇒ |ψ3〉 = a|1〉 − b|0〉.

That is, if Alice’s measurement results in the outcome 00, then Bob’s qubit state |ψ3〉
must be a|0〉 + b|1〉, etc. Alice sends her classical 2-bit result to Bob. Once Bob has
learned the result he can fix up his state |ψ3〉 to recover |ψ〉 by applying the appropriate
quantum gate as follows:

00: Z0 X 0|ψ3〉 = I |ψ3〉 = |ψ〉,
01: Z0 X 1|ψ3〉 = X |ψ3〉 = aX |1〉 + bX |0〉 = a|0〉 + b|1〉 = |ψ〉,
10: Z1 X 0|ψ3〉 = Z |ψ3〉 = aZ |0〉 − bZ |1〉 = a|0〉 + b|1〉 = |ψ〉,
11: Z 1 X 1|ψ3〉 = Z (aX |1〉 − bX |0〉) = aZ |0〉 − bZ |1〉 = a|0〉 + b|1〉 = |ψ〉.

It might appear that quantum teleportation allows the transfer of information faster
than the speed of light, which would contradict relativity theory. It is true that the
CNOT and Hadamard gates change the state of Bob’s qubit instantaneously. However,
Alice must transmit her measurement result over a classical communications channel,
which limits the speed to that of light. In fact, it can be shown that without this classical
communication, teleportation conveys no information whatsoever [7].

6. DEUTSCH-JOZSA AND GROVER ALGORITHMS. Quantum parallelism is
a feature of quantum mechanics that allows quantum computers to evaluate a function
f (x) for many values of x simultaneously. Let f : {0, 1}n → {0, 1} be a function that
takes an n-bit into a bit. Letting V = C2, we define the transformation U f : V ⊗n ⊗
V → V ⊗n ⊗ V by U f |x, y〉 = |x, y ⊕ f (x)〉 for x in {0, 1}n and y in {0, 1}, and ex-
tend by linearity. Since U f |x, 0〉 = |x, f (x)〉 and U f |x, 1〉 = |x, f (x)〉, we see that
U f is unitary and is thus a quantum gate. A quantum parallelism circuit is depicted in
Figure 6, in which the second gate is a U f -gate. If |0〉⊗n is input into the upper multiple
wire and |0〉 into the lower single wire of Figure 6, then we produce the state

U f (H⊗n ⊗ I )|0〉 = 1√
2n

U f

∑
x

|x, 0〉 = 1√
2n

∑
x

U f |x, 0〉

= 1√
2n

∑
x

|x, f (x)〉.

The final state on the right contains information about all the values of f (x) simulta-
neously.

y y ⊕ f (x)

x x�n
H⊗n �n �n

Figure 6. Quantum parallelism circuit.
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The Deutsch-Jozsa algorithm shows that a quantum computer is definitely more
powerful (faster) than a classical computer. We call a function f : {0, 1}n → {0, 1}
balanced if f (x) = 1 for exactly half of all possible x and f (x) = 0 for the other half.
Suppose that Bob has a function f : {0, 1}n → {0, 1} that is either constant or balanced,
and Alice wants to find out which it is with certainty. Alice selects an integer x from 0
to 2n − 1 and sends x to Bob. Bob calculates f (x) and replies with the result, which is
either 0 or 1. What is the fewest number of queries that Alice can make to determine
whether or not f is constant?

In the classical case, Alice can send Bob one value of the n-bit x in each query. If
Alice ever gets two different replies, she knows that f is balanced and can stop. At
worst, she will need to query Bob 2n−1 + 1 times, because she may first receive 2n−1

zeros and will need one more query to decide. We say that this problem has exponential
time complexity classically. On the other hand, if Alice and Bob were able to exchange
qubits instead of just classical bits, then Alice could achieve her goal in just one query
using the Deutsch-Jozsa algorithm, which we now discuss.

Alice has an n-qubit register in which to store her query and a 1-qubit register
that she gives Bob in which to store the answer. She begins by preparing both her
query and answer registers in a superposition state, as explained in detail later. Bob
evaluates f (x) using a quantum parallelism circuit and leaves the result in the answer
register. Alice then applies a Hadamard transformation H⊗n to the query register and
finishes by a suitable measurement to determine whether f is constant or balanced.
The quantum circuit is depicted in Figure 7.

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉
|y〉 H y y ⊕ f (x)

x x|0〉⊗n �n H⊗n �n �n H⊗n �n M
...

Figure 7. Deutsch-Jozsa algorithm.

