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General E-unification is an important tool in cryptographic protocol analysis, where 
the equational theory E represents properties of the cryptographic algorithm, and 
uninterpreted function symbols represent other functions. The property of a homomor-
phism over an Abelian group is common in encryption algorithms such as RSA. The general 
E-unification problem in this theory is NP-complete, and existing algorithms are highly 
nondeterministic. We give a mostly deterministic set of inference rules for solving general 
E-unification modulo a homomorphism over an Abelian group, and prove that it is sound, 
complete and terminating. These inference rules have been implemented in Maude, and 
will be incorporated into the Maude-NRL Protocol Analyzer (Maude-NPA).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In symbolic cryptographic protocol analysis, messages are represented as terms. Actions of principals involved in the 
protocol are represented with rules, indicating that if a principal receives a message with a given pattern then the principal 
will send out a message based on the message received. Abilities of malicious intruders are represented by rules indicating 
how an intruder can manipulate data, where variables in the pattern indicate that the principal will accept any message 
of that type. A goal state represents an attack, and an analyzer decides whether the goal state is reachable. Generally, the 
analysis involves working back from the goal state to initial states. If this is possible, then an attack exists. Initial methods 
of cryptographic protocol analysis were based on the free algebra model [1]. In this method of analysis, two messages are 
the same only if they are represented by the same term. In this case, during the search back from the goal, a message 
pattern representing a received message will be compared against a message pattern representing a sent message. Syntactic 
unification is used to compare them against each other and find the intersection of the patterns.

However, the free algebra model is not precise enough to model properties of cryptographic algorithms [2]. For example, 
cryptographic algorithms may involve an encryption algorithm which has the property of a homomorphism over an Abelian 
group (AGH). RSA has the property m1

em2
e = (m1m2)

e , where raising to the power of e is a homomorphism and the product 
of the messages forms an Abelian group. Homomorphism with Abelian Groups is also commonly used in privacy-preserving 
protocols, for instance the electronic voting system [3,4]. Unfortunately, the free algebra approach fails to detect attacks in 
protocols using cryptographic algorithms with equational properties. Therefore, to conduct a more precise analysis, unifica-
tion must be performed modulo this equational theory. We consider our paper as a first step towards the goal of developing 
practical E-unification algorithms that can be used to analyze such protocols.
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Since unification algorithms for AGH are essential for cryptographic protocol analysis, it is important that AGH-unification 
algorithms are efficient. Efficient unification algorithms have been developed for elementary AGH-unification [5,6]. However, 
cryptographic protocol analysis also must deal with uninterpreted function symbols. For example, besides the encryption 
function, the hash function and concatenation of functions are also commonly used for building other cryptographic primi-
tives.

When uninterpreted function symbols occur in combination with AGH, the complete set of unifiers is not always a 
singleton, but it is finite. It is crucial that the unification algorithm creates a complete set of unifiers that is as small as 
possible. If this set is too large, the search space of searching for an attack quickly blows up and cryptographic protocol 
analysis becomes infeasible.

The goal then is to build an AGH-unification algorithm that is both efficient and creates a small complete set of unifiers. 
The problem of deciding solvability of AG-unification problems is NP-complete [7]. An extra homomorphic operator will 
not make the problem any simpler, since homomorphism may not appear in the problem. An extra homomorphic operator 
will not make the problem more complicated either by using the technique in [7], i.e. the problem of deciding solvability 
of AGH-unification problems is also NP-complete. The problem of counting the minimal complete set of unifiers of the 
AG-unification problem is in #P [8].

In [9] and [10], the authors present a more general idea of solving unification problems modulo monoidal theories, which 
include AG and arbitrary unitary homomorphic operators. They showed that solving unification problems is equivalent to 
solving systems of linear equations over a semiring which can be efficiently solved by computing the Hermite normal form 
of the corresponding integer matrix. However, this method is only applicable to the elementary E-unification problems with 
constants. It cannot solve the general E-unification problem.

However in [11] and [12], the authors introduced a general algorithm to solve general unification problems. It can solve a 
general AGH-unification problem by decomposing the problem into an elementary AGH-unification problem and a syntactic 
unification problem with free function symbols and then combining the two partial results together to get the final result. 
This algorithm has two impractical aspects: 1. it is a highly non-deterministic procedure which will increase the complexity 
of the implementation; 2. it generates a large complete set of unifiers which contains many redundant unifiers and this 
will blow up the search space during cryptographic protocols analysis. The reason for the highly nondeterministic nature of 
the combination algorithm is that equivalence classes must be created to determine which variables are equal, the variables 
must be labeled to put them in one of two sets, and a linear ordering must be given on the variables. It is not known 
which of these may work, so all equivalence relations, all labellings and all linear orderings must be considered. There are 
an exponential number of each of these even considered separately.

Another standard technique for dealing with general AGH-unification is to create a convergent equational theory and 
apply Narrowing to solve the unification problem [13]. Similar to the first technique, this method is also highly nondeter-
ministic and builds a highly redundant complete set of unifiers. The reason for this is that there may be several possible 
applications of Narrowing at each step, and all of them must be tried, frequently leading to an exponential blowup of the 
search space.

In this paper, we try to overcome these problems by devising a set of inference rules that is simple, easy to implement, 
very deterministic in practice, and produces a small complete set of unifiers. We have developed a sound, complete and 
terminating set of inference rules for AGH-unification, along with uninterpreted function symbols. We implemented our 
inference rules in Maude [14], and they are being incorporated into Maude-NRL protocol analyzer (Maude-NPA) [2].

Generally, our algorithm introduces the concept of unconstrained variables and borrows the technique of solving linear 
diophantine equations such that our algorithm is easy to read and implement. The inference system includes five necessary 
rules: Trivial, Variable Substitution, N-Decomposition, Factorization and Annulization. A simpler version of these inference 
rules (without Factorization and Annulization and with simpler conditions for other rules) also applies to Abelian groups 
without homomorphism. This AGH-unification algorithm is also an extension of the unification algorithm for XOR with a 
homomorphisms as given in [15]. It is based on the same framework, but with more sophisticated inference rules. We also 
believe we have a useful framework that could be extended to other theories. The key point of this inference system is that 
in a unification problem most applications of inference rules are don’t care nondeterministic, so that we never have to try 
other possibilities, and these rules have priority over others.

Here we give the outline of this paper. In Section 2, we give preliminary knowledge about unification and the AGH theory. 
In Section 3, we present a convergent rewriting system modulo AC for AGH. Next, we present our inference system in two 
parts: 1. A preprocessing step that transforms a unification problem into a purified form. This is given in Section 4. 2. This 
purification step is very similar to what happens in the combination algorithm, although not quite as strict. Our inference 
rules keep the unification problem in purified form. The inference rules which are used to solve the unification problem 
are given in Sections 6 and 7, where Section 6 presents the necessary rules and Section 7 presents some auxiliary rules. 
A nontrivial algorithm, called UnconstrainedReduce, is used in the Variable Substitution inference rule, and is presented 
in Section 5. The proofs of termination, soundness and completeness of our inference system are given in Sections 8, 9
and 10 respectively. Section 11 gives some concrete auxiliary rules. Section 12 shows some of our implementation results. 
The conclusion is given in Section 13.
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2. Preliminary

2.1. Basic notation

Here we give some basic terminology which we will use in the following sections.
A signature, F, is a finite set of fixed arity function symbols, where a constant is a function with 0 arguments. Let V be 

a set of variables. We say t is a term if t ∈ V, or t has the form f (t1, t2, · · · , tn), where f n ∈ F (here n is the arity of the 
function), and ti is a term. If n = 0, we call f a constant. If t and s are two terms, then we use t[s] to denote that s occurs 
in t as a subterm.

We use T to denote the set of all terms. If t is a term, we use Sym(t) to denote the multi-set of symbols occurring in t . 
We use Vars(t) to denote the set of variables occurring in t , here t can be a term, or a set of terms.

• Top(t) denotes the top symbol of term t . If t = f (t1, t2, · · · , tn), Top(t) = f . If t is a variable x, Top(x) = x.
• Let t be a term and S be a set of terms. Top(t; S) denotes the set of all terms in S , which have top symbol Top(t).

The following are standard definitions [16].
A substitution σ is a mapping from V to the set of terms, which can be represented explicitly by a set of bindings of 

variables, i.e. {x1 �−→ t1, x2 �−→ t2, · · · , xn �−→ tn} representing the substitution which maps xi to ti for i = 1, 2, · · · , n and 
which maps y to itself otherwise. We let Dom(σ ) = {x | x �−→ t ∈ σ and xσ �= x} and Range(σ ) = {t | x �−→ t ∈ σ and x ∈
Dom(σ )}. When we apply σ to a term t , we denote it as tσ . If t is a variable xi , xiσ = ti ; if t has the form f (s1, s2, · · · , sn), 
then tσ = f (s1σ , s2σ , · · · , snσ). The composition of two substitutions σ and θ , denoted σθ is defined by t(σ θ) = (tσ)θ for 
each term. The identity substitution is represented by Id. If some substitution σ is a solution of set of equations Γ , we 
write σ � Γ .

A substitution σ is idempotent if σσ = σ . We can see Dom(σ ) ∩ Vars(Range(σ )) = ∅, if and only if σ is idempotent. For 
consistency and convenience, we assume every substitution σ is idempotent.

The restriction of a substitution σ to a set of variables X, denoted by σ |X , is the substitution which is equal to the 
identity substitution everywhere except over X ∩ Dom(σ ), where it is equal to σ .

A set of identities E is a subset of T × T. We write identities in the form s ≈ t . An equational theory =E is induced by a 
set of identities E and it is the least congruence relation (i.e. reflexive, symmetric, transitive and congruence) on T that is 
closed under substitution and contains E .

If two terms, t and s, are equal with respect to a theory =E , we write it as t =E s.

Definition 1 (E-unification problem, E-unifier, E-unifiable). For a given signature F and a set of identities E , an E-unification 
problem over F is a finite multiset of equations

Γ = {
s1 =?

E t1, s2 =?
E t2, · · · , sn =?

E tn
}

between terms. A substitution σ such that siσ =E tiσ , i = 1, 2, · · · , n is called an E-unifier or a solution of Γ . U E (Γ ) is the 
set of all E-unifiers of Γ . A unification problem Γ is called E-unifiable iff U E (Γ ) �= ∅. If E is an empty set, we call the 
E-unification problem a syntactic unification problem.

Let Γ = {t1 =?
E s1, · · · , tn =?

E sn}. We use VΓ to denote the set of variables in Γ . And we use [σ ] to denote 
the set {x1 =? t1, x2 =? t2, · · · , xn =? tn} if σ = {x1 �−→ t1, x2 �−→ t2, · · · , xn �−→ tn}. For example, if we have σ =
x �−→ f (g(a),b), y �−→ g( f (x,a)), then [σ ] = {x =? f (g(a), b), y =? g( f (x, a))}.

Let Λ = {x1 =? t1, x2 =? t2, · · · , xn =? tn}. If {x1 �−→ t1, x2 �−→ t2, · · · , xn �−→ tn} is an idempotent substitution, we cay Λ
is in solved form.

On the other hand, if Λ is in solved form: {x1 =? t1, x2 =? t2, · · · , xn =? tn}, we use λΛ to denote the corresponding 
substitution, namely the set {x1 �−→ t1, x2 �−→ t2, · · · , xn �−→ tn}.

For an E-unification problem Γ , two substitutions σ and θ are called equal, denoted by σ =E θ |Γ , if xσ =E xθ for every 
variable occurring in Γ . A substitution σ is more general modulo E than another substitution θ , denoted σ ≤E θ |VΓ

if there 
exists a substitution τ , such that for every variable x in VΓ , xστ =E xθ . Note that the relation ≤E is a quasi-ordering, i.e. 
reflexive and transitive.

Definition 2 (Complete set of E-unifiers). A complete set of E-unifiers of an E-unification problem Γ is a set C of idempotent 
E-unifiers of Γ such that for each θ ∈ U E (Γ ) there exists σ ∈ C with σ ≤E θ |VΓ

.
We call a complete set C of E-unifiers minimal if two distinct elements are incomparable w.r.t. ≤E , i.e. if σ ≤E θ |VΓ

and 
σ , θ ∈ C then σ = θ .

A minimal complete set of unifiers for a syntactic unification problem Γ has only one element if it is not empty. We use 
mgu(Γ ) to denote this unifier. Without loss of generality, we suppose all variables in mgu(Γ ) are in VΓ .

For a given equational theory =E , we will call two E-unification problems equivalent modulo E if they have same set of 
unifiers modulo theory =E .
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Definition 3 (conservative extension). Let E be a set of identities, we say a multi-set of equations Γ ′ is a conservative 
E-extension of another multi-set of equations Γ , if any solution of Γ ′ is also a solution of Γ and any solution of Γ can 
be extended to a solution of Γ ′ , which means for any solution σ of Γ , there exists θ whose domain is the variables in 
Vars(Γ ′) \ Vars(Γ ) such that σθ is a solution of Γ ′ .

The conservative E-extension relation is a transitive relation.
If sθ �= tθ , we say a substitution θ satisfies the disequation s �=? t .
We sometimes omit E and Γ , if they are obvious from the context.

2.2. AGH preliminaries

Next, we introduce the basic notation related to the theory of a homomorphism over an Abelian group. We abbreviate 
this theory as AGH. The signature F here contains a unary function symbol h, an Abelian Group operator symbol +, an in-
verse operator symbol −, a constant 0 and arbitrarily many fixed-arity uninterpreted function symbols. Here h, + and −
satisfy the following identities:

• x + y ≈ y + x [Commutativity – C for short]
• (x + y) + z ≈ x + (y + z) [Associativity – A for short]
• x + 0 ≈ x [Existence of Unit – U for short]
• x + (−x) ≈ 0 [Existence of Inverse – I for short]
• h(x) + h(y) ≈ h(x + y) [Homomorphism – H for short]

We say a term t is pure, if + /∈ Sym(t) and h can occur only as the top symbol of t . We call a term h-term, if the top 
function symbol of this term is h.

Example 4. In the following set of terms:

{
a + b,h(a + y), f

(
g(a), f

(
h(b)

))
,−x,−h(x), g

(
f (a,b)

)
,h

(
f (a,b)

)}
only −x, g( f (a, b)) and h( f (a, b)) are pure terms; h(a + y) and h( f (a, b)) are h-terms but h(a +b) is not a pure term; a +b, 
−h(x) and f (g(a), h(b)) are neither pure terms nor h-terms.

In a set of equations Γ , a constrained variable is a variable which occurs under an uninterpreted function symbol or an 
h symbol. Otherwise, we call it an unconstrained variable.

Definition 5. A term t of the form t1 + t2 + · · · + tn is a pure sum if

• for every i, ti is a pure term,
• in {t1, · · · , tn}, there is at most one h-term,
• n > 0.

We will say an equation S =? 0 is in pure sum form if S is a pure sum. And we say an equation set is in pure sum form, 
if every equation in it is in pure sum form and each h-term occurs only once in all the equations. We say a variable x is a 
pure variable in some equation set Γ , if some equation Q ∈ Γ has the form of x + S =? 0. We notice here x may occur in S . 
We will use P V (Γ ) to denote the set of all the pure variables in an equation set Γ .

Because of the properties of Abelian Groups, s =?
AGH t ⇐⇒ s + (−t) =?

AGH 0, we only consider equations of the form 
S =? 0. For convenience, we write an AGH-unification problem as {s1 =? 0, s2 =? 0, · · · , sn =? 0}, where each si is a term.

3. Rewriting system RAGH

We give a convergent rewriting system RAGH for UIH modulo AC:

• x + 0 → x
• x + (−x) → 0
• −0 → 0
• −(−x) → x
• −(x + y) → −x + (−y)

• h(x) + h(y) → h(x + y)

• h(0) → 0
• −h(x) → h(−x)
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• x + y + (−x) → y
• h(x) + y + h(z) → h(x + z) + y.

