
J Autom Reasoning (2013) 51:325–356
DOI 10.1007/s10817-012-9263-4

SMELS: Satisfiability Modulo Equality
with Lazy Superposition

Christopher Lynch · Quang-Trung Ta ·
Duc-Khanh Tran

Received: 5 December 2010 / Accepted: 3 October 2012 / Published online: 18 October 2012
© Springer Science+Business Media Dordrecht 2012

Abstract We consider the problem of checking satisfiability of quantified formulae
in First Order Logic with Equality. We propose a new procedure for combining
SAT solvers with Superposition Theorem Provers to handle quantified formulae
in an efficient and complete way. In our procedure, the input formula is converted
into CNF as in traditional first order logic theorem provers. The ground clauses are
given to the SAT solver, which runs a DPLL method to build partial models. The
partial model is reduced, and then passed to a Superposition procedure, along with
justifications of literals. The Superposition procedure then performs an inference
rule, which we call Justified Superposition, between the ground literals and the
nonground clauses, plus usual Superposition rules with the nonground clauses.
Any resulting ground clauses are provided to the DPLL engine. We prove the
completeness of our procedure, using a nontrivial modification of the Bachmair and
Ganzinger’s model generation technique. We have implemented a theorem prover
based on this idea by reusing state-of-the-art SAT solver and Superposition Theorem
Prover. Our theorem prover inherits the best of both worlds: a SAT solver to handle
ground clauses efficiently, and a Superposition theorem prover which uses powerful
orderings to handle the nonground clauses. Experimental results are promising, and
hereby confirm the viability of our method.

C. Lynch
Department of Mathematics and Computer Science, Clarkson University,
P.O. Box 5815, Potsdam, NY 13699-5815, USA
e-mail: clynch@clarkson.edu

Q.-T. Ta
School of Computing, National University of Singapore, 13 Computing Drive,
Singapore 117417, Singapore
e-mail: taqt@comp.nus.edu.sg

D.-K. Tran (B)
School of Information and Communication Technology, Hanoi University of Science and
Technology, 1 Dai Co Viet, Hanoi, Vietnam
e-mail: khanhtd@soict.hut.edu.vn

326 C. Lynch et al.

Keywords Theorem proving · SAT · Superposition

1 Introduction

Given the outstanding efficiency of DPLL-based SAT solvers [7, 8], substantial
research has centered around ways to utilize SAT solvers for first order logic theorem
proving. Toward this pursuit, some have lifted the DPLL procedure to first order
logic in the form of the Model Evolution calculus [5]. Others have used SAT solvers
as auxiliary tools to determine the satisfiability of certain fragments of first order
logic via propositional encodings [13, 18, 28]. A third use of SAT solvers in first order
logic theorem proving has been in saturation-based instance generation methods
which repeatedly call upon a SAT solver to find so-called conflicts between clauses
and use instance generation inferences to resolve these conflicts [15, 17].

Another well known line of research in first order logic theorem proving began
with Robinson’s landmark paper [26] which describes his Resolution principle and
unification. Since then, many refinements have been made, e.g. Ordered Resolution
and Semantic Resolution [1, 16, 18]. Recent implementations of Resolution have
been shown to be the top performer in the CASC competition [29]. A key benefit
of Resolution is the ability to restrict the search space with the use of Ordered
Resolution. Here, Resolution inferences are only necessary on maximal literals.
Selection rules can also be applied which also restrict the search space. Ordered
Resolution can be efficient in practice, because it tends to produce literals in the
conclusion of an inference that are smaller than in the premises. Ordered Resolution
is known to be complete for first order logic (see e.g., [2]). Superposition [24] is
an improvement of Resolution to deal efficiently with the equality predicate. An
important tool in Superposition is the use of term orderings for restricting the num-
ber of inferences. Superposition is complete for first order logic with equality (see
e.g., [24]). There exist mature Automated Theorem Provers (ATPs), SPASS [30],
Vampire [25], E [27] to name a few, implementing Resolution and Superposition.
However, Resolution and Superposition ATPs are believed to not be as fast as SAT
solvers on propositional problems having complex boolean structures.