The input state for the circuit in Figure 7 is |ψ0〉 = |0〉⊗n|1〉. The state |ψ1〉 becomes

|ψ1〉 = H⊗(n+1)|ψ0〉 = H⊗n|0〉⊗n H |1〉 =
∑

x

|x〉√
2n

( |0〉 − |1〉√
2

)
,

where x belongs to {0, 1}n . To obtain the state |ψ2〉 we compute

|ψ2〉 = U f |ψ1〉 =
∑

x

|x〉√
2n

( |0〉 − |1〉√
2

⊕ | f (x)〉
)

=
∑

x

(−1) f (x)|x〉√
2n

( |0〉 − |1〉√
2

)
.

Hence,

|ψ3〉 = (H⊗n ⊗ I )|ψ2〉 =
∑
x,y

(−1)x ·y+ f (x)|y〉
2n

( |0〉 − |1〉√
2

)
.
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Alice now makes a measurement on the query register. Note that the amplitude for the
state |0〉⊗n is

∑
x(−1) f (x)/2n. If f is constant, this amplitude is ±1. Since ‖|ψ3〉‖ = 1,

all the other amplitudes must be 0. Thus, the measurement outcome is 0 with certainty.
If f is balanced, then the amplitude for the state |0〉⊗n is 0. Hence, the measurement
outcome must be different from 0. We have two possibilities: Alice obtains the out-
come zero or the outcome nonzero. In the first case, f is certainly constant and in the
second case f must be balanced.

Suppose you find a telephone number on a scrap of paper but have forgotten whose
number it is. In your little black book you have listed your friends with their telephone
numbers. If there are N people in your list, you might have to check about N numbers
(technically, the number of steps involved is denoted by O(N )). This is the best that
can be done for a classical search algorithm on an unstructured data base. We shall see
that Grover’s quantum search algorithm requires only O(

√
N ) searches. This again

shows that a quantum computer is more powerful than a classical computer. Moreover,
unlike the Deutsch-Jozsa algorithm, Grover’s algorithm solves a practical problem
with many applications. Of course, for structured data bases (for example, alphabetical
or numerical order) there are much faster algorithms.

When we search through a set of N elements we can assume that the elements are
indexed from 0 to N − 1 and look for the index of the element we want to find. We
assume that N = 2n , so the index can be stored in n bits, and for simplicity we shall
assume that there is exactly one solution y. At the end we shall discuss what to do
when there are M solutions. Let f : {0, 1, . . . , 2n − 1} → {0, 1} be defined by f (x) =
δxy . An oracle is a black box that can recognize the solution to the search problem.
The oracle does not know the solution beforehand, it can just verify the solution if
it sees it. We define the oracle as the unitary operator O on CN = (C2)⊗n given by
O|x〉 = (−1) f (x)|x〉 for each member |x〉 of the computational basis. We say that the
oracle marks the solution by shifting its phase.

The crucial quantum gate in the algorithm is the Grover operator defined by per-
forming the following operations in sequence:

(1) apply the oracle O;
(2) apply the Hadamard transformation H⊗n ;
(3) perform the conditional phase shift Fc|0〉 = |0〉 and Fc|x〉 = −|x〉 for x > 0;
(4) apply H⊗n again.

Notice that

Fc|x〉 = −(−1)δx0 |x〉 = (2|0〉〈0| − I ) |x〉,
so Fc = 2|0〉〈0| − I . Thus the Grover operator G is the product of four unitary opera-
tors

G = H⊗n Fc H⊗nO = H⊗n (2|0〉〈0| − I ) H⊗nO.

To simplify the expression for G, let

|ψ〉 = H⊗n|0〉 = 1

N 1/2

N−1∑
x=0

|x〉.

Since H 2 = I , we have

H⊗n (2|0〉〈0| − I ) H⊗n = 2H⊗n|0〉〈0|H⊗n − I = 2|ψ〉〈ψ | − I .
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Hence, G = (2|ψ〉〈ψ | − I )O. The reason we did not just define G in this simple
way is that we wanted to show how G can be efficiently implemented using standard
quantum gates that can be constructed in practice.

We can visualize G geometrically as a two-dimensional rotation. Recalling that y
is the unique solution to our search problem, we let |α〉 be the unit vector given by

|α〉 = 1√
N − 1

∑
x �=y

|x〉.

The uniform superposition |ψ〉 can then be written as follows:

|ψ〉 = 1√
N

∑
x

|x〉 + 1√
N

|y〉 =
√

1 − 1

N
|α〉 +

√
1

N
|y〉.

The oracle O performs a reflection across |α〉 in the plane P spanned by |α〉 and |y〉.
That is,

O (a|α〉 + b|y〉) = a|α〉 − b|y〉.
Similarly, 2|ψ〉〈ψ | − I performs a reflection in P across |ψ〉. Indeed, if |ψ ′〉 is a unit
vector orthogonal to |ψ〉 in P , then

(2|ψ〉〈ψ | − I )
(
a|ψ〉 + b

∣∣ψ ′〉) = a|ψ〉 − b
∣∣ψ ′〉.