Here modulo AC means we consider the following two pairs of terms as identical terms:

• x + y and y + x,
• (x + y) + z and x + (y + z).

Here we are using the extended rewrite system for UIH modulo AC , since the extended rewriting system is much more 
efficient than the class rewriting system [13]. By the polynomial ordering in which τ (x + y) = τ (x) +τ (y) +1, τ (−x) = 2τ (x), 
τ (0) = 1 and τ (h(x)) = 2τ (x) + 3, we can prove this rewriting system is terminating modulo AC . The AC-completion 
procedure [13] can show our rewriting system is confluent. So in our inference system, unless stated otherwise, all terms 
are in reduced form by RAGH . For a term t , we use t ↓ to denote t ’s reduced form. For example, if t = x + (−x) + h(a) +
h(−c) + b + 0, then t ↓= h(a + (−c)) + b. We also call t ↓ the normal form of t . We say some term t can cancel s, if 
t ↓= S + (−s ↓).

Also, we always keep our terms and equations abbreviated by the following rules (c, d are integers):

• x + x + · · · + x → cx if x occurs c times in the left hand side,
• cx + dx → (c + d)x,
• c(−x) → −cx,

where c, d are integers and c + d is the common addition between integers. Without ambiguity, we still use + between 
integers to denote the common addition between integers. We always assume every term in our equation is abbreviated 
unless we state otherwise. We call c in ct the coefficient of t . c can be negative but not zero. If c is negative, then ct is the 
abbreviation of (|c|)(−t). If some term’s coefficient is one or negative one, we call it a monic term.

4. Initialization

Our inference rules will have some requirement on the form of the problem. We require all the equations in the problem 
in pure sum form. We know that a unification problem in pure sum form means: every equation is in pure sum form and 
every h-term occurs only once in the problem. So first, we use the following rule called Purify to convert one equation not 
in pure sum form to pure sum form.

Γ ∪ {S + t[s] =? 0}
Γ ∪ {S + t[x] =? 0} ∪ {x + (−s) =? 0}

where Γ is a set of equations, S is a term, t is a pure term, s is a proper subterm of t , with Top(s) ∈ {+, h}, and x is a fresh 
variable.

Second, the following two rules are called Singlize, which will delete other duplicated occurrence of an h-term or an 
inverse of an h-term:

Γ ∪ {S + h(t) =? 0} ∪ {T + h(t) =? 0}
Γ ∪ {S + h(t) =? 0} ∪ {S + (−T ) =? 0}

and

Γ ∪ {S + h(t) =? 0} ∪ {T + h(−t) =? 0}
Γ ∪ {S + h(t) =? 0} ∪ {S + T =? 0}

where Γ is a set of equations in pure sum form, S and T are terms, and t is a pure term.
For example, in the unification problem {x + h(x) =? 0, y + h(x) =? 0}, h(x) occurs twice, but we want it to only occur 

once. So we replace y + h(x) =? 0 by y + x =? 0.
The procedure of converting a unification problem to a unification problem in pure sum form is called purification and we 

say the problem is purified. When we purify the unification problem, we will apply Purify exhaustively then apply Singlize.
Since

• the numbers of + and h symbols (denoted by N) which occur under f or h is finite, and
• the number of duplicated occurrences of an h-term or an inverse of an h-term (denoted by Nh) is finite, and
• Purify will decrease N , and
• Singlize will decrease Nh but not increase N since each equation has at most one h-term.

The purification procedure will finally terminate.
For purification, we also have the following lemma:
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Lemma 6. Any set of equations Γ can be purified to a set of equations Γ ′ in pure sum form, which is a conservative extension of Γ .

Proof. In Purify and Singlize, some non-pure term or some h-term will be removed and none will ever be created, purifi-
cation on a unification problem Γ will halt in a pure sum form, Γ ′ , which is a conservative extension of Γ . �
Example 7. Purify the equation:

5 f
(
x1,h(x2)

) + h(x2) + 2g
(
x3 + f (x2, x1)

) =? 0

First we introduce a new variable v1 to substitute for h(x2) in f (x1, h(x2)) by applying Purify and we get:
{

5 f (x1, v1) + h(x2) + 2g
(
x3 + f (x2, x1)

) =?, 0v1 + h(−x2) =? 0
}

Next we use the new variable v2 to replace x3 + f (x2, x1) in g(x3 + f (x2, x1)) by applying Purify and we get:
{

5 f (x1, v1) + h(x2) + 2g(v2) =? 0, v1 + h(−x2) =? 0, v2 + (−x3) + (− f (x2, x1)
) =? 0

}
There is h(x2) and h(−x2) in these two equations, so we can use Singlize to delete one of them and get the final pure 

sum set of equations.
{

5 f (x1, v1) + h(x2) + 2g(v2) =? 0, v1 + 5 f (x1, v1) + 2g(v2) =? 0, v2 + (−x3) + (− f (x2, x1)
) =? 0

}

We will apply Purification whenever the unification problem is not in a pure sum form after applying each inference 
rule. So from now on, we suppose every equation has the form S =? 0, where S is a pure sum. In the following sections, 
we will use Γ to denote a set of equations, S to denote a pure sum, s, t, si, ti to denote pure terms, x, y, v, xi, yi, vi , etc. to 
denote variables, σ , θ to denote substitutions.

5. UnconstrainedReduce algorithm

In [5], the authors present the relation between unification modulo Abelian Groups and solving linear equation systems. 
And in [9] and [10], the authors show that solving unification problems modulo monoidal theories (AGH is one of these 
theories) is equivalent to solving systems of linear equations over a semiring which can be efficiently solved, for instance, 
by computing the Hermite normal form of the corresponding integer matrix. However these papers only focuses on elemen-
tary unification, i.e. no uninterpreted function symbols. Unification becomes much more complicated when uninterpreted 
function symbols are considered. However, we still can borrow some techniques from solving linear diophantine equations.

Let use have a look at some linear diophantine equations:

• 4x + 5 = 0, no integer solutions.
• 2x + 6 = 0, the solution is x = −3.
• 3x + 2y = 0, the solution is x = −2y′, y = 3y′ for any integer y′ .

In [17], Knuth first looks at the coefficients of the variables and the constant of a single equation. If the greatest common 
divisor of them is 1, some variable’s coefficient is not 1 and the constant is not zero, then there is no solution. Otherwise a 
method is given to get the solution. We use the above examples to explain the method here (for the detail of this method, 
please refer to [17]):

Example 8.

2x + 6 = 0

First introduce a new variable x and let x = x′ − 3, then the original equation becomes 2x′ = 0. We can get x′ = 0. Then 
x = 0 − 3 = −3, which is a solution.

Example 9.

3x + 2y = 0

First introduce a new variable y′ and let y = y′ − x, then the original equation becomes x + 2y′ = 0. We can get x = −2y′ . 
Put this back to y = y′ − x and get y = 3y′ .

We find that this method just keeps introducing a new variable through replacing some preexisting variable, whose 
coefficient’s absolute value is the smallest one among all the coefficients and the constant, and it reduces other variables’ 
coefficients and constant until some variable’s coefficient becomes 1 or −1, then solves it.

Let use have a look at what will happen if we apply this method to the equations which has no solution:



134 Z. Liu, C. Lynch / Information and Computation 238 (2014) 128–156
Example 10.

4x + 5 = 0

Introduce x′ such that x = x′ − 1. The original equation becomes 4x′ + 1 = 0. If we continue to introduce a new variable 
x′ = x′′ , we will get a similar equation 4x′′ + 1 = 0. This will become an infinite loop.

From the Extended Euclidean Algorithm, we can prove if there is no solution, then we will create an equation meeting 
the following conditions:

• only one variable is left in the equation,
• the constant is not zero, and
• the absolute value of the variable’s coefficient is greater that the constant’s absolute value.

This property can be proven by applying the Extended Euclidean Algorithm.
We can abstract these equations by the following AGH-unification problems:

• 4x + 5a =? 0;
• 2x + 6a =? 0;
• 3x + 2y =? 0.

We can get the same result as for the linear diophantine equations. However, there is still some difference in the 
following aspects:

• There are arbitrarily many constants and function symbols in the AGH-unification problem;
• Some variables may occur under some function symbol. For example, if we have x + f (x) =? 0, we cannot let x �−→

x′ + f (x), which will cause a loop.
• Homomorphism plays an important role in our unification problem. For example, for 2x + h(y) =? 0, x �−→ h(z), y �−→

−2z is a solution.

Our inference system will be based on the idea of solving linear diophantine equations while considering the above 
issues. Thus before we give the inference rules, we will give an algorithm, which is based on the algorithm solving linear 
diophantine equations from [17] we mentioned above. It is called UnconstrainedReduce.

This algorithm has two parts.
The first part results in an equation containing one unconstrained variable such that the absolute value of this variable’s 

coefficient is maximum in the equation. If some unconstrained variable’s coefficient is one, we will solve this variable. This 
part uses the method we mentioned above.

After the first part, we can get an equation with only one unconstrained variable occurring in it, for exam-
ple 2x + h(z) =? 0. We can delete other occurrences of this unconstrained variable in other equations. For exam-
ple, if we also have 3x + 4z =? 0, we can replace it by 8z − h(3z) =? 0, since 2x + h(z) =? 0 ⇐⇒ 6x + h(3z) =? 0 and 
3x + 4z =? 0 ⇐⇒ 6x + 8z =? 0. This step is done in the second part of the algorithm.

After introducing the algorithm, we will give a proof that the result of the algorithm will give a conservative extension 
of the original unification problem.

Next,we give the technical details of UnconstrainedReduce.
The first part is called Maxi(Q , V ). It takes an equation Q and a set of variables V which is a subset of P V (Q ) and 

outputs another pair (Ω, Λ̃), where Ω is an empty set or a set of one equation {Q̃ }, and Λ̃ is an equation set in solved 
form. Q̃ ∪ Λ̃ is a conservative extension of Q and Q̃ has only one unconstrained variable occurring in it and the absolute 
value of this variable is maximum in Q̃ . If Ω is an empty set, then we say Q was solved during the process of Maxi(Q , V ). 
Λ̃ is used to store the substitutions which are generated during Maxi(Q , V ).

Generally, the purpose of our algorithm is to solve the variables in Q . So the set V , a subset of P V (Q ) is our target set
of variables to be waiting to be solved. The change of V obeys the following rules:

• Initially, V is a subset of P V (Q ), we can choose the members by our needs. For example, we may choose all the 
unconstrained variables in a unification problem occurring in Q .

• If some variable is replaced by other terms (we say this variable is solved) or is canceled in Q during the process of 
this algorithm, it will be removed from this target set.

• Any fresh variable which is introduced in the algorithm will be put into this target set.

The result of running this algorithm will be that V is a singleton set with some condition (we will give the condition 
later) or Q is solved (namely, Q is replaced by a set of solved form and Ω is empty).

Theoretically, we can solve any variable by introducing a fresh variable. For example if we have an equation 4x + 3y +
5z =? 0, then different V s will give different results. If V = {z}, then 5 is the biggest coefficient already. We do not need to 
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Algorithm MAXI

Input:
• A set of variables V = {x1, x2, · · · , xn}, where each xi occurs in pure form in Q .
• An equation Q : c1x1 + · · · + cnxn + c′

1t1 + · · · + c′
mtm =? 0, where each t j is a monic term.

Output:
• A pair (Ω, Λ̃), where Ω is an empty set or a set of one equation {Q̃ }, and Λ̃ is an equation set in solved form.

1: Let Λ′ = ∅, Q ′ = Q and V ′ = V . Build
• a multiset C Q , which is {|c1|, |c2|, · · · , |cn|}, to denote the set of absolute values of coefficients of V in Q ′ , and
• a multiset C ′

Q , which is {|c′
1|, |c′

2|, · · · , |c′
n|}, to denote the set of absolute values of coefficients of the other terms in Q ′ .

2: Calculate |C Q |:
3: if |C Q | = 1 then
4: calculate |C ′

Q |:
5: if |C ′

Q | = 0 then

6: add x1 =? 0 into Λ′;
7: return (∅, Λ′).
8: else if |C ′

Q | �= 0 and |c1| is bigger than all the elements in C ′
Q then

9: return (Q ′, Λ′).
10: end if
11: else {|C Q | �= 1}
12: let min = j if |c j | ≤ |ci | for all 0 < i ≤ n; {If j is not unique, choose any one of them.}
13: if cmin = 1 then
14: add the equation xmin =? −c1x1 + · · · + (−cmin−1xmin−1) + (−cmin+1xmin+1) + · · · + (−cnxn) + (−c′

1t1) + · · · + (−c′
mtm) into Λ′;

15: return (∅, Λ′)
16: else if cmin = −1 then
17: add the equation xmin =? c1x1 + · · · + cmin−1xmin−1 + cmin+1xmin+1 + · · · + cnxn + c′

1t1 + · · · c′
mtm into Λ′;

18: return (∅, Λ′).
19: else {|cmin| > 1}
20: Introduce a new variable x′ , and add the equation P

xmin =? x′ +
(

−
⌊

c1

cmin

⌋
x1

)
+ · · · +

(
−

⌊
cmin−1

cmin

⌋
xmin−1

)
+

(
−

⌊
cmin+1

cmin

⌋
xmin+1

)
+ · · · +

(
−

⌊
cn

cmin

⌋
xn

)

+
(

−
⌊

c′
1

cmin

⌋
t1

)
+ · · · +

(
−

⌊
c′

m

cmin

⌋
tm

)

into Λ′;
21: apply λ{P } to Q ′ and Λ′;
22: remove the variables which are not in Q ′ from V ′ and add x′ to V ′;
23: update C Q as the set of absolute values of coefficients of V ′ in Q ′ and C ′

Q as the set of absolute values of coefficients of all the terms in Q ′;
24: go to step 2.
25: end if
26: end if

Fig. 1. Algorithm MAXI.

do anything. If V = {x}, then we will choose x and let x �−→ x′ − z and get 4x′ + 3y + z =? 0. x is solved and x′ is introduced, 
so x is removed from V and x′ is added into V . Now the coefficient of x′ is the largest already. The algorithm will not run 
on this equation. However, if V = {x, z} and after the first step, V becomes {x′, z} and z’s coefficient is the smallest among 
the coefficients of x′ and z, then we will do a further step to solve z and get z �−→ −4x′ − 3y and z is removed from V . 
Q is now solved.

Hence, in order to make our algorithm more general, we use a set V to denote the set of variables we are going to solve. 
Of course, the variables in V have to occur pure in Q , so V is a subset of P V (Q ). In our inference rules, we will only try 
to solve the free variables occurring in Q .

So formally the purpose of this algorithm is to achieve the following results:

• Ω ∪ Λ̃ is a conservative extension of Q .
• If Ω = {Q̃ }, then V = {x} and x occurs in Q̃ and x’s coefficient’s absolute value is the largest one among all the 

coefficients’ absolute values in Q̃ ’s monic terms.
• If Ω = ∅, then it means Q is solved by this algorithm.

Algorithm. We present the algorithm Maxi in Fig. 1.
The second part of the UnconstrainedReduce algorithm is Uniq(Γ, (Ω, Λ̃)). It takes an equation set Γ and the output 

of Maxi(Q,V) as input and outputs another pair (Γ̃ , Λ̃′). As we said above, this part removes other duplicated (or inverse) 
occurrences of an unconstrained variables. Since Ω is the output of Maxi(Q,V), we know which is the unconstrained 
variable if Ω is not empty. Γ is the set of equations containing the duplicated occurrences of the unconstrained variable. 
So Γ̃ contains the result of Γ after deleting the duplicated occurrences from Γ . Λ̃ is also used to store the substitutions 
which are generated during Maxi(Q , V ).
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Algorithm Uniq

Input:
• An equation set Γ .
• A set Ω , which is the empty set or {cx + T =? 0}, where |c| is larger than all the absolute values of the coefficients of the monic terms 

in T .
• An equation set in solved form Λ̃.