Deciding the satisfiability of a formula with respect to a background first order
theory is being recognized as crucial for many computer science problems including
verification, scheduling, optimization, etc. There exist specialized reasoning methods
for many background theories of interest, such as lists, arrays, records, integer-
offsets, and linear arithmetic, etc., which go under the name of Satisfiability Modulo
Theories (SMT) solvers, but they used to be limited to the particular class of
first order formulae without quantifiers. Finding good heuristics for lifting SMT
techniques from ground to nonground formulae is a hot line of current and future
research. For instance [4, 10] use heuristics based on the instantiation method of
the theorem prover Simplify [14]. However those heuristics are incomplete, i.e. they
may fail to prove unsatisfiability of formulae. Another problem is that instantiation-
based heuristics usually diverge or are forced to terminate with unknown result
when dealing with satisfiable formulae. This is so because they instantiate universally
quantified variables, but the set of instantiating terms is infinite most of the time.

In this paper we are concerned with the problem of checking satisfiability of
nonground formulae in First Order Logic with Equality. We propose a novel method,

SMELS: Satisfiability Modulo Equality with Lazy Superposition 327

that we call SMELS—Satisfiability Modulo Equality with Lazy Superposition for the
satisfiability problem of nonground formulae in an efficient and complete way. Our
method combines the best of the two worlds SAT solvers and ATPs: efficiency for
ground problems; and completeness for nonground problems.

In SMELS, the input formula is first converted into CNF as in traditional first
order logic theorem provers. Then the set of clauses is partitioned into two subsets:
a set of ground clauses and a set of nonground clauses. Then we run a DPLL
solver to build a partial model, i.e. a set of ground literals, along with justifications
of elements in the model. The idea of justification is a generalization of what is
done in clause learning in SAT solvers. The partial model is then reduced by the
equational theory, and justifications of elements in the reduced partial model are
also calculated. The reduced partial model is next checked for consistency along
with the nonground clauses using a Superposition procedure. To ensure soundness
of SMELS, the Superposition procedure has an inference rule called Justified Super-
position, involving a literal from the reduced partial model and a nonground clause,
taking into account the justification of the literal. In addition, the procedure also
has usual Superposition inferences among nonground clauses. Any ground clauses
resulting from the Superposition procedure are provided to the DPLL solver. We do
not perform any Superposition inferences among ground clauses because they are
already reduced.

We prove the completeness of SMELS, using a nontrivial modification of Bach-
mair and Ganzinger’s model generation technique. In particular, completeness of
SMELS implies that one of the following three possibilities will happen when
applying our calculus: (i) the original set of clauses is satisfiable, and after a finite
number of steps the process will halt, giving a ground model modulo the background
theory; or (ii) the original set of clauses is satisfiable, and in the limit, there is a
set of clauses for which we can build a model; or (iii) the original set of clauses
is unsatisfiable, and after a finite number of steps the process will halt with an
unsatisfiable set of ground clauses.

We implement SMELS based on the aforementioned ideas. We reuse MiniSat
2.2.0 (cf. http://minisat.se) as the SAT Solver and SPASS 3.7 (cf. http://www.
spass-prover.org) as the Resolution Theorem Prover, since they are both among the
best in their respective categories, and they are still being maintained and improved.
We experiment SMELS with the TPTP v4.0.1 benchmark. Overall, SMELS performs
fairly well in solving problems. The performance in successful cases is acceptable
compared to other theorem provers such as SPASS, iProver and Darwin. For some
a subclass of problems, SMELS succeeds in a short time while SPASS, iProver and
Darwin time out.