But the product of two reflections is a rotation. This tells us that Gk |ψ〉 remains in P
for all k. We can obtain the rotation angle as follows. Let cos(θ/2) = √

1 − 1/N , so
that

|ψ〉 = cos

(
θ

2

)
|α〉 + sin

(
θ

2

)
|y〉.

Figure 8 then shows that G|ψ〉 = cos(3θ/2)|ψ〉 + sin(3θ/2)|y〉, making the rotation
angle θ .

� |α〉θ/2
�

�

|y〉

��
��

��
��

�� |ψ〉

PPPPPPPPPqO|ψ〉
θ/2��

�
�
�
�
�
�
��

G|ψ〉

θ�

Figure 8. Rotation angle.

A repeated application of G takes |ψ〉 to

Gk |ψ〉 = cos

(
2k + 1

2
θ

)
|α〉 + sin

(
2k + 1

2
θ

)
|y〉
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and can rotate |ψ〉 close to |y〉. When this occurs, a measurement in the computational
basis gives outcome y with high probability and thus solves the search problem.

How many times must G be repeated to rotate |ψ〉 close to |y〉? To get an exact
rotation to |y〉 would require k ′ applications of G, with k ′ satisfying

0 = cos

(
2k ′ + 1

2
θ

)
= cos

(
k ′θ + θ

2

)
= cos(k ′θ) cos

(
θ

2

)
− sin(k ′θ) sin

(
θ

2

)

=
√

1 − 1

N
cos(k ′θ) −

√
1

N
sin(k ′θ).

Hence tan(k ′θ) = √
N − 1 , which gives cos(k ′θ) = √

1/N and

k ′ = cos−1
(√

1/N
)

θ
.

Of course, k is an integer, so we take k = �k ′�, where � � denotes the ceiling function
(i.e., �x� is the smallest integer that is greater than or equal to x). Therefore, we must
repeat the Grover operator

R =
⌈

cos−1
(√

1/N
)

θ

⌉
≤
⌈ π

2θ

⌉

times. Because √
1

N
= sin

(
θ

2

)
≤ θ

2
,

we have 4
√

1/N ≤ 2θ , whence R ≤ �π√
N/4�. Thus, fewer than

√
N oracle calls

must be performed to solve the search problem with high probability. To estimate this
probability, we see from Figure 8 that G R rotates |ψ〉 to within θ/2 of |y〉. Since N is
fairly large in practice, we have

θ

2
≈ sin

(
θ

2

)
=
√

1

N
,

which yields a probability of at most 1/N that an error occurs.
If there is a known number 1 ≤ M ≤ N of solutions to the search problem, then a

slightly more delicate argument gives the same results with N replaced by N/M . In
this case, R ≤ �π√

N/M /4�, which is reasonable because fewer searches should be
required to find a solution. If the number of solutions M is unknown, then the situation
gets more complicated. In that event, a separate algorithm based on the phase estima-
tion algorithm discussed in the next section can be applied to approximate M to any
degree of accuracy (this also works if M = 0). Moreover, this separate algorithm still
requires O

(√
N/M

)
operations. Once M is determined, we can proceed as before.

7. QUANTUM FOURIER TRANSFORM. Probably the most impressive quantum
algorithm to date is Shor’s factorization algorithm. This algorithm enables a quantum
computer to factor integers exponentially faster than any known algorithm for a classi-
cal computer. It turns out that Shor’s algorithm can be reduced to the phase estimation
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algorithm discussed in this section, and both of these algorithms rely on the quantum
Fourier transform. The reduction requires a considerable knowledge of number theory
and will not be considered here.

Let V = CN with computational basis |0〉, . . . , |N − 1〉. The quantum Fourier
transform on V is the operator F : V → V defined by

F | j〉 = 1√
N

N−1∑
k=0

e2π i j k/N |k〉,

where in this context i = √−1. We first show that F is unitary.

〈
j ′∣∣F† F | j〉 = 1

N

N−1∑
k=0

e2π ik( j− j ′)/N .

If j = j ′, the sum is 1; if j �= j ′, the sum is

1

N

N−1∑
k=0

[
e2π i( j− j ′)/N

]k = 1

N

[
1 − e2π i( j− j ′)

1 − e2π i( j− j ′)/N

]
= 0.

Hence 〈 j ′|F† F | j〉 = δ j j ′ = 〈 j ′ | j〉 for j ′, j = 0, 1, . . . , N − 1. It follows that
F† F = I , confirming that F is unitary.