Output:
• A pair (Γ̃ , Λ′), where Γ̃ is a set of equations and Λ′ is an equation set in solved form.

1: Let Γ ′ = Γ λΛ̃ and Λ′ = Λ̃, then look at Ω:
2: if if Ω is the empty set then
3: return (Γ ′, Λ′).
4: else {Ω is not an empty set}
5: for each equation in Γ ′ , which has the form c′x + S =? 0 do
6: if S is zero then
7: add equation x =? 0 into Λ′;
8: let Γ̃ = (Γ ′ ∪ {T =? 0})[x �−→ 0];
9: return (Γ̃ , Λ′).

10: else {S is not zero}
11: remove c′x + S =? 0 from Γ ′ and add −c′T + cS =? 0 into Γ ′ .
12: end if
13: end for
14: end if
15: Let Γ̃ = Γ ′ ∪ {cx + T =? 0};
16: return (Γ̃ , Λ′)

Fig. 2. Algorithm Uniq.

So formally, the purpose of this algorithm is to achieve the followings:

• If Ω is the empty set, then Γ̃ = Γ λΛ̃

• If Ω is a singleton set {Q̃ }, then for x, the pure variable in Q̃ with the largest absolute value of the coefficients among 
all the terms in Q̃ , Γ̃ /Ω does not contain x as a pure variable, which means only Q̃ contains x as a pure variable.

• In both of the above cases, Γ̃ ∪ Λ̃′ is a conservative extension of Γ ∪ Ω ∪ Λ̃.

The algorithm UnconstrainedReduce(Γ, Q , V ) = Uniq(Γ, Maxi(Q , V )). Next we present the algorithm Uniq in Fig. 2.

Here we give an example to explain how Maxi works.

Example 11. Run Maxi(5x + 13y + 7z + 4 f (z) =? 0, {x, y}). First x has the smallest coefficient among x and y, we set 
x �−→ v1 − 2y − z and get

5v1 + 3y + 2z + 4 f (z) =? 0

and the new variable set {v1, y}. y’s coefficient is the smallest one now. So set y �−→ v2 + (−v1) + (− f (z)) and get

2v1 + 3v2 + 2z + f (z) =? 0

and the new variable set {v1, v2}. Choose v1 this time and we set v1 �−→ v3 + (−v2) + (−z) and get

2v3 + v2 + f (z) =? 0

and the new variable set {v3, v2}. Here v2’s coefficient is 1, we can solve this equation by setting v2 �−→ (−2v3) + (− f (z)).
Finally, we get a solved equation set Λ̃ = {x �−→ −13v3 + −4z + 7 f (z), y �−→ −5v3 − 3 f (z) + z}.
If we run this algorithm for this equation on the variable set {x}, then since 5 is less then 13, we will set x �−→ v1 −2y −z

and get 5v1 +3y +2z +4 f (z) =? 0 and the new variable set is {v1}. Now v1’s coefficient is the biggest among 5, 3, 2 and 4, 
so the process will stop. Now, the solved equation set Λ is {x =? v1 + (−2y) + (−z)}.

Here we give an example to explain how Uniq works.

Example 12. Let

Ω = {
4v + 2z + 3y + f (y) =? 0

}
,

Λ̃ = {
x =? v + (−2y) + (− f (y)

)}
,

Γ = {
3x + 4 f (z) =? 0, 2x + (−3y) =? 0

}
.
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Run Uniq(Γ, (Ω, Λ̃)). First we apply λΛ̃ to Γ and get

Γ ′ = {
3v + (−6y) + (−3 f (y)

) + 4 f (z) =? 0, 2v + (−7y) + (−2 f (y)
) =? 0

}
.

In Ω , v has the largest coefficient and both of the equations in Γ contain v as a pure variable, so:

• remove 3v + (−6y) + (−3 f (y)) + 4 f (z) =? 0 and add {−6z + (−33y) + (−15 f (y)) + 16 f (z) =? 0} to Γ ′ , and
• remove 2v + (−7y) + (−2 f (y)) =? 0 and add {−2z + (−17y) + (−5 f (y)) =? 0} into Γ ′

then we get

Γ ′ = {−6z + (−33y) + (−15 f (y)
) + 16 f (z) =? 0, −2z + (−17y) + (−5 f (y)

) =? 0, 4v + 2z + 3y + f (y) =? 0
}

Finally, we output (Γ ′, Λ̃).

Before we prove our algorithm can achieve the results we mentioned, we need the following fact: For free Abelian 
Groups, t =? 0 ⇐⇒ ct =? 0, where t is a term and c is a coefficient. This follows from the properties of the theory AGH.

Lemma 13. Let Q be an equation, and V be a subset of the pure variables occurring in Q . Then after finitely many steps, Maxi(Q,V)

will output a pair (Ω, Λ̃), where Ω is an empty set or a singleton of an equation Q̃ and Λ̃ is an equation in solved form, such that:

1. If Ω = {Q̃ }, then there is a variable x, such that either
• P V (Q̃ ) ∩ V = {x}, or
• P V (Q̃ ) ∩ V = ∅, P V (Q̃ ) \ P V (Q ) = {x} and x is a variable which does not occur in Q .
In both cases, x’s coefficient’s absolute value is the largest one among all the coefficients’ absolute values in Q̃ ’s monic terms.

2. Ω ∪ Λ̃ is a conservative extension of Q .

Proof. From the procedure, we can use N , the largest absolute value among all the coefficients in Q , which with standard 
≤ on natural number is a well founded ordering, to be the measure in this algorithm. We see every time we run Maxi:

• Some variable’s coefficient absolute value is 1, Q is removed and the algorithm halts. N = 0.
• Suppose no variable’s coefficient absolute value is 1 and the smallest one is n. Suppose a term, t ’s coefficient is N . Then 

after the third step, t ’s coefficient will be N mod n. Since n < N , the absolute value of the coefficient of t decreases.

So this algorithm will halt in finitely many steps.
For proving (1), first we want to prove |P V (Q̃ ) ∩ V | ≤ 1. V is a subset of pure variables in Q , and V ′ is a subset of 

pure variables in Q ′ , which keeps changing in the algorithm starting from Q and ending with Q̃ if Ω is not empty. V ′ and 
Q ′ are changed only in the third part of step 3. In step 3, we only add fresh variables into V ′ and remove variables from 
V ′ if the variables are replaced by some fresh variables, and all the added variables to Q ′ also are added into V ′ . Thus 
(P V (Q ′) ∩ V ) ⊆ V ′ and (P V (Q ′) \ P V (Q )) ⊆ V ′ during the procedure of the algorithm. So it is enough to show finally, 
|V ′| ≤ 1. Assume |V ′| > 1, then from the second part of step 2 in Maxi, we go to step 3. In step 3, if |cmin| = 1, the equation 
will be removed and Ω will be the empty set after this step. If |cmin| �= 1, then the third part of step 3 applies, and after 
it, step 2 will be started again. We already proved the algorithm will halt. So finally, if Ω �= ∅, |V ′| ≤ 1, which means 
|P V (Q̃ ) ∩ V | ≤ 1.

If Ω �= ∅, then the algorithm only halts at the first part of the second step. When the algorithm stops, |C Q | = 1, which 
means |V ′| = 1. And the variable in V ′ has the largest absolute coefficient value among all the coefficients of Q ′ . We claim 
that this variable in V ′ satisfies the conditions for x in (1). In the third part of the third step, we only add fresh variables 
into V ′ , so if finally, V ′ ∩ V = ∅, which means |P V (Q̃ ) ∩ V | = 0, then P V (Q ′) \ P V (Q ) = V ′ = {x}. If V ′ ∩ V �= ∅ finally and 
|V ′| = {x}, then P V (Q̃ ) ∩ V = {x}.

For proving (2), it is enough to prove after every step, {Q ′} ∪ Λ′ is a conservative extension of the old {Q ′} ∪ Λ′ before 
the step was implemented. For reducing the ambiguity, we denote the old {Q ′} ∪ Λ′ before the step was implemented as 
{Q ′′} ∪ Λ′′ .

In step 1. We do nothing to {Q ′′} ∪ Λ′′ .
In step 2. If |C Q | = 1 but |C ′

Q | �= 0, then we do nothing to {Q ′′} ∪ Λ′′ . If |C ′
Q | = 0, then {Q ′′} = {c1x1 =? 0}, {Q ′} = ∅ and 

Λ′ = Λ′ ∪ {x =? 0}. Hence {Q ′} ∪ Λ′ is a conservative extension of {Q ′′} ∪ Λ′′ .
In step 3. If cmin = 1, then

{
Q ′′} = {

c1x1 + · · · + xmin + · · · + cnxn + c′
1t1 + · · · + c′

mtm =? 0
}

{
Q ′} = ∅

Λ′ = Λ′′ ∪ {
xmin = −c1x1 + · · · + (−cmin−1xmin−1) + (−cmin+1xmin+1) + · · · + cnxn + c′ t1 + · · · + c′

mtm =? 0
}

1
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Since θ � t + s =? 0 ⇐⇒ θ � t =? −s, we know {Q ′} ∪ Λ′ is a conservative extension of {Q ′′} ∪ Λ′′ .
If cmin = −1, then it is same as the case where cmin = 1.
If |cmin| �= 1, then

{
Q ′′} = {

c1x1 + · · · + cnxn + c′
1t1 + · · · + c′

mtm =? 0
}

{
Q ′} = {

(c1 mod cmin)x1 + · · · + (cmin−1 mod cmin)xmin−1cminx′ + (cmin+1 mod cmin+1)xmin+1 + · · ·
+ (cn mod cmin)xn

(
c′

1 mod cmin
)
t1 + · · · + (

c′
m mod cmin

)
tm =? 0

}
and

Λ′ = Λ′′ ∪
{

xmin =? x′ +
(

−
⌊

c1

cmin

⌋
x1

)
+ · · · +

(
−

⌊
cmin−1

cmin

⌋
xmin−1

)
+

(
−

⌊
cmin+1

cmin

⌋
xmin+1

)
+ · · ·

+
(

−
⌊

cn

cmin

⌋
xn

)
+

(
−

⌊
c′

1

cmin

⌋
t1

)
+ · · · +

(
−

⌊
c′

m

cmin

⌋
tm

)}

Because � ci
cmin

� + (ci mod cmin) = ci , if
(
c1x1 + · · · + cnxn + c′

1t1 + · · · + c′
mtm

)
θ = 0

then
(
c1x1 + · · · + cnxn + c′

1t1 + · · · + c′
mtm

)
θ

= (c1 mod cmin)x1θ + · · · + (cn mod cmin)xnθ + (
c′

1 mod cmin
)
t1θ + · · · + (cn mod cmin)tnθ +

(⌊
c1

cmin

⌋)
x1θ + · · ·

+
(⌊

cn

cmin

⌋)
xnθ +

(⌊
c′

1

cmin

⌋)
t1θ + · · · +

(⌊
c′

m

cmin

⌋)
tmθ

Because � cmin
cmin

� = 1 and cmin mod cmin = 0, we extend θ to be

θ ′ = θ ∪
{

xmin �−→ x′ +
(

−
⌊

c1

cmin

⌋
x1

)
+ · · · +

(
−

⌊
cmin−1

cmin

⌋
xmin−1

)
+

(
−

⌊
cmin+1

cmin

⌋
xmin+1

)
+ · · ·

+
(

−
⌊

cn

cmin

⌋
xn

)
+

(
−

⌊
c′

1

cmin

⌋
t1

)
+ · · · +

(
−

⌊
c′

m

cmin

⌋
tm

)}

which satisfies Λ′ .
Then

(
c1x1 + · · · + cnxn + c′

1t1 + · · · + c′
mtm

)
θ ′

= (c1 mod cmin)x1θ
′ + · · · + (cn mod cmin)xnθ

′ + (
c′

1 mod cmin
)
t1θ

′ + · · · + (cn mod cmin)tnθ
′

which means θ ′ � ({Q ′} ∪ Λ′).
On the other hand, suppose θ � ({Q ′} ∪ Λ′), which means

xminθ = x′θ +
(

−
⌊

c1

cmin

⌋
x1θ

)
+ · · · +

(
−

⌊
cmin−1

cmin

⌋
xmin−1

)
+

(
−

⌊
cmin+1

cmin

⌋
xmin+1θ

)
+ · · · +

(
−

⌊
cn

cmin

⌋
xnθ

)

+
(

−
⌊

c′
1

cmin

⌋
t1θ

)
+ · · · +

(
−

⌊
c′

m

cmin

⌋
tmθ

)

then

x′θ = xminθ +
(⌊

c1

cmin

⌋
x1θ

)
+ · · · +

(⌊
cmin−1

cmin

⌋
xmin−1

)
+

(⌊
cmin+1

cmin

⌋
xmin+1θ

)
+ · · ·

+
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cn

cmin

⌋
xnθ

)
+

(⌊
c′

1

cmin

⌋
t1θ

)
+ · · · +

(⌊
c′

m

cmin

⌋
tmθ

)

Then replacing x′θ in Q ′θ and using ci = � ci
cmin

� + (ci mod cmin), we get

c1x1θ + · · · + cnxnθ + c′
1t1θ + · · · + c′

mtmθ = 0

which means θ � {Q ′′}.
From the above, we know Ω ∪ Λ̃ is a conservative extension of {Q }. �
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Lemma 14. Let Γ be a unification problem, and (Ω, Λ̃) be an output of Maxi(Q , V ). In the algorithm Uniq(Γ, (Ω, Λ̃)), after finitely 
many steps, we get a pair (Γ̃ , Λ̃′), such that

1. • If Ω is the empty set, then Γ̃ = Γ λΛ̃ and Λ̃′ = Λ̃.

• If Ω is the singleton {Q̃ }, then either Q̃ ∈ Γ̃ and Γ̃ \ {Q̃ } does not contain x as a pure variable, or Γ̃ does not contain x as a 
pure variable, where x is the pure variable in Q̃ which has the largest absolute value of the coefficient.

2. Γ̃ ∪ Λ̃′ is a conservative extension of Γ ∪ Ω ∪ Λ̃.

Proof. We use Nx , which is the number of occurrences of x in Γ ′ , to be the measure in this procedure. Here x is the pure 
variable with the largest absolute value of the coefficient in Q̃ .

Let us look at the algorithm step by step. For step 1, we do nothing. In step 2, if Ω = ∅, stop. If Ω �= ∅, then for every 
c′x + S =? 0 we will do several things:

• If S = 0, then the algorithm will stop after this step.
• If S �= 0, c′x + S =? 0 will be removed from Γ ′ and add c′(−T ) + cS =? 0 which has no x in pure form in it. So Nx

decreases.

In step 3, the algorithm will stop.
So this algorithm will halt in finitely many steps.
If Ω is empty, then after the first step in which Γ ′ = Γ λΛ̃ , the algorithm goes into the first part of step 2. Γ̃ = Γ ′ = Γ λΛ̃ . 

Because we did nothing to Γ except for applying λΛ̃ , then Λ̃′ = Λ̃ and Γ̃ ∪ Λ̃′ is a conservative extension of Γ ∪ Ω ∪ Λ̃.
If Ω is not empty, but there is an equation in Γ ′ with the form c′x =? 0, then from the first part of the second part 

in step 2, we will solve x from Γ ′ and Q̃ and stop. So in this case, finally, there is no x occurring in Γ̃ . Hence the new 
Γ ′ ∪ Λ′ ∪ Q̃ is a conservative extension of Γ ′ ∪ Λ′ ∪ {T =? 0} in this step.