1.1 Related Work

Notable in using SAT solvers for theorem proving are the works by Lee and Plaisted
[21] who proposes using Davis–Putnam procedure to speed up first order theorem
proving, Hooker (et al.) who developed the first complete Partial Instantiation
method for the full first order logic called Primal PI [17] and Ganzinger and Korovin
who among many other contributions formalized and proved the completeness
of the instance generation inference rule, Inst-Gen, and the extension SInst-Gen
(Inst-Gen with semantic selection and hyper inferences) in [15]. The efficiency of

http://minisat.se
http://www.spass-prover.org
http://www.spass-prover.org

328 C. Lynch et al.

saturation-based instance generation methods is demonstrated by Korovin’s imple-
mentation called iProver [19]. Instantiation theorem proving based on [15] also uses
a SAT solver at the bottom to handle ground clauses resulting from instantiations.
However neither Inst-Gen nor SInst-Gen of [15] uses an ordering to limit the
search space. Instead, SInst-Gen utilizes semantic selection of clauses to be used for
instantiations. Section 6 provides a comparative analysis of SMELS and iProver.

The Model Evolution calculus [5] provides another theorem proving method
based on model finding. It is a lifted version of the DPLL method to first order
logic. From the theoretical point of view, it is not easy to compare Resolution
theorem proving with theorem proving based on the Model Evolution calculus. On
some problems Resolution methods are better, and on some others Model Evolution
methods are better. On satisfiable nonground problems, we suspect that methods
like [5] perform better as they are designed to find models. In Section 6, we give the
result of comparative experimentation between SMELS and Darwin.

In [22], the authors give a new inference system for first order logic, SIG- Res,
which combines together SInst-Gen [15] and Ordered Resolution [2] into a single
inference system. Given a set F of first order clauses two sets of clauses P and R
are created such that P ∪ R = F. Under SIG-Res, P is saturated by SInst-Gen, and
Resolution is applied to pairs of clauses in F where at least one of the clauses is in R.

Resolution and Superposition theorem provers like SPASS [30] and Vampire
[25] use splitting to improve efficiency. Vampire uses explicit propositional symbols
to keep track of splitting while splitting in SPASS relies on labels to keep track
of the split levels. Since SMELS does not perform any ground inferences in the
Superposition procedure but delegates them to an efficient SAT solver along with a
simplification engine instead, we believe that it can be better than existing Resolution
and Superposition theorem provers on large problems containing mostly ground
clauses. If the clauses are mostly nonground, traditional methods would probably
work better. We compare the performance of SMELS and SPASS in Section 6.

SMT solvers such as [4, 10], are quite effective and efficient on certain classes of
problems. SMT solvers are incomplete on nonground problems, unlike SMELOn,
S., satisfiable nonground formulae, SMELS may terminate with the result satisfiable
while SMT solvers diverge or are forced to halt with the result unknown. However
as soon as efficiency is the matter of consideration, SMT solvers outperform almost
every other tools.

SMELS exhibits some similarities with the DPLL(�) calculus of de Moura and
Bjørner [9]. Basically the DPLL(�) calculus combines the DPLL(T) rules of abstract
DPLL modulo theories and some other rules which serve as the interface for
Superposition rules. In DPLL(�) ground equational reasoning is again handled
by Superposition rules. In practice DPLL(�) can be enhanced by integrating a
Congruence Closure algorithm to reduce literals before resorting to Superposition
rules, as in SMELNotice, S., that the authors of the DPLL(�) calculus have not
proven the completeness of the enhanced version. In this respect, SMELS can be
viewed as an optimized strategy of DPLL(�), which is complete for first order logic
with equality.