In the sequel we take N = 2n , so the basis |0〉, . . . , |2n − 1〉 is the computational
basis for an n-qubit. As earlier, we frequently write | j〉 in terms of its binary represen-
tation j = j1 · · · jn , i.e.,

| j〉 = | j1 · · · jn〉 = | j1〉 · · · | jn〉.
We also use the notation 0. j	 j	+1 . . . jm to represent the binary fraction

j	/2 + j	+1/22 + · · · + jm/2m−	+1.

The product representation in the next lemma makes it easy to derive an efficient quan-
tum circuit for F using simple 1-qubit quantum gates.

Lemma 2. For | j〉 = | j1 · · · jn〉 it is the case that

F | j〉 = 1

2n/2

[(|0〉 + e2π i0. jn |1〉) (|0〉 + e2π i0. jn−1 jn |1〉) · · · (|0〉 + e2π i0. j1··· jn |1〉)] .
Proof. This follows from the calculation

F | j〉 = 1

2n/2

2n−1∑
k=0

e2π i j k/2n |k〉

= 1

2n/2

1∑
k1=0

· · ·
1∑

kn=0

exp

(
2π i j

n∑
	=1

k	2
−	

)
|k1 · · · kn〉

= 1

2n/2

1∑
k1=0

· · ·
1∑

kn=0

⊗n
	=1e2π i j k	2−	 |k	〉 = 1

2n/2
⊗n

	=1

1∑
k	=0

e2π i j k	2−	 |k	〉

= 1

2n/2
⊗n

	=1

(
|0〉 + e2π i j2−	|1〉

)
.
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This last term gives the required expression.

Suppose that a unitary operator U has a known eigenvector |u〉 with eigenvalue
e2π iφ , where φ is unknown. The phase estimation algorithm is employed to estimate
φ. This algorithm uses two registers. The first register contains t qubits initially in the
state |0〉. The choice of t depends on the number of digits of accuracy we wish for our
estimate of φ and the probability with which we want the estimation to be successful.
The second register begins in the state |u〉 and contains as many qubits as is necessary
to store |u〉 to a desired accuracy. Phase estimation has three stages, the first of which
is depicted in Figure 9.

|u〉 �n
U 20 �n

U 21 �n . . . �n
U 2t−1 �n

|0〉 H s . . .

|0〉 H s . . .

...

|0〉 H . . . s

Figure 9. First stage of the phase estimation algorithm.

Recall that the controlled-U j -gate with matrix A satisfies

A

[
1√
2

(|0〉 + |1〉)
]

|u〉 = 1√
2

A|0〉|u〉 + 1√
2

A|1〉|u〉

= 1√
2

(|0〉|u〉 + |1〉U j |u〉)

= 1√
2

(|0〉|u〉 + |1〉e2π i jφ|u〉)

= 1√
2

(|0〉 + e2π i jφ|1〉) |u〉.

By Lemma 2, the final state of the first register becomes

1

2t/2

(
|0〉 + e2π i2t−1φ|1〉

)(
|0〉 + e2π i2t−2φ|1〉

)
· · ·

(
|0〉 + e2π i20φ|1〉

)
= 1

2t/2

2t −1∑
k=0

e2π ikφ|k〉.

We omit the second register from the rest of the description because it stays in the
state |u〉 throughout the computation. The second stage of phase estimation is to apply
the inverse quantum Fourier transform

F†| j〉 = 1√
N

N−1∑
k=0

e−2π i j k/N |k〉

to the first register. The third and final stage is to read out the state of the first register
by applying a measurement in the computational basis. This provides a good estimate
of φ.
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To get an idea as to why phase estimation works, suppose φ can be exactly ex-
pressed by t bits as φ = 0.φ1 . . . φt . Then by Lemma 2, the state resulting from the
first stage is

1

2t/2

(|0〉 + e2π i0.φt |1〉)(|0〉 + e2π i0.φt−1φt |1〉) · · · (|0〉 + e2π i0.φ1...φt |1〉) = F |φ1φ2 . . . φt〉.

Taking the inverse quantum Fourier transform F† in the second stage leads to
|φ1φ2 . . . φt〉. A measurement in the computational basis then gives φ exactly with
probability 1.

Thus, we can solve the problem exactly whenever φ is rational. If φ is irrational,
this algorithm (with t sufficiently large) provides an estimate for φ to any desired
degree of accuracy with probability arbitrarily close to 1. To demonstrate this requires
a fairly long analysis [7], [8] that we shall omit. The end result is the following: to
obtain φ accurate to n bits with probability of success at least 1 − ε, choose t = n +
�log2

(
2 + 1

2ε

)�.
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