If Ω is not empty and no equation in Γ ′ has the form c′x =? 0, then if we have c′x + S =? 0 in it, the second part of the 
second part in step 2 will remove it and add a new −c′T + cS =? 0. As we proved above, every time we run this step, Nx

will decrease until no c′x + S =? 0 is left in Γ . After that, in step 3, we will add Q̃ into Γ̃ , so in this case, finally, Q̃ ∈ Γ̃

and except for Q̃ , no equation contains x as a pure variable.
In this step, for proving the newer Γ ′ ∪ Λ′ ∪ Q̃ is a conservative extension of the old Γ ′ ∪ Λ′ ∪ Q̃ , it is enough to show 

that there is a substitution θ , such that

θ �
{

c′x + S =? 0, cx + T =? 0
} ⇐⇒ θ �

{
c′(−T) + cS =? 0, cx + T =? 0

}
If c′xθ + Sθ = 0 and cxθ + Tθ = 0, then cc′xθ + cSθ = 0 and c′cxθ + c′Tθ = 0. For the second equation, we get cc′xθ =

−c′Tθ . Then cc′xθ + cS = −c′T + cSθ = 0, which means θ � c′(−T) + cS =? 0.
We can prove the other direction similarly.
Thus Γ̃ ∪ Λ̃′ is a conservative extension of Γ ∪ Ω ∪ Λ̃. �
Combining the above two lemmas, we get

Theorem 15. Let Γ be a unification problem, Q be an equation and V = {x ∈ P V (Q ) : x is an unconstrained variable in Γ }. 
UnconstrainedReduce(Γ, Q , V ), which is Uniq(Γ, Maxi(Q , V )), will terminate after finitely many steps, and output a pair (Γ̃ , Λ̃′), 
which satisfies:

1. Γ̃ ∪ Λ̃′ is a conservative extension of Γ ∪ {Q }.
2. • either some unconstrained variable in Q is solved, or

• there exists an unconstrained variable x in Γ , which is a fresh variable or was in V . x occurs only once in Γ̃ and x has the largest 
absolute value of the coefficient among all the coefficients of terms in the equation in which it occurs.

Proof. This follows from Lemma 13 and Lemma 14 by restricting V to the unconstrained variables in Γ . �
If Uncons(Γ ) is used to denote the set: {x ∈ Vars(Γ ) : x is an unconstrained variable in Γ } and some variable x ∈ Γ

satisfies:

• x occurs only once in Γ , and
• x is the unique unconstrained variable in the equation where x occurs in Γ , and
• the absolute value of coefficient of x is the largest in the equation where x occurs,

we call x a reduced unconstrained variable in Γ .
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6. Inference system IAGH

We will use IAGH to denote our inference system. It contains five necessary rules and seven auxiliary rules.

6.1. Problem format

For efficiency and convenience, in our inference procedure we will use a quadruple Γ ‖	‖Λ‖Ψ , where ‖ is used to 
separate these four sets.

In Γ ‖	‖Λ‖Ψ , Γ is a unification problem, a set of the form {S1 =? 0, S2 =? 0, · · · , Sn =? 0}, where each Si is a pure sum.
	 is a set of disequations. Every disequation in 	 has the form f (s1, s2, · · · , sn) + (− f (t1, t2, · · · , tn)) �=? 0 or 0 �=? 0, 

where f is an uninterpreted symbol from Γ and si and ti are pure terms. 	 is used to track nondeterministic choices in 
our inference system. Every time we make a choice, we will add a disequation into 	. Initially, this set is empty.

Λ is a set of equations in solved form. An equation x =? S will be added to Λ if we apply the substitution x �−→ S to Γ . 
All the equations in Λ have the form x =? S , where x is called a solved variable in Γ , which means that x does not occur 
in Γ . Also we call x is solved when x =? S is put into Λ. Initially, this set is empty.

Before explaining Ψ , let us have a look at an example:

3x + h(y) =? 0

There is a solution: [x �−→ h(z), y �−→ −3z]. Since the unconstrained variable’s (x) coefficient is greater than that of h(y), 
we can not solve it by UnconstrainedReduce directly. We use the following idea to guess (this guess will be proven in 
Section 10):

• If there is a solution θ , such that 3xθ + h(y)θ = 0, then the greatest common divisor of the coefficients of yθ must be 
a multiple of 3. For example, y �−→ 6b + 5a, no matter what x’s substitution is, is not a solution. If y �−→ 3a, we can let 
x �−→ h(−a) to get the solution. So we can guess the solution of this algorithm has a solution of the form y �−→ 3z.

• This is not enough, since it is possible the equation contains other terms. For example 3x + 2z + h(y) =? 0 (if z occurs 
in other equations), y �−→ 3w + 2w ′, x �−→ h(−w), z �−→ h(−w ′) is a possible solution. So yθ may contain two parts: 
the greatest common divisor of the coefficients of one part is a multiple of 3, and the greatest common divisor of the 
coefficients of the other part is a multiple of 2. So we can guess the solution of this equation has a solution of the form 
y �−→ 3w + w1, then guess w1 �−→ 2w ′ .

• Generally, from the Division Algorithm, if we guess y �−→ kw + w ′ , then next, if we need to guess w ′ �−→ k′w ′′ + t , 
then k′ should be less than k.

Ψ is used to remember this k, such that the next time k′ is not greater than or equal to k. Technically, Ψ is a set of pairs 
of the form, which consist of numbers and variables:

{
(N1, x1), (N2, x2), · · · , (Nn, xn)

}
where xi is a variable satisfying that h(xi) occurs in Γ . All the Ni s are natural numbers or ∞. If we have a substitution θ , 
such that

(xiθ) ↓= c1s1 + c2s2 + · · · + cksk

where si is a monic term, then we say θ satisfies the pair (Ni, xi) if |c j | < Ni for all 1 ≤ j ≤ k. If some substitution θ satisfies 
each pair in Ψ , we say θ satisfies Ψ . So Ψ is used to constrain the form of the solution for the terms. From this meaning, 
we can know {(N1, x), (N2, x)} = {(N1, x)} if N1 < N2.

Initially, we set all Ni to ∞, and write initial Ψ as Ψ ini
Γ . Because this restriction only applies to variables under an h

symbol, every time some corresponding h-term is removed from Γ , we will remove the corresponding pair.
Sometimes, the term occurring under an h symbol will be changed by our rewriting system and purification procedure. 

For example, we have h(x) + h(y) → h(x + y) and in Purify, we will introduce a new variable to replace x + y because it is 
not pure anymore. So suppose we have (Ns, s) and (Nt , t), and we have an equation h(cs) + h(dt) + S =? 0 in Γ . After being 
rewritten and Purify, this equation is replaced by h(x′) + S =? 0 and x′ + (−cs) + (−dt) =? 0, in this case, we remove (Ns, s)
and (Nt , t) from Ψ , and add (|c|Ns + |d|Nt, x′) into Ψ . Here, it is possible that s or t is not a variable. In this case, we let 
Ns or Nt be 1. In Singlize, we will remove extra identical (or the inverse of an) h-terms, but will not affect the pairs in Ψ .

For convenience, we call Γ an equation set, 	 a disequation set, Λ a solved equation set, Ψ a pair set and Γ ‖	‖Λ‖Ψ a set 
quadruple. We say a substitution θ satisfies the set quadruple Γ ‖	‖Λ‖Ψ , if θ satisfies every equation in Γ and Λ, every 
disequation in 	 and every pair in Ψ , and write that relation as θ � Γ ‖	‖Λ‖Ψ . Similarly, we call Γ ‖Λ a set pair, and a 
substitution θ satisfies the set pair Γ ‖Λ if θ satisfies every equation in Γ and Λ. We use Fail to be a special set quadruple 
with no solution.

6.2. Necessary rules

IAGH contains five necessary rules: Trivial, Variable Substitution, N-Decomposition, Factorization and Annulization; and 
seven auxiliary rules used for efficiency. Trivial, Variable Substitution, Factorization, Annulization and the auxiliary rules are 
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deterministic, which means any branch they choose will not lose any solutions, and N-Decomposition is nondeterministic 
which means we have to consider all the branches. In our inference procedure, there are four priorities for applying rules. 
The rules with the highest priority are Trivial, Variable Substitution and the auxiliary rules. They will be applied whenever 
they can be applied. The rule with the second highest priority is N-Decomposition. The rule with the third highest priority 
is Factorization. The rule with the lowest priority is Annulization. Rules can only be applied if no rules with higher priority 
can be applied.

Given a quadruple Γ ‖	‖Λ‖Ψ , if no rules can be applied and Γ = ∅, then Λ is a solution. Let Ψ̃ = {(∞, x1), (∞, x2), · · · ,
(∞, xn)}, where h(xi) occurs in Γ . Then exhaustively applying the inference rules to Γ ‖∅‖∅‖Ψ̃ , yields a set of quadruples 
in which every element has the form of ∅‖	′‖Λ′‖Ψ ′ , such that Λ′ is an AGH-unifier of Γ , Fail if Γ is not unifiable, or a 
stuck quadruples to which no rules are applicable and Γ is not empty. At the end, we will prove the third case is equivalent 
to Fail.

Now we present the inference rules.

6.2.1. Trivial
The first necessary rule is called Trivial, which is used to remove the trivially true equations. It has the highest priority.

Trivial

Γ ∪ {0 =? 0}‖	‖Λ‖Ψ
Γ ‖	‖Λ‖Ψ

6.2.2. Variable substitution
The second necessary rule is used to solve variables based on the UnconstrainedReduce algorithm. It also has the 

highest priority.
The purpose of this rule is trying to solve the unconstrained variables (if the absolute value of its coefficient can be 

reduced to 1) or make the absolute value of the coefficient of the unique unconstrained variable in one equation be maxi-
mum. The latter case will help us to check whether this equation has no solution (like 3x + a =? 0) or we need to guess a 
solution (like 3x + h(z) =? 0), which needs our other inference rules.

Formally, the inference rule is as follows:

Variable Substitution

(Γ ∪ {c1x1 + · · · + cnxn + c′
1t1 + · · · + c′

mtm =? 0})‖	‖Λ‖Ψ
Γ ′σ‖	σ‖Λ′σ‖Ψ ′σ

if each xi is an unconstrained variable in Γ ∪ {c1x1 + · · · + cnxn + c′
1t1 + · · · + c′

mtm =? 0} and each ti is a pure term, 
but not an unconstrained variable, and

• every ti is not an h-term, or
• every equation in Γ , containing an unconstrained variable of Γ , contains an h-term.

and

• n > 1 or
• |c1| ≤ |c′

i | for some i or
• x1 ∈ Γ .

Suppose the output of
UnconstrainedReduce(Γ, c1x1 +· · ·+ cnxn + c′

1t1 +· · ·+ c′
mtm =? 0, {x1, x2, · · · , xn}) is (Γ̃ , Λ̃), then Γ ′ = Γ̃ , σ = λΛ̃

and Λ′ = Λ ∪ Λ̃. In the conclusion of this rule, if the equation set Γ ′σ is not pure, purification will be applied to 
Γ ′σ . The non-pure term must be h(s + t), which is from h(s) + h(t). Purification will replace h(s + t) by h(x′) and 
add another equation x′ − s − t =? 0 into Γ ′ . The change from Ψ to Ψ ′ will be according the following rule:

Γ ∪ {S + h(s + t) =? 0}‖	‖Λ‖{(Ns, s), (Nt , t)} ∪ Ψ

Γ ∪ {S + h(x) =? 0} ∪ {x + (−s) + (−t) =? 0}‖	‖Λ‖{(Ns + Nt, x)} ∪ Ψ

Here s and t are variables and x is a fresh variable.
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Here we give a simple example to explain how this rule works.

Example 16. In the equation set:

{
4x + 2y + z =? 0,2y + 5x + f (z) =? 0

}
y and x are both unconstrained variables. Because there are no h-terms, for convenience, we will omit 	, Λ and Ψ .

We choose the first one to apply Variable Substitution. After applying it we get the new equation set:

{
2v1 + z =? 0, x + f (z) + (−z) =? 0

}
where y �−→ v1 + (−2x).

Here the first equation is unconstrained reduced already. We choose the second one to apply Variable Substitution and 
get

{
2v1 + z =? 0

}
where x �−→ z + (− f (z)). Now z is unconstrained, and we get z �−→ −2v1. So the final solution is

[
x �−→ −2v1 + (− f (2v1)

)
, y �−→ 5v1 + 2 f (2v1), z �−→ −2v1

]

The condition that every ti is not an h-term or every equation containing an unconstrained variable of Γ , contains an 
h-term, is used to avoid looping. For example:

Example 17. For convenience, we will omit Λ, 	 and Ψ here. For the equation set:

{
x + h(y) =? 0, x + z + h(z) =? 0, x + y + z =? 0

}
If we apply Variable Substitution without obeying the conditions, we will go into a loop. For example, if we choose x +
h(y) =? 0 first, applying Variable Substitution, we get x �−→ h(−y) and a new equation set

{
z + h(v1) =? 0, v1 + y − z =? 0, y + z + h(−y) =? 0

}
where v1 is generated by purification.

Because z is unconstrained now, we choose z + h(v1) =? 0 to apply Variable Substitution, we get z �−→ h(−v1) and a 
new equation set

{
v1 + y + h(v1) =? 0, y + h(v2) =? 0, v2 + v1 + y =? 0

}
This equation set is the same as the original equation set except for different variable names. This will go into a loop.
If we obey our condition, we choose x + y + z =? 0 and solve x first, we get x �−→ −y + (−z) and a new equation set:

{−y + (−z) + h(y) =? 0,−y + h(z) =? 0
}

We have to stop here because we have no rules to solve it so far. We will give the solution of this example in Example 20.

The reason we only apply our algorithm on unconstrained variables is to control looping. For example, suppose we 
have {x + f (z) =? 0, z + x + y =? 0}. If we apply our algorithm on the constrained variable z, we get z �−→ −x + (−y), 
then x + f (z) =? 0 becomes x + f (−x + (−y)). After purification, we will get {x + f (v1) =? 0, v1 + x + y =? 0}, which is 
the same as original problem set up to variable renaming. In Section 9, we will see these conditions will not lose any 
solutions.

6.2.3. N-Decomposition
The next inference rule N-Decomposition is nondeterministic. This is to solve a case, like f (x) + f (y) + f (z) =? 0. In 

this case there are several possible guesses: { f (x) = f (y) �= f (z)}, { f (z) = f (y) �= f (x)}, { f (x) = f (z) �= f (y)}, { f (x) �=
f (x), f (x) �= f (y), f (y) �= f (z)}, and { f (x) = f (y) = f (z)}. Since our problems is in pure sum form, these guesses are 
several syntactical unification problems which we will use Decomposition method to solve, that’s why this rule is called 
N-Decomposition.

When we apply N-Decomposition, we get two new independent problems, whose combined solutions are the solutions 
of the original problem. We will use 

∨
between these two problems.
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N-Decomposition

(Γ ∪ {S + cf (s1, · · · , sm) + (−df (t1, · · · , tm)) =? 0})‖	‖Λ‖Ψ
((Γ σ ∪ {Q }σ)‖(	σ)‖(Λσ ∪ [σ ])‖Ψσ) ∨ (Γ ′

1‖	′
1‖Λ‖Ψ )

if c > 0, d > 0 and f (s1, s2, · · · , sm) + (− f (t1, t2, · · · , tm)) �=? 0 /∈ 	, where

σ = mgu
(
s1 =? t1, s2 =? t2, · · · , sm =? tm

)
Γ ′

1 = Γ ∪ {
S + cf (s1, s2, · · · , sm) + (−df (t1, t2, · · · , tm)

) =? 0
}

	′
1 = 	 ∪ {

f (s1, s2, · · · , sm) + (− f (t1, t2, · · · , tm)
) �=? 0

}
Q = S + (c − d) f (s1, s2, · · · , sm) =? 0

f is an uninterpreted function symbol.

Note: After applying the N-Decomposition rule, we might make two h-terms identical. In this case, Singlize will be 
applied.

Because we do not know whether a possible solution will make two f -terms equal or not, we need to think of both 
possible cases. Here 

∨
means we convert the original quadruple into two possible quadruples.

Example 18. For the equation set:

{
x + 2 f (t) + (−2 f (z)

) =? 0, y + 3 f (x) + (−3 f (w)
) =? 0

}
we can do nothing via Variable Substitution, so choose two of the pure terms in one equation to apply the N-Decomposition 
rule. There are no h-terms in it, so Ψ = ∅

{
x + 2 f (y) + (−2 f (z)

) =? 0, y + 3 f (x) + (−3 f (w)
) =? 0

}‖∅‖∅‖∅
�⇒ (N-Decomposition){

x =? 0, z + 3 f (x) + (−3 f (w)
) =? 0

}‖∅‖{y =? z
}‖∅∨

Γ1‖	1‖∅‖∅
∗⇒ (several steps by Variable Substitution)

∅‖∅‖{x =? 0, y =? 3 f (w) + (−3 f (0)
)
, z =? 3 f (w) + (−3 f (0)

)}‖∅∨
Γ1‖	1‖∅‖∅

where

Γ1 = {
x + 2 f (y) + (−2 f (z)

) =? 0, y + 3 f (x) + 3 f (w) =? 0
}

	1 = {
f (y) + (− f (z)

) �=? 0
}

So from the first part, we get a solution σ1 = [x �−→ 0, y �−→ 3 f (w) − 3 f (0), z �−→ 3 f (w) − 3 f (0)].
We apply N-Decomposition to Γ1‖	1‖∅‖∅, and use a similar procedure to get the second solution σ2 = [x �−→ 2 f (z) −

2 f (0), y �−→ 0, w �−→ 2 f (z) − 2 f (0)] (We will prove 	 can be ignored at the end.) and another branch of our procedure is

Γ1 = {
x + 2 f (y) + (−2 f (z)

) =? 0, y + 3 f (x) + 3 f (w) =? 0
}

	1 = {
f (y) + (− f (z)

) �=? 0, f (x) + (− f (w)
) =? 0

}
So σ1 and σ2 are two solutions to this problem. The third branch fails, because no inference rule can be applied to it.

6.2.4. Factorization
Next we introduce one of the necessary rules with the third priority. Factorization is used to solve a case like 

3x + h(z) = 0. It cannot be solved by Variable Substitution, because 3 is the biggest absolute value among the coefficients 
in this equation. We guess that z has the form z �−→ 3z′ , since [x �−→ z′, z �−→ 3z′] is a solution of 3x + h(z) = 0.

Factorization makes a more general guess as follows:
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Factorization
If

• Trivial, Variable Substitution, N-Decomposition and other auxiliary rules cannot be used, and
• x does not occur under an uninterpreted function symbol, and
• n > |c| and y is an unconstrained variable,

then

(Γ ∪ {cy + S + dx + h(x) =? 0})‖	‖Λ‖(Ψ ∪ {(n, x)})
(Γ ∪ {cy′ + S + dx′′ + h(x′′) =? 0})σ‖	σ‖Λσ ∪ [σ ]‖(Ψ ∪ {(|c|, x′′)})σ

where σ = [x �−→ cx′ + x′′, y �−→ y′ + (−dx′) + h(−x′)], d can be 0 and x′, x′′ and y′ are fresh variables.

Example 19. For the equation set

{
2y + x2 + h(x1) =? 0,3z + x1 + h(x2) =? 0

}
we can only apply Factorization since we have no other rules applicable. There are two h-terms in it, so initially, Ψ =
{(∞, x1), (∞, x2)}.

{
2y + x2 + h(x1) =? 0,3z + x1 + h(x2) =? 0

}‖∅‖∅‖{(∞, x1), (∞, x2)
}

�⇒ (Factorization){
2v3 + x2 + h(v2) =? 0,3z + 2v1 + v2 + h(x2) =? 0

}‖∅‖{
x1 =? 2v1 + v2, y =? v3 + h(−v1)

}‖{(2, v2), (∞, x2)
}

�⇒ (Variable Substitution on the second equation){
2v3 + x2 + h(v2) =? 0

}‖∅‖{
x1 =? 6v4 + 3v2 + h(2x2), y =? v3 + h

(−3v4 + (−v2) + h(−x2)
)
, v1 =? 3v4 + v2 + h(x2),

z =? −2v4 + (−v2) + h(−x2)
}‖{(2, v2)

}
�⇒ (Variable Substitution)

∅‖∅‖{x1 =? 6v4 + 3v2 + h
(−4v3 + h(−2v2)

)
, y =? v3 + h

(−3v4 + (−v2) + h
(
2v3 + h(v2)

))
,

v1 =? 3v4 + v2 + h
(−2v3 + h(−v2)

)
, x2 =? −2v3 + h(−v2), z =? −2v4 + (−v2) + h

(
2v3 + h(v2)

)}‖∅
Then we get the solution set

{
x1 �−→ 6v4 + 3v2 + h

(−4v3 + h(−2v2)
)
, y �−→ v3 + h

(−3v4 + (−v2) + h
(
2v3 + h(v2)

))
,

x2 �−→ −2v3 + h(−v2), z �−→ −2v4 + (−v2) + h
(
2v3 + h(v2)

)}

The purpose of n > |c| is to avoid loops, we will see this case in Example 21 which is after the next rule. In the next 
section, we will prove this constraint will not lose any solutions.

6.2.5. Annulization
The next rule is based on the homomorphism property h(0) =AGH 0 and it has the lowest priority in our inference system. 

It solves a case like x + h(x) = 0, the only possible solution is making h(x) be 0. Formally:

Annulization

(Γ ∪ {S + h(t) =? 0})‖	‖Λ‖(Ψ ∪ {(n, t)})
Γ ∪ {S =? 0} ∪ {t =? 0}‖	‖Λ‖Ψ

if there is no term with some uninterpreted function symbol on the top occurring in Γ and S, and S may be empty.

First we solve the problem in Example 17.
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Example 20. For convenience, we still do not include 	, Λ and Ψ here.
For equation set

{
x + h(y) =? 0, x + z + h(z) =? 0, x + y + z =? 0

}
,

we can apply Variable Substitution on x + y + z =? 0 and get x �−→ −y + (−z), and our equations become

{−y + (−z) + h(y) =? 0,−y + h(z) =? 0
}
.

Here, we have no rules to be applied except Annulization, since there are no unconstrained variables in it. So we set 
y �−→ 0 and get

{−z =? 0,h(z) =? 0
}
.

We still only can apply Annulization on it and set z �−→ 0 and get

{
0 =? 0

}
.

Using Trivial, we get the empty set and the solution

{x �−→ 0, y �−→ 0, z �−→ 0}

We use the next example to show the constraint in Factorization is necessary:

Example 21. For equation

3y + 2x + h(x) =? 0

we can only apply Factorization because no other rules with higher priority are applicable. Since there is only one h-term, 
initially, Ψ = {(∞, x)}.

{
3y + 2x + h(x) =? 0

}‖∅‖∅‖{(∞, x)
}

�⇒ (Factorization){
3v3 + 2v2 + h(v2) =? 0

}‖∅‖{x �−→ 3v1 + v2, y �−→ v3 + (−2v1) + h(−v1)
}‖{(3, v2)

}
�⇒ (Annulization){

3v3 =? 0
}‖∅‖{x �−→ 3v1, y �−→ v3 + (−2v1) + h(−v1), v2 �−→ 0

}‖∅
�⇒ (Annulization)

∅‖{x �−→ 3v1, y �−→ −2v1 + h(−v1), v2 �−→ 0, v3 �−→ 0
}‖∅

So we get the solution {x �−→ 3v1, y �−→ −2v1 + h(−v1)}.
From this example, we can see the condition n > c is very important, or the procedure of Factorization will go on forever.

7. Simplifier

In the next section, we will give the proof details of the termination, soundness and completeness of our inference 
system. Before that, we give some notation and definitions about an abstract inference rule called Simplifier, which covers 
all of our concrete auxiliary rules, given later. Before giving the proof, we define directed conservative extension:

Definition 22 (Directed conservative extension). Let 
∨

i(Γi‖	i‖Λi‖Ψi) and 
∨

i(Γ
′

i ‖	′
i‖Λ′

i‖Ψ ′
i ) be two set quadruples. ∨

i(Γ
′

i ‖	′
i‖Λ′

i‖Ψ ′
i ) is called a directed conservative extension of 

∨
i(Γi‖	i‖Λi‖Ψi), if for any substitution θ , such that 

θ � Γi‖	i‖Λi‖Ψi , then there exists j and σ , whose domain is the variables in Vars(Γ ′
j ∪ Λ′

j) \ Vars(Γi ∪ Λi), such 
that θσ � Γ ′

j ‖	′
j‖Λ′

j‖Ψ ′
j . If 

∨
i(Γi‖	i‖Λi‖Ψi) (resp. 

∨
i(Γ

′
i ‖	′

i‖Λ′
i‖Ψ ′

i )) only contains one quadruple Γ ‖	‖Λ‖Ψ (resp. 
Γ ′‖	′‖Λ′‖Ψ ′), we say 

∨
i(Γ

′
i ‖	′

i‖Λ′
i‖Ψ ′

i ) (resp. Γ ′‖	′‖Λ′‖Ψ ′) is directed conservative extension of Γ ‖	‖Λ‖Ψ .

From the definition, we can see this is one direction of conservative extension, but with more conditions. We will use it 
to prove the inference rules never lose any solutions.

We give two mappings here: P and μ. We call P : P(Γ ) → {True, False} a property of Γ . and μ : P(Γ ‖	‖Λ‖Ψ ) → N a 
measure of Γ ‖	‖Λ‖Ψ , where N is a well-ordered set.
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Definition 23 (Preserving rules and simplifiers). Let =E be an equational theory, where E is a set of identities. Let I be an 
inference rule of the following form:

Γ ‖	‖Λ‖Ψ
Γ ′‖	′‖Λ′‖Ψ ′

If Γ ‖	‖Λ‖Ψ has the same set of solutions as Γ ′‖	′‖Λ′‖Ψ ′ and every solution of Γ ′‖Λ′ is a solution of Γ ‖Λ, and 
Γ ′‖	′‖Λ′‖Ψ ′ is a directed conservative extension of Γ ‖	‖Λ‖Ψ , we say I is E-equation preserving. If for some prop-
erty P , P (Γ ′) is true whenever P (Γ ) is true, we say I is P -preserving. If μ is a measure such that μ(Γ ‖	‖Λ‖Ψ ) >
μ(Γ ′‖	′‖Λ′‖Ψ ′), we say I is μ-reducing. If I is E-Equation Preserving, P -preserving and μ-reducing, we say I is a 
(P , E, μ)-Simplifier.

If P , E and μ are clear, we will write it as simplifier.

8. Termination

For two set quadruples, Γ ‖	‖Λ‖Ψ and Γ ′‖	′‖Λ′‖Ψ ′ , we will use the following notation in the following sections.

• Γ ‖	‖Λ‖Ψ ⇒IAGH Γ ′‖	′‖Λ′‖Ψ ′ , means Γ ′‖	′‖Λ′‖Ψ ′ is deduced from Γ ‖	‖Λ‖Ψ by applying a rule from IAGH once 
(we call it one step).

• Γ ‖	‖Λ‖Ψ ∗⇒IAGH Γ ′‖	′‖Λ′‖Ψ ′ , means Γ ′‖	′‖Λ′‖Ψ ′ is deduced from Γ ‖	‖Λ‖Ψ by zero or more steps.

• Γ ‖	‖Λ‖Ψ +⇒IAGH Γ ′‖	′‖Λ′‖Ψ ′ means Γ ′‖	′‖Λ′‖Ψ ′ is deduced from Γ ‖	‖Λ‖Ψ by one or more steps.

Note that for N-Decomposition, Γ ′‖	′‖Λ′‖Ψ ′ could represent either of the choices.
As we can see in the inference rules, N-Decomposition divides Γ ‖	‖Λ‖Ψ into two parts, Γ ′‖	′‖Λ′‖Ψ ′ and 

Γ ′′‖	′′‖Λ′′‖Ψ ′′ . So for a quadruple Γ ‖	‖Λ‖Ψ , after applying some inference rules, the result may be a disjunction of 
quadruples 

∨
i(Γi‖	i‖Λi‖Ψi), not just one triple. So we give the following notation:

• Γ ‖	‖Λ‖Ψ �IAGH

∨
i(Γi‖	i‖Λi‖Ψi), where 

∨
i(Γi‖	i‖Λi‖Ψi) is a disjunction of quadruples, means after applying some 

inference rule to Γ ‖	‖Λ‖Ψ once, Γ ‖	‖Λ‖Ψ becomes 
∨

i(Γi‖	i‖Λi‖Ψi).

• Γ ‖	‖Λ‖Ψ +
�IAGH

∨
i(Γi‖	i‖Λi‖Ψi), where 

∨
i(Γi‖	i‖Λi‖Ψi) is a disjunction of quadruples, means after applying some 

inference rules once or more than once, Γ ‖	‖Λ‖Ψ becomes 
∨

i(Γi‖	i‖Λi‖Ψi), namely 
∨

i(Γi‖	i‖Λi‖Ψi) is the set of 
all branches we get after applying one or more than once the rules in IAGH to Γ ‖	‖Λ‖Ψ .

• Γ ‖	‖Λ‖Ψ ∗
�IAGH

∨
i(Γi‖	i‖Λi‖Ψi), where 

∨
i(Γi‖	i‖Λi‖Ψi) is a disjunction of quadruples, means after zero or more 

steps, Γ ‖	‖Λ‖Ψ becomes 
∨

i(Γi‖	i‖Λi‖Ψi), namely 
∨

i(Γi‖	i‖Λi‖Ψi) is the set of all branches we get after applying 
zero or more times the rules in IAGH to Γ ‖	‖Λ‖Ψ .

Next, we give seven measures for proving termination:

• Let H(Γ ) be the number of h-terms in Γ . Since H(Γ ) is a natural number, H(Γ ) with standard ≤ on natural numbers 
is a well-founded ordering.

• Let Coe(Ψ ) be a multiset, {ni : (ni, xi) ∈ Ψ }. Since every ni is a natural number, the multiset order for Coe(Ψ ) is a 
well-founded ordering.

• Let Vars(Γ ) = {x | x occurs in some equation in Γ }. Since |Vars(Γ )| can only be natural number, |Vars(Γ )| with standard 
less than or equal on natural numbers is a well-founded ordering.

• Cons(Γ ) is the set of all constrained variables in Γ . Since |Cons(Γ )| is natural number, |Cons(Γ )| with standard ≤ on 
natural numbers is a well-founded ordering.

• We use Reduce(Γ ) to denote the set

{x ∈ Γ : x is a reduced unconstrained variable in Γ }.
Let RUncons(Γ ) be Uncons(Γ ) \ Reduce(Γ ). |RUncons(Γ )| is non-negative because |Uncons(Γ )| is always greater than or 
equal to |Reduce(Γ )|. So |RUncons(Γ )| with standard ≤ on natural numbers is a well-founded ordering.

• Recall that Sym(Γ ) is the multiset of all symbols occurring in Γ . Obviously, the standard ordering of |Sym(Γ )| based 
on natural numbers is a well-founded ordering on the set of equations.

• From the definition of 	, we see that 	 only contains disequations of the form s + (−t) �=? 0 where s and t both 
have the same top function symbol and the coefficients of s and t are 1. So we let Par(	) be {(t, s) : t + (−s) �=? 0 ∈
	} and Par(Γ ) be {(t, s) : t, s occurs in Γ and t has the same top function symbol as s}. We use Par(Γ \ 	) to denote 
Par(Γ ) \Par(	). Since the number of terms in Γ is positive and finite, |Par(Γ \	)| with standard ≤ on natural numbers 
is a well-founded ordering. This measure is used to count all possible disequations that could be placed in 	 by 
N-Decomposition, not including the ones that are already there.



Z. Liu, C. Lynch / Information and Computation 238 (2014) 128–156 147
We then define the measure of Γ ‖	‖Λ‖Ψ as following:

MAGH(Γ,	,Λ,Ψ ) = (
H(Γ ),Coe(Ψ ),

∣∣Vars(Γ )
∣∣, ∣∣Cons(Γ )

∣∣, ∣∣RUncons(Γ )
∣∣, ∣∣Sym(E)

∣∣, ∣∣Par(Γ \ 	)
∣∣).

The lexicographical order on this tuple is well founded because each element of this tuple with its corresponding order 
is well founded.

Since we apply purification whenever Γ is not a pure sum, we can always assume that the equation set Γ is a pure sum

form before applying the inference rules.
We claim here that MAGH(Γ, 	, Λ, Ψ ) decreases by every inference rule.

Lemma 24. Let Γ ‖	‖Λ‖Ψ and Γ ′‖	′‖Λ′‖Ψ ′ be two quadruple sets, where Γ and Γ ′ are in pure sum form, such that 
Γ ‖	‖Λ‖Ψ ⇒IAGH Γ ′‖	′‖Λ′‖Ψ ′ , Then, MAGH(Γ, 	, Λ, Ψ ) >MAGH(Γ ′, 	′, Λ′, Ψ ′)

Proof. Trivial: Sym(Γ ) decreases but other components do not change, so MAGH(Γ, 	, Λ, Ψ ) >MAGH(Γ ′, 	′, Λ′, Ψ ).
Variable Substitution: We already explained that the UnconstrainedReduce algorithm will halt. Here we only talk about 

the status of applying Variable Substitution.
According to the conditions for applying Variable Substitution, we only apply this rule on the variables which are not in 

Reduce(Γ ). During UnconstrainedReduce, if some unconstrained variable’s coefficient’s absolute value is one, this variable 
will be solved and no new variable will be introduced, hence |Vars(Γ )| decreases.

If there is no h-term in this solved equation, then H(Γ ) and Coe(Ψ ) will not change. Now suppose there is an h-term 
in this equation, which has the form S′ + x + h(t) =? 0, where x is the variable solved in this step, then every equation 
which contains unconstrained variables also has an h-term in it, which means all the equations dx + h(t′) + S′′ will become 
−dS′ + h(−dt) + h(t′) + S′′ . In this case, our rewriting rules and Purify will be applied immediately. i.e. −dS′ + h(−dt) +
h(t′) +S′′ =? 0 will be rewritten to h(−dt +t′) +−dS′ +S′′ =? 0 and then be purified to {h(x′) +−dS′ +S′′, x′+dt +(−t′) =? 0}, 
where x′ is a fresh variable. From this procedure, we see that H(Γ ) = H(Γ ′) +1. If some solved variable makes two h-terms 
identical, Singlize will be applied. But in Singlize, we keep removing identical h-terms, so H(Γ ) decreases. So in both cases, 
MAGH(Γ, 	, Λ, Ψ ) > MAGH(Γ ′, 	′, Λ′, Ψ ).

If x’s coefficient is −1, i.e. the form is S′ + (−x) + h(t) =? 0, we can use the similar argument to above to get the same 
result.

If no unconstrained variable’s coefficient’s absolute value is one, some variable was introduced (it is an unconstrained 
variable), we will solve some preexisting variable and this new variable will still be an unconstrained variable. So one 
unconstrained variable will be replaced by another fresh unconstrained variable. Hence |Vars(Γ )| will not increase.

If the equation to which we choose to apply Variable Substitution has no h-term in it, then |H(Γ )| and Coe(Ψ ) will not 
increase. If the equation to which we choose to apply Variable Substitution has h-term in it, since terms are reduced by 
RAGH , we know the only possible h-term form is a monic h-term, h(t), where t is a monic form. Since no unconstrained 
variable’s coefficient is one, suppose our equation is c1x1 + · · · + cnxn + h(t) + c′

1t1 + · · · + c′
mtm =? 0, where x j are uncon-

strained variables and no t j is an unconstrained variable. If we choose to use a fresh variable x′ to replace xi , from our 
algorithm, we get:

x′ =?
⌊

c1

ci

⌋
x1 + · · ·

⌊
ci−1

ci

⌋
xi−1 + xi +

⌊
ci+1

ci

⌋
xi+1 + · · · +

⌊
cn

ci

⌋
xn +

⌊
1

ci

⌋
h(t) +

⌊
c′

1

ci

⌋
t1 + · · · +

⌊
c′

m

ci

⌋
tm

=
⌊

c1

ci

⌋
x1 + · · ·

⌊
ci−1

ci

⌋
xi−1 + xi +

⌊
ci+1

ci

⌋
xi+1 + · · · +

⌊
cn

ci

⌋
xn +

⌊
c′

1

ci

⌋
t1 + · · · +

⌊
c′

m

ci

⌋
tm

So we can see that the solved preexisting unconstrained variables will not contain any h-terms. |H(Γ )| and Coe(Ψ ) will 
not increase.

We know UnconstrainedReduce will finally terminate when some new reduced unconstrained variable is generated. So 
|Reduce(Γ )| increases. In this case, if no constrained variable becomes an unconstrained variable because of the algorithm, 
then |Uncons(Γ )| will not increase. Thus RUncons(Γ ) decreases. If some constrained variable becomes an unconstrained 
variable, then |Cons(Γ )| will decrease. In both cases, MAGH(Γ, 	, Λ, Ψ ) > MAGH(Γ ′, 	′, Λ′, Ψ ′).

N-Decomposition: For Choice 1, in the decomposition rules, σ is mgu(s1 =? t1, s2 =? t2, · · · , sn =? tn), which will not 
introduce new variables. If some variables were solved, and these variables make some h-terms zero, then H(Γ ) decreases. If 
no variable makes an h-term zero, but makes two h-terms identical, Singlize will be applied. In Singlize, we keep removing 
the identical h-terms, so H(Γ ) decreases. If no variable makes an h-term zero or two h-terms identical, then H(Γ ) = H(Γ ′), 
Coe(Ψ ) = Coe(Ψ ′) and |Vars(Γ )| ≥ |Vars(Γ ′)|. If no variable was solved, then at least two f s are removed, which means 
|Sym(Γ )| > |Sym(Γ ′)|. Hence MAGH(Γ, 	, Λ, Ψ ) > MAGH(Γ ′, 	′, Λ′, Ψ ).

For Choice 2, no variable will be introduced, and no symbol in Γ is removed. But some disequality will be added 
into 	, while two possible pairs are removed from Γ , which means |Par(Γ ) \ Par(	)| = |Par(Γ ′) \ Par(	′)| + 1. Hence 
MAGH(Γ, 	, Λ, Ψ ) > MAGH(Γ ′, 	′, Λ′, Ψ ′).

Factorization: In this rule, some variable x is replaced by a new variable y. Because we did not remove any h-term, 
H(Γ ) does not change. We replaced (n, x) by (c, y), where c < n, so Coe(Ψ ) decreases. Hence MAGH(Γ, 	, Λ, Ψ ) >
MAGH(Γ ′, 	′, Λ′, Ψ ′).
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Annulization: We removed an h-term, so H(Γ ) decreases. Hence MAGH(Γ, 	, Λ, Ψ ) > MAGH(Γ ′, 	′, Λ′, Ψ ′).
From the definition of Simplifier, we know MAGH(Γ, 	, Λ, Ψ ) >MAGH(Γ ′, 	′, Λ′, Ψ ′) for Simplifiers. �

Theorem 25. For any quadruple set Γ ‖	‖Λ‖Ψ , there is a quadruple set Γ ′‖	′‖Λ′‖Ψ ′ such that Γ ‖	‖Λ‖Ψ ∗⇒IAGH Γ ′‖	′‖Λ′‖Ψ ′
and no rules in IAGH can be applied on Γ ′‖	′‖Λ′‖Ψ ′ .

Proof. This statement can be proven from Lemma 24 by induction. �
9. Soundness

The following lemma and theorem justify soundness disregarding 	 at the end of the inference procedure.

Lemma 26. For two set quadruples Γ ‖	‖Λ‖Ψ and Γ ′‖	′‖Λ′‖Ψ ′ satisfying

Γ ‖	‖Λ‖Ψ ⇒IAGH Γ ′‖	′‖Λ′‖Ψ ′,
let θ be a substitution such that θ � Γ ′‖Λ′ . Then θ � Γ ‖Λ.

Proof. It is easy to prove the cases of Trivial and Simplifiers. So we only discuss the other cases:
Variable Substitution: Referring to Theorem 15, we know Γ̃ ∪ Λ̃ is a conservative extension of

Γ ∪ {
c1x1 + · · · + cnxx + c′

1t1 + · · · + c′
mtm =? 0

} ∪ Λ.

But Γ ′ = Γ̃ , σ = λΛ̃ and Λ′ = Λ ∪ Λ̃, so Γ ′σ ∪ Λ′σ is also a conservative extension of

Γ ∪ {
c1x1 + · · · + cnxx + c′

1t1 + · · · + c′
mtm =? 0

} ∪ Λ.

So the statement is true.
N-Decomposition: First Choice:

(Γ ∪ {S + cf (s1, s2, · · · sm) + (−df (t1, t2, · · · tm)) =? 0})‖	‖Λ‖Ψ
(Γ ′σ)‖(	σ)‖(Λσ ∪ {[σ ]})‖Ψ

where Γ ′ = Γ ∪ {S + (c − d) f (s1, s2, · · · , sm) =? 0}, and σ = mgu(s1 =? t1, s2 =? t2, · · · , sm =? tm).
If θ � Γ ∪ {S =? 0}‖(Λσ ∪ [σ ])‖Ψ , what we need to do is prove θ � (Γ ∪ {S + cf (s1, s2, · · · sm) + (−df (t1, t2, · · · tm)) =?

0})‖Λ. Because θ � [σ ], where [σ ] = {s1 =? t1, s2 =? t2, · · · , sm =? tm}, we know siθ = tiθ and θσ = θ , where 1 ≤ i ≤ m. 
Then f (s1θ, s2θ, · · · , smθ) = f (t1θ, t2θ, · · · , tmθ). Because θ � (S + (c + d) f (s1, s2, · · · , sm) =? 0σ) and σθ = θ , we have

Sθ + (c − d) f (s2, s2, · · · , sm)θ = S(θ) + cf (s1, s2, · · · , sm)θ + (−df (s1, s2, · · · , sm)
)
θ

= S(θ) + cf (s1, s2, · · · , sm)θ + (−df (s1θ, s2θ, · · · , smθ)
)

= S(θ) + df (s1, s2, · · · , sm)θ + (−df (t1θ, t2θ, · · · , tmθ)
)

= 0.

So this statement is true.
The second choice is obvious.
Factorization: It is enough to show if

θ �
{

cy′ + S + dx′′ + h
(
x′′) =? 0, x =? cx′ + x′′, y =? y′ + (−dx′) + (

h
(−x′))}

then θ � {cy + S + dx + h(x) =? 0}.
Because xθ = cx′θ + x′′θ and yθ = y′θ + (−dx′)θ + (h(−x′))θ , we get x′′θ = xθ + (−cx′θ) and y′θ = yθ + dx′θ + h(x′)θ . 

Thus

0 = cy′θ + Sθ + dx′′θ + h
(
x′′)θ

= c
(

yθ + dx′θ + h
(
x′)θ) + Sθ + d

(
xθ + (−cx′θ

)) + h
(
xθ + (−cx′θ

))
= cyθ + cdx′θ + h

(
cx′)θ + Sθ + dxθ + (−cdx′θ

) + h(xθ) + (
h
(−cx′θ

))
= cy + S + dx + h(x)

So the statement is true for Factorization.
Annulization: We only need to show θ � t =? 0 implies θ � h(t) =? 0. This is true from our rewriting rules.
From the definition of Simplifier, we know the statement is true for Simplifiers. �
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Theorem 27. For any two set quadruples Γ ‖	‖Λ‖Ψ and Γ ′‖	′‖Λ′‖Ψ , satisfying

Γ ‖	‖Λ‖Ψ ∗⇒IAGH Γ ′‖	′‖Λ′‖Ψ ′,

if there is a solution θ , satisfying θ � Γ ′‖Λ′ , then θ � Γ ‖Λ.

Proof. We can prove it by induction from Lemma 26. �
From above theorem we have the following corollary:

Corollary 28 (Soundness). Let Γ be an AGH-unification problem. Suppose after applying the inferences rules from IAGH to Γ ‖∅‖∅‖Ψ ini
Γ

exhaustively, we get 
∨

i(Γi‖	i‖Λi‖Ψi), i.e.

Γ ‖∅‖∅‖Ψ ini
Γ

∗
�IAGH

∨
i

(Γi‖	i‖Λi‖Ψi)

where for each i, no rules are applicable to Γi‖	i‖Λi‖Ψi . Let Σ = {λΛi | Γi = ∅}. Then any member of Σσ is an AGH-unifier of Γ .

10. Completeness

In this section, we show that the inference rules never lose any solutions.

Lemma 29. Let Γ ‖	‖Λ‖Ψ be a set quadruple. If there exists another set quadruple Γ ′‖	′‖Λ′‖Ψ ′ , such that Γ ‖	‖Λ‖Ψ ⇒IAGH

Γ ′‖	′‖Λ′‖Ψ ′ via a deterministic rule except Factorization and Annulization, then Γ ′‖	′‖Λ′‖Ψ ′ is a directed conservative extension 
of Γ ‖	‖Λ‖Ψ .

Proof. There are three cases: Trivial, Simplifiers and Variable Substitution.
Trivial: This case is trivial.
Simplifier: From the definition of Simplifier, the statement is true.
Variable Substitution: Similar to the proof in Lemma 26, we know Γ ′σ ∪ Λσ is a conservative extension of

Γ ∪ {
c1x1 + · · · + cnxx + c′

1t1 + · · · + c′
mtm =? 0

} ∪ Λ.

All we need to prove is if there is a solution θ � Γ ‖	‖Λ‖Ψ , then the extension θ ′ of θ satisfies 	 and Ψ .
In Variable Substitution, we have proved that after applying UnconstrainedReduce, Γ ′ ∪ Λ′ is a conservative extension 

of Γ ∪Λ. Since any solution θ of Γ ∪Λ satisfies (sθ + tθ) ↓�= 0, we claim each solution δ for Γ ′ ∪Λ′ satisfies (sδ + tδ) ↓�= 0. 
Otherwise, since Γ ′ ∪ Λ′ is a conservative extension of Γ ∪ Λ, for any δ, there exists θ , which is a solution of Γ ∪ Λ and 
we can find a substitution σ , such that δσ =AGH |Vars(Γ )θ . Since (sδ + tδ) ↓= 0, we can get (sδσ + tδσ ) ↓= 0, which is 
(sθ + tθ) ↓= 0. This is the contradiction. Hence 	 does not change after applying Variable Substitution. And the possible 
change of Ψ is from some equation being solved, and Purify and Singlize are applied.

If some equation is solved and an h-term is removed from Γ , then the corresponding pair will be removed from Ψ too. 
So it is trivially true.

Suppose after Variable Substitution, the solution is extended to θ ′ , For Purify, suppose the old equation is S + ch(t) +
dh(s) =? 0, and (N1, t), (N2, s). After rewriting and Purify, ch(t1) + dh(t2) is replaced by h(x′) and (N1, t), (N2, s) is replaced 
by (|cN1 + dN2|, x′). From (N1, t), (N2, s), we know tθ ′ ↓= ∑k

i=1 citi and sθ ′ ↓= ∑l
i=1 di si , for all i, ci < N1, di < N1 and for 

any i, j, ti �= t j . We extend θ ′ to θ ′′ = θ ′ ∪ {x′ �−→ c(−t) + d(−s)}, then x′θ ′′ = c(−t)θ ′′ + d(−s)θ ′′ = c
∑k

i=1 citi + d 
∑l

i=1 di si . 
So for every i, we have |cci| < |cN1| and |ddi | < |dN2|. So for x′θ ′′ ∑l

i=1 d′ri , the largest absolute value of the coefficient is 
at most cN1 + dN2, which means θ ′′ satisfies Ψ .

And because if θ ′ � S + ch(t) + dh(s) =? 0, then θ ′′ � {S + h(x′) =? 0, x′ + (−ct) + (−ds) =? 0}, θ ′′ is also a solution of 
Γ ′ ∪ Λ′ .

In Singlize, because we only remove the extra identical h-terms and the pair with a larger integer. (N, s) means for the 
solution θ , we have sθ = ∑k

i=i ci si , ci < N for every ci and ti �= t j for any i.. j. Therefore for two pairs (N1, s) and (N2, s), 
where N1 ≤ N2, we have ci < N1 ≤ N2. So after removing (N2, s), θ still satisfies (N1, s).

So this statement is true. �
Lemma 30. Let Γ ‖	‖Λ‖Ψ be a set quadruple. If there exists another set quadruple Γ ′‖	′‖Λ′‖Ψ ′ , such that Γ ‖	‖Λ‖Ψ ⇒IAGH

Γ ′‖	′‖Λ′‖‖Ψ ′ via Factorization,then Γ ′‖	′‖Λ′‖Ψ ′ is a directed conservative extension of Γ ‖	‖Λ‖Ψ .

Proof. Our inference rules have priorities. Therefore if Γ ‖	‖Λ‖Ψ ⇒IAGH Γ ′‖	′‖Λ′‖‖Ψ ′ via Factorization, then Γ has an 
equation of the form
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S + cy + dx + h(x) =? 0

where (n, x) ∈ Ψ and n > c (d might be 0). Suppose there is a solution θ for Γ ‖	‖Λ‖Ψ , such that (xθ) ↓= ct + s where 
t �= 0 because of the pair (n, x). After applying Factorization, we get

Γ ∪ {
S + cy′ + dx′′ + h

(
x′′) =? 0

}‖	‖Λθ‖Ψ ∪ {(
c, x′′)}θ.

So it is enough to show we can find a δ, such that

θδ �
{

cy′ + S + dx′′ + h
(
x′′) =? 0, x =? cx′ + x′′, y =? y′ + (−dx′) + h

(−x′)}
and θδ satisfies Ψ ′ .

Let δ = {x′′ �−→ x + (−cx′), y′ �−→ y + dx′ + h(x′)}, where x′ satisfies: if (xθ) ↓= ∑k
i=1(citi), where every ti is a monic 

term and ti �= t j for every i, j, then (x′θδ) ↓= ∑k
i=1(� ci

c �ti).
Then

(
cy′ + S + dx′′ + h

(
x′′))θδ = c

(
y + dx′ + h

(
x′))θδ + Sθδ + d

(
x + (−cx′))θδ + h

(
x + (−cx′))θδ

= cyθδ + cdx′θδ + ch
(
x′)θδ + Sθδ + dxθδ + (−cdx′)θδ + h(x)θδ + h

(−cx′)θδ

= cyθδ + Sθδ + h(x)θδ

= 0(
cx′ + x′′)θδ = cx′θδ + x′′θδ

= cx′θδ + xθδ + (−cx′)θδ

= xθδ

= xθ(
y′ + (−dx′) + h

(−x′))θδ = y′θδ + (−dx′)θδ + h
(−x′)θδ

= yθδ + dx′θδ + h
(
x′)θδ + (−dx′)θδ + h

(−x′)θδ

= yθδ

= yθ

Suppose xθ = ∑k
ci

ti , where ti is a monic term and ti �= t j for every i, j, because we have the constraint

(
x′θδ

) ↓=
k∑

i=1

(⌊
ci

c

⌋
ti

)

where (xθ) ↓= ∑k
i=1(citi), then

x′′θδ = xθδ − cx′θδ =
k∑

i=1

(
(ci mod c)ti

)

So θδ satisfies Ψ ′ .
Thus this statement is true. �
Before we give the next lemma, we define a function called (Lay) which will count the layers of a term, when the term 

is represented as a tree.

Definition 31. If t is reduced with respect to RAGH , then Lay(t) has the following value:

• Lay(t) = 0, if t is a constant or variable.
• Lay( f (c1t1, c2t2, · · · , cntn)) = max{Lay(t1), Lay(t2), · · · , Lay(tn)} + 1, where f is an uninterpreted symbol.
• Lay(c1t1 + c2t2 + · · · + cntn) = max{Lay(t1), Lay(t2), · · · , Lay(tn)}.
• Lay(h(t)) = 1 + Lay(t).

From the definition, we get Lay(kt) = Lay(t), so sometimes we will omit the coefficient.

Lemma 32. Let Γ ‖	‖Λ‖Ψ be a set quadruple. If there exists another set quadruple Γ ′‖	′‖Λ′‖Ψ ′ , such that Γ ‖	‖Λ‖Ψ ⇒IAGH

Γ ′‖	′‖Λ′‖Ψ ′ via Annulization,then Γ ′‖	′‖Λ′‖Ψ ′ is a directed conservative extension of Γ ‖	‖Λ‖Ψ .
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Proof. Since Annulization is applicable, all the equations have the form c yi yi + ci1xi1 + ci2xi2 + · · · + cimxim + h(t) =? 0, 
where xij is not unconstrained, (c, t) ∈ Ψ and n ≤ c.

Annulization sets all the h-terms to zero. Annulization will not change 	, and the corresponding pairs will be removed 
from Ψ if some h-terms are set to zero. So it is enough to show there is no solution θ , such that for some h(t), (h(t)θ) ↓�= 0.

Suppose there is a ground reduced substitution θ and there exists an h-term h(t), such that (h(t)θ) ↓�= 0.
θ is a ground reduced substitution, which is {x1 �−→ T1, x2 �−→ T2, · · · xn �−→ Tn, y1 �−→ S1, y2 �−→ S2, · · · , yl �−→ Sl}, 

where each xi is a constrained variable and yi is an unconstrained variable in Γ . Without loss of generality, we suppose 
Lay(T1) ≥ Lay(T2) ≥ · · · ≥ Lay(Tn).

We claim that Lay(T1) is not zero. If it is, then all Lay(Ti) are zero,which means all the Ti are variables or constants. 
Then for the equation cyi + ci1xi1 + ci2xi2 + · · · + cimxim + h(t) =? 0, where (h(t)θ) ↓�= 0, we have:

(
cyi + ci1xi1 + ci2xi2 + · · · + cimxim + h(t)

)
θ = cyiθ + ca1 + ca2 + · · · cam + h(t)θ

where ai are constants or variables. The only possibility to cancel h(t)θ is cyiθ . Because h(t) is a pure term, t ’s top symbol 
is some uninterpreted function symbol or t is a variable.

If t = f (s1, s2, · · · , sl), then tθ = f (s1, s2, · · · , sl)θ . Because yi can cancel tθ , yi = h(kf (s1, s2, · · · , sl))θ + S . Because we 
can only apply Annulization, c has the largest absolute value among all the coefficients, or Variable Substitution will apply. 
So |c| > 1. Therefore cyiθ + h(t)θ = ch(kf (s1, s2, · · · , sl))θ + h( f (s1, s2, · · · , sl))θ + S = h((ck + 1) f (s1, s2, · · · , sl))θ + S , which 
is impossible to be zero.

If t is a variable x j , suppose T j = ∑n
k=1 cktk , where tk is a monic term |ck| < |c| and tk1 �= tk2 for every k1, k2, because 

(c, x j) ∈ Ψ . So yiθ = ∑n
k1

c′
ktk + S . Also cyiθ + h(x j)θ = ∑n

k=1(cc′
k + ck)tk + S . Because |ck < c|, ∑n

k=1(cc′
k + ck)tk cannot to 

be zero.
So Lay(T1) is not zero. Since x1 occurs in t in the equation cyi + ci1xi1 + ci2xi2 + · · · + cimxim + h(t) =? 0, where xij ’s 

are not unconstrained variables, if we want to cancel h(t)θ , we need another variable xijθ or yiθ to cancel it because there 
are no other h-terms in it. If xijθ can cancel h(t)θ and xij = xl , then xlθ = kh(t)θ + T . Suppose Lay(Tl) = Lay(kh(t)θ + T ) ≥
Lay(kh(t)θ) ≥ Lay(h(t)θ) > Lay(x1θ) = Lay(T1), which is a contradiction. If yiθ can cancel h(t)θ , then the case is same as 
above.

So in this case there is no solution θ , such that for some h(t), (h(t)θ ↓) �= 0. Therefore the statement is true. �
Lemma 33. Let Γ ‖	‖Λ‖Ψ be a set quadruple. If there exists another set quadruple Γ ′‖	′‖Λ′‖Ψ ′ , such that Γ ‖	‖Λ‖Ψ ⇒IAGH

Γ ′‖	′‖Λ′‖Ψ ′ via N-Decomposition, then Γ ′‖	′‖Λ′‖Ψ ′ is a directed conservative extension of Γ ‖	‖Λ‖Ψ .

Proof. Because N-Decomposition is a nondeterministic rule, there are two possible cases:
Case 1: Γ has an equation of the form:

S + cf (s1, s2, · · · , sm) + (−df (t1, t2, · · · , tm)
) =? 0

which has a solution θ , such that f (s1, s2, · · · , sm)θ = f (t1, t2, · · · , tm)θ .
Since θ is a solution, so θ � Γ ‖	‖Λ‖Ψ . Let σ be the most general unifier of s1 =? t1, · · · , sm =? tm . Since 

f (s1, s2, · · · , sm)θ = f (t1, t2, · · · , tm)θ , θ is a solution of s1 =? t1, · · · , sm =? tm . There exists a substitution δ, such 
that σδ = θ . So θ � [σ ] from θ � [σδ]. Hence for every equation Q , we have that if θ � Q then θ � Q σ . Be-
cause σ � S + cf (s1, s2, · · · , sm) + (−df (t1, t2, · · · , tm)) =? 0 and σ � f (s1, s2, · · · , sm) = f (t1, t2, · · · , tm), we can get σ �
S + (c − d) f (s1, s2, · · · , sm) =? 0. So σ � (S + (c − d) f (s1, s2, · · · , sm) =? 0)σ . Hence σ satisfies every equation in Γ σ ∪ {Q }σ
and Λσ ∪ [σ ].

Because 	 does not change, θ still satisfies 	′ . Ψ might be changed for Singlize, but we already proved θ still satisfies 
Ψ ′ after Singlize applies in the proof of Lemma 29. Thus θ � (Γ σ ∪ {Q }σ)‖	σ‖(Λσ ∪ [σ ])‖Ψσ .

Case 2: Γ has an equation of the form

S + cf (s1, s2, · · · , sm) + (−df (t1, t2, · · · , tm)
) =? 0

and a solution θ , such that f (s1, s2, · · · , sm)θ �= f (t1, t2, · · · , tm)θ , there is no deterministic rule to be applied and 
f (s1, s2, · · · , sm) + (− f (t1, t2, · · · , tm)) �=? 0 /∈ 	.

We apply N-Decomposition (the second choice) and add f (s1, s2, · · · , sm) + (− f (t1, t2, · · · , tm)) �=? 0 into the disequation 
set. It is trivially true that

θ � Γ ‖	 ∪ {
f (s1, s2, · · · , sm) + (− f (t1, t2, · · · , tm)

) �=? 0
}‖Λ‖Ψ.

From these two cases, if there is some solution θ and N-Decomposition is applied, then there exists an extension θ ′ of θ
such that θ ′ satisfies one of the choices of the conclusion after N-Decomposition is applied. �
Lemma 34. Let Γ ‖	‖Λ‖Ψ be a set quadruple. If there is not another set quadruple Γ ′‖	′‖Λ′‖Ψ ′ , such that Γ ‖	‖Λ‖Ψ ⇒IAGH

Γ ′‖	′‖Λ′‖Ψ ′ , and Γ is not empty, then Γ ‖	‖Λ‖Ψ has no solution.
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Proof. Because there are no rules applicable including Annulization, there is some uninterpreted function symbol occurring 
as top function symbol, i.e. some equation has the form:

c y y + c1x1 + · · · + cnxn + S + cf (s1, s2, · · · , sm) =? 0

where y is an unconstrained variable in Γ , c y might be zero, each xi is a constrained variable in Γ , and S contains no pure 
variables.

Assume there are no rules to apply to Γ ‖	‖Λ‖Ψ and θ is a ground reduced substitution, which is {x1 �−→ T1, x2 �−→
T2, · · · xn �−→ Tn, y1 �−→ S1, y2 �−→ S2, · · · , yl �−→ Sl}, where each xi is a constrained variable and each yi is an uncon-
strained variable in Γ . Without loss of generality, we suppose Lay(T1) ≥ Lay(T2) ≥ · · · ≥ Lay(Tn).

Here, we claim that Lay(T1) is not zero. If it is, then all Lay(Ti)s are zero. Then the equation

c y y + c1x1 + · · · + cnxn + S + cf (s1, s2, · · · , sm) =? 0

becomes

c y yθ + c1a1 + · · · + cnan + Sθ + cf (s1, s2, · · · , sm)θ = 0

where ai are constants or variables. Because this equation is true, we need the inverse of f (s1, s2, · · · , sm)θ to cancel 
cf (s1, s2, · · · , sm)θ . If there is some f -term, e.g. df (t1, t2, · · · , tm)θ in Sθ which can cancel cf (s1, s2, · · · , sm)θ , then because 
here we have no rules to apply, f (t1, t2, · · · tm) − f (s1, s2, · · · , sm) �= 0 ∈ 	, which means f (t1, t2, · · · tm)θ �= f (s1, s2, · · · , sm)θ , 
so the only possibility to cancel an f -term is c y yθ . But |c y | > |c|, or else we can apply Variable Substitution, so if yθ =
kf (s1, s2, · · · , sm)θ + T , then c y yθ + cf (s1, s2, · · · , sm)θ = (c yk + c) f (s1, s2, · · · , sm)θ + T , which is impossible to be zero.

So we can say Lay(T1) is not zero.
Because no rules in IAGH can be applied, from Variable Substitution’s conditions, all unconstrained variables must be 

unconstrained reduced variables. And since x1 is not an unconstrained variable, x1 must occur under some uninterpreted 
function symbol or h-term. So we have two cases:

Case A: x1 occurs under some uninterpreted function symbol. Suppose this equation is S + ct =? 0 where x1 ∈ t and 
Top(t) is an uninterpreted function symbol or t is an h-term of the form h( f (t1, t2, · · · , tn)). Then if we want to cancel 
x1θ , we need another variable xθ to cancel it because there is no other t′ in S with f on the top to cancel it or else 
N-Decomposition could be applied.

Case A.1: If x = xi for some xi , then xiθ = ktθ +T, where T is a term. Suppose S = cxxi + S ′ , then cxxiθ = cxTi = cx(ktθ +T). 
Then Lay(Ti) = Lay(ktθ + T) ≥ Lay(ktθ) ≥ Lay(tθ) > Lay(x1θ) = Lay(T1), which is a contradiction.

Case A.2: If x is an unconstrained variable, then y jθ = ktθ + T′ for some y j , where T is a term. So c y y jθ + ctθ =
c y(ktθ + T′) + ct = (c yk + c)tθ + T′ . Because all the unconstrained variables are reduced, and |c y | > |c|, then c yk + c �= 0, 
which means there still some tθ left in the equation, we still need another variable to cancel it which can only be another 
constrained variable. This goes back to Case A.1.

Case B: x1 occurs only in an h-term. If it is under some uninterpreted function symbol in this h-term, we know there 
is no solution from the analysis of Case A. So we can suppose this equation is S + h(x1) =? 0. Because Lay(T1) �= 0, we can 
suppose T1 = ct + T ′

2, where Lay(T1) = Lay(ct) ≥ Lay(T ′2) and t is a monic term. Because only one h-term is in this equation 
and h(s) + h(t) = h(s + t), we need another variable x to have the contribution to cancel h(ct). We claim that no variable 
can cancel h(ct). In the next two cases, we will first prove that no constrained variables can cancel h(t), and we will show 
that no unconstrained variables can completely cancel h(ct).

Case B.1: If some constrained variable xi , whose coefficient is d, can cancel h(t), then xiθ = h(kt) + R . So Lay(Ti) =
Lay(xiθ) = Lay(dxiθ) = Lay(dh(kt) + dR) ≥ Lay(h(T1)) > Lay(T1) which is a contradiction.

Case B.2: Suppose the unconstrained variable y j , which has the coefficient c y , can cancel h(ct). Then y jθ = h(kt) + R . 
Thus c y y jθ + h(ct) = c ykh(t) + c y R + h(ct) = h((c yk + c)t) + c y R . So we need (c yk + c)t = 0 or if c yk + c �= 0, there are still 
some h(t)s left, which we need another variable to cancel h(t)θ , but we already proved in Case B.1 that this is impossible. 
So (c yk + c)t = 0. But Lay(t) > 0, so c yk + c = 0, which means |c| > |c y |. We already know there is no rule applicable, and 
x1 occurs only under an h-term, so (n, x1) ∈ Ψ , where n < c y , which means xθ = ∑m

k=1 dksk and dk < n. So in this case if 
c > c y , then t needs to be zero, which is a contradiction of Lay(t) > 0.

In summary, if there is no rule we can apply for some quadruple, there is no solution for this quadruple. �
Then by combining Lemma 29, Lemma 30, Lemma 32, Lemma 33 and Lemma 34 we get:

Lemma 35. Let Γ ‖	‖Λ‖Ψ be a set quadruple and Γ is not empty. If there exists a set of set quadruples 
∨

i(Γ
′

i ‖	′
i‖Λ′

i‖Ψ ′
i ), such 

that Γ ‖	‖Λ‖Ψ ⇒IAGH

∨
i(Γ

′
i ‖	′

i‖Λ′
i‖Ψ ′

i ), then 
∨

i(Γ
′

i ‖	′
i‖Λ′

i‖Ψ ′
i ) is a directed conservative extension of Γ ‖	‖Λ‖Ψ . If there is 

no such a set of set quadruples, then Γ ‖	‖Λ‖Ψ has no solution.

Then by induction via Lemma 35, we get:

Theorem 36. Let Γ ‖	‖Λ‖Ψ be a set quadruple and Γ is not empty. If there exists a set of set quadruples 
∨

i(Γ
′

i ‖	′
i‖Λ′

i‖Ψ ′
i ), such 

that Γ ‖	‖Λ‖Ψ +⇒IAGH

∨
i(Γ

′
i ‖	′

i‖Λ′
i‖Ψ ′

i ), then 
∨

i(Γ
′

i ‖	′
i‖Λ′

i‖Ψ ′
i ) is a directed conservative extension of Γ ‖	‖Λ‖Ψ . If there is 

no such set quadruple, then Γ ‖	‖Λ‖Ψ has no solution.

From above theorem we have the following corollary:
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Corollary 37 (Completeness). Let Γ be an AGH-unification problem. Suppose after applying the inferences rules from IAGH to 
Γ ‖∅‖∅‖Ψ ini

Γ exhaustively, we get 
∨

i(Γi‖	i‖Λi‖Ψi), i.e.

Γ ‖∅‖∅‖Ψ ini
Γ

∗
�IAGH

∨
i

(Γi‖	i‖Λi‖Ψi)

where for each i, no rules are applicable to Γi‖	i‖Λi‖Ψi . Let Σ = {λΛi | Γi = ∅}. Then for any AGH-unifier δ of Γ , there exist a σ ∈ Σ , 
such that σ ≤AGH δ|Vars(Γ ) .

11. Auxiliary rules for improving efficiency

For efficiency, we add some other inference rules to our system.

Dis-Trivial

Γ ‖(	 ∪ {0 �=? 0})‖Λ‖Ψ
Fail

.

Clash

(Γ ∪ {S + c1 f (t11, · · · , t1n) + · · · + cm f (tm1, · · · , tmn) =? 0})‖	‖Λ‖Ψ
Fail

.

if there are no pure variables and f is not a top symbol in S and 
∑m

i=1 ci is not zero.

Example 38. The equation:

2 f (x) + 3 f (y) + (−3 f (a)
) =? 0

has no solution.

Clash-Annul

(Γ ∪ {S + h(t) =? 0})‖	‖Λ‖Ψ
(Γ ∪ {S =? 0} ∪ {t =? 0})‖	‖Λ‖Ψ ,

if there is no pure variable in S.

Example 39. For the equation:

2 f (x) + (−2 f (y)
) + (−2 f (0)

) + h(x) =? 0

we can let x �−→ 0 before we use N-Decomposition. So we find out quickly that there is no solution.

Occur Check

(Γ ∪ {c1x1 + c2x2 + · · · + cnxn + c′
1t1 + c′

2t2 + · · · + c′
mtm =? 0})‖	‖Λ‖Ψ

Fail
.

where each ti is a monic term, and for all xi , there exists a pure term t j , such that:

1. xi ∈ Vars(t j) and Top(t j) �= h.
2. The sum of the coefficients of every term in |Top(t j; {t1, t2, · · · , tm})| is not zero.
3. xi occurs in every pure term in Top(t j; {t1, t2, · · · , tm}).

Example 40. The equation x + 2 f (x) =? 0 has no solution.
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Occur Check-Annul

(Γ ∪ {cx + S + h(t) =? 0})‖	‖Λ‖Ψ
(Γ ∪ {t =? 0} ∪ {S =? 0})‖	‖Λ‖Ψ ,

if there is no pure variable in S and x ∈ Vars(t).

Example 41. We have equation set {x + h(x) =? 0, f (x) + (− f (0)) + f (y) + (− f (z)) =? 0}. We use Occur Check-Annul to get 
x �−→ 0, and then get the solution {x �−→ 0, y �−→ z}. This rule can avoid applying N-Decomposition too early.

Decomposition-II
If all the pure variables xi in S occur in some s j (or t j), and t j and s j are monic terms and no top symbol of a 

term of S is f , then:

(Γ ∪ {S + cf (s1, s2, · · · sm) + (−c) f (t1, t2, · · · tm) =? 0})‖	‖Λ
(Γ1σ)‖(	σ)‖(Λσ ∪ {[σ ]})

where Γ1 = (Γ ∪ {S =? 0}), where σ = mgu(s1 =? t1, s2 =? t2, · · · , sm =? tm).

Decomposition-III
If all the pure variables xi in S occur in some s j (or r j , or t j), and t j , s j and r j are monic terms and no top symbol 

of a term of S is f , then:

(Γ ∪ {S + c1 f (s1, · · · , sm) + c2 f (t1, · · · , tm) + c3 f (r1, · · · , rm) =? 0})‖	‖Λ
(Γ1σ)‖(	σ)‖(Λσ ∪ {[σ ]})

where Γ1 = (Γ ∪ {S =? 0}), σ = mgu(s1 =? t1, · · · , sm =? tm, s1 =? r1, · · · , sm =? rm) and c1 + c2 + c3 = 0.

Before we prove all of our auxiliary rules are simplifiers, we need the following lemma.

Lemma 42. Suppose S has the reduced form t1 + · · · + tn, where ti is not a variable, and no f occurs as top symbol in ti . Then

S + c1 f (s11, s12, · · · , s1n) + c2 f (s21, s22, · · · s2n) + · · · + cm f (sm1, sm2, · · · smn) =? 0

has no solution if 
∑m

i=1 ci �= 0.

We omit the proof here since it can follow the property of the AGH.

Theorem 43. All the auxiliary rules are (P , E, μ)-Simplifiers, where, P is in pure sum form, E is Abelian Group with Homomorphism 
and μ is MAGH(Γ, 	, Λ, Ψ ).

Proof. In Lemma 29, we proved that the purification procedure will preserve Ψ . So for proving the auxiliary rules are 
E-equation preserving, we only need to prove two directions: a solution of the premise is a solution of the conclusion and 
a solution of the conclusion is also a solution of the premise.

For Dis-Trivial both directions are easily proved. From Lemma 42 we know that Clash is E-equation preserving.
For Clash-Annul, if h(t) �= 0, then there is no rewriting rule to cancel h(t) because there are no other h-terms and 

variables. So if there is a solution σ for the premise, h(t) has to be zero and σ is a solution of the conclusion. The other 
direction is trivial.

For Occur Check, we can suppose there is a ground reduced solution

θ = {
x1 �−→ s1, x2 �−→ s2, · · · xn �−→ sn, y1 �−→ s′

1, · · · , yk �−→ s′
k

}
Without loss of generality, we suppose Lay(s1) ≥ Lay(s2) ≥ · · · ≥ Lay(sn), x1 ∈ t1, and Top(t1) = f , where f is an unin-
terpreted function symbol, Top(t1; {t1, t2, · · · , tm}) = {t1, t2, · · · , tl} where 

∑l
i=1 c′ �= 0 from the condition of Occur Check. 
i
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Table 1
Experiment result.

Problems Real Time Steps # Sol. Min?

f (x) + f (y) =? f (a) + f (b) 60 ms 6 2 YES

f (x) + f (y) + f (z) =? f (a) + f (b) + f (c) 1391 ms 12 6 YES

f (x) + f (y) + f (z) + f (w) =? f (a) + f (b) + f (c) + f (d) 43 s 20 24 YES

x =? f (x + y) 9 ms 3 1 YES

x =? f (x + y − f (y)) 12 ms 3 1 YES

x =? h(x + y − h(y)) 17 ms 5 1 YES

2y + w + h(z) =? 3(v) + z + h(w) 19 ms 4 1 YES

2y + w + h(z) =? 0 33 ms 3 1 YES
3v + z + h(w) =? 0

2y + w + h(z) =? 0 22 ms 2 1 YES
3v + z + 2x + h(w) =? 0

3x + 2y + h(x + y) + 3 f (h(x + y + z), g(a)) =? 0 47 ms 7 1 YES

3 f (h(x + y + z), g(a)) + x =? 0 24 ms 5 1 YES

2y + 3 f (w,a) + 7 f (z,a) + 8x =? 0 43 ms 4 1 YES
2y + 4x + 5 f (w,a) + 5 f (z,a) =? 0

f (y) + 3x + 3 f (z) + 4z =? 0 13 ms 2 1 YES

x + f (y) − f (x1) =? 0 81 ms 6 3 YES
y + f (z) − f (x2) =? 0
z + f (x) − f (x3) =? 0

Because 
∑l

i=1 c′
i �= 0, from the proof of Lemma 42, we know at least we need to find another term with f as top sym-

bol to cancel some ti which cannot be canceled by other elements in {t1, t2, · · · , tl}. This must be from some variable. 
Suppose this variable is xi . Because every equation before applying the substitution is pure and θ is ground and reduced, 
then no subterm under an uninterpreted function symbol can be canceled after applying the substitution, which means 
xiθ = si = kti[x1]θ + Sθ = kti[s1]θ + Sθ , where S is a term. This means Lay(s1) < Lay(si) which is a contradiction. So in this 
case, there is no solution. This means Occur Check is E-equation preserving.

For Occur Check-Annul, if there is a solution θ , then cxθ + Sθ + h(tθ) = 0. Because cx + S + h(tθ) =? 0 is a pure sum

and no pure variables occur in S, there are two possible ways to cancel h(tθ) from our rewriting rules: one is from cxθ =
h(tθ) + T �= 0 and the other one is tθ = 0. For the first case, because x occurs in t , then Lay(xθ) = Lay(h(tθ)) > Lay(xθ), 
which is a contradiction. So the only possible case is the second case, which means θ is also a solution of the conclusion. If 
the h-term has the form of h(t[x]) where Top(t) is an uninterpreted function symbol, t =? 0 will fail from Lemma 42. If the 
h-term has the form of h(x), then x = 0. The other direction is trivial.

For Decomposition II, if cf (s1, s2, · · · , sm) −cf (t1, t2, · · · , tm) �= 0, then there is no rewriting rule to cancel f (s1, s2, · · · sm)

and − f (t1, t2, · · · tm) because there are no other terms with top symbol f . So if there is a solution θ for the premise, then 
the only possibility to cancel them is from the pure variables. But we already know every pure variable occurs in some 
si or t j . Suppose the pure variable set is {x1, x2, · · · , xk} and Lay(x1θ) ≥ Lay(x2θ) ≥ · · · ≥ Lay(xk). If Lay(x1θ) = 0, then 
Lay(xi) = 0 for all i. There will be no solution because f (s1, s2, · · · , sm) cannot be canceled. Assume x1 ∈ Vars(si), and 
some xiθ = kf (s1, s2, · · · , sm), then we should have Lay(xiθ) ≥ Lay( f (s1, s2, · · · , sm)θ) > Lay(x1θ), which is a contradiction. If 
x1 ∈ Vars(t j), the discussion is the same. So if there is some solution, we need to have f (s1, s2, · · · , sm)θ = f (t1, t2, · · · , tm)θ . 
The other direction is trivial.

Decomposition III is the same as Decomposition II.
We will apply the purification procedure whenever Γ is not in pure sum form, so all the rules preserve pure sum form.
Next we prove all the rules are μ-reduced. Trivial, Clash and Occurs Check are trivial because they go to fail. For

Clash-Annul and Occur Check-Annul, an h-term is solved, so H(Γ ) decreases. For Decomposition II and III, either some 
variables are solved or two f s are removed, and MAGH(Γ, 	, Λ, Ψ ) decreases. So the conclusion is μ-decreasing.

Hence all of the above rules are simplifiers. �
12. Implementation

Due to the high nondeterminism of the combination algorithm [11], as far as we know, there is no public implementation 
for the general AG-unification algorithm yet.

Thanks to Maude [18], we have implemented our algorithm. The resulting program has solved many AGH-unification 
problems. The running environment is on Windows 7, Intel Core2 Duo 2.26GHz, and 5 GB RAM. Table 1 shows some of our 
results.
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In Table 1, we count one application of a rule (we also count Singlize and Purify as rules too) as one step. The number 
of steps is the number of steps of the branch which has the maximum number of steps among all the branches. As we 
can see in the table, in all of the cases, we got the minimal complete set of unifiers (we cannot guarantee this is true for 
arbitrary examples). Except for the second and third one, we got the final result in less than 0.1 second. It makes sense that 
the second and third one need more time to get the final result since their minimal complete set of unifiers contains more 
solutions. So the result is very satisfactory.

13. Conclusion and future work

We introduced inference rules for general E-unification problems modulo a homomorphism over an Abelian group. We 
proved these inference rules to be sound, complete and terminating. We also introduced auxiliary rules to avoid applying 
N-Decomposition, and to make the inference system more efficient. These inference rules also apply to an Abelian group 
without a homomorphism. In this case, the Variable Substitution rule becomes simpler, because the conditions involving h
symbols are trivially true, N-Decomposition remains the same, and Factorization and Annulization never apply. The auxiliary 
rules are the same, but Clash-Annul and Occur-Check-Annul no longer apply.

This AGH-unification algorithm is an extension of the unification algorithm for XOR with a homomorphisms as given in 
[15]. It is based on the same framework, but with more sophisticated inference rules. The Purify rules are similar for XOR, 
and the Singlize rule is not needed in the XOR case. Variable Substitution is much more sophisticated here. N-Decomposition 
is easily adapted from XOR to Abelian groups. Factorization is new here. Annulization is similar to the XOR case. We believe 
we have a useful framework that could be extended to other theories.

AGH is an important theory in cryptographic protocols, and that is the focus of our research. The algorithm is simple to 
implement, and is implemented into Maude already. Now it is being incorporated in the Maude NPA. The inference rules 
have the benefit that the N-Decomposition rule is not applied often, so the inference system is mostly deterministic. This 
makes the algorithm more efficient and the complete set of unifiers smaller.

For future work, we will also combine AG and AGH with convergent rewrite theories like cancellation and extend our 
algorithm by adding arbitrary many homomorphic operators.
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