In [6], the authors propose an approach that decomposes the formula in such a way
that its definitional part, including the theory, can be compiled by a Superposition
theorem prover, and the residual problem can be decided by an SMT-solver. The
resulting decision by stages mechanism may inherit the complementary strengths

SMELS: Satisfiability Modulo Equality with Lazy Superposition 329

of first order provers and SMT-solvers, as in SMELHowever, S., the decision
mechanism of [6] can be classified as an eager method while SMELS is rather a lazy
one. The compilation phase of [6] must be done once and for all until a weaker form
of saturation is reached. It is important to mention that this method does not apply to
all finitely definitional first order theories, meaning that the procedure is not always
complete. To the best of our knowledge, the method of [6] has not been implemented
and experimented with so it is difficult to compare it to SMELS.

The theorem prover haRVey [11] combines a Boolean solver (SAT or BDD)
with the equation theorem prover E [27]. The integration is loose, compared to
SMELS, because resulting non-unit ground clauses are handled by E, and not by
the simplification engine like in SMELS; therefore inferences among ground clauses
are allowed, in contrast with SMELS.

1.2 Structure of the Paper

The paper is structured as follows. Section 2 introduces some background notions.
Section 3 presents a complete inference system, called SLR, for first order logic.
We give this inference system to illustrate some ideas in a simpler setting, and
to relate our work to some previous work. Section 4 presents SMELS, which is a
complete calculus for first order logic with equality. In Section 5, we give the detailed
completeness proof of SMELWe, S., do not prove the completeness of SLR as it is
a special case of SMELS. Section 6 describes the implementation of SMELIn, S.,
Section 7 we report on experimental results of SMELS. Finally, Section 8 concludes
and presents some future work.

2 Preliminaries

We assume the usual rewriting definitions such as term, position, substitution, unifier,
ordering, etc..., as defined in [12]. Atoms are represented by symbols A, B, literals by
L. An atom is also called a positive literal, and the negation of an atom is a negative
literal. Equations will be written as s = t, disequations as s �= t. The formula s �� t is
either s = t or s �= t. Given a set of ground literals M, then M+ (resp. M−) represents
the positive (resp. negative) literals in M. A clause is a disjunction of literals, thought
of as a multiset. If L is A (resp. ¬A) then ¬L is ¬A (resp. A).

Given a set of clauses S, let g(S) (resp. v(S)) be the set of ground (resp.
nonground) clauses in S. Define Gr(S) as the set of all ground instances of S. For
a clause C, let g(C) (resp. v(C)) be the multiset of ground (resp. nonground) literals
in C. Let GL(S) be the set of all ground literals in S.

We will be working on ground instances of clauses, called closures [3]. If C is a
clause and θ is a ground substitution, we write C · θ to indicate the θ instance of C. A
closure represents a ground instance, but makes it clear which is the original clause
and which is the grounding substitution. The clause C is the skeleton of the closure,
and θ is the substitution. When it is convenient, we will treat the closure C · θ as the
instantiated clause Cθ .

If ≺ is a (strict) ordering then its associated quasiordering is denoted with �, and
inversely if � is a quasiordering then ≺ denotes its associated ordering. We define a
quasiordering �g on closures, so that for clauses C and D and substitutions σ and θ ,

330 C. Lynch et al.

C · σ �g D · θ if (1) C and D are both ground, or (2) C and D are both nonground,
or (3) C is ground and D is nonground. Define ≺r to be a ground total reduction
ordering on terms. The ordering ≺r is extended to equations by considering them as
multisets of terms, extended to disequations in such a way that a disequation s �= t
is larger than an equation s = u if s �r t and s �r u, and then extended to clauses by
considering them as multisets of literals. The ordering ≺r is extended to closures so
that C · σ ≺r D · θ if Cσ ≺r Dθ . Next we define an ordering ≺i, called an instance
ordering, defined on closures to be the lexicographic combination of ≺g and ≺r. So,
to compare two closures in the instance ordering, first check if one skeleton is ground
and the other is nonground, otherwise apply the substitution and compare using the
reduction ordering.

An interpretation M is defined as a set of ground equations. For an interpretation
M and an equation s = t, we write M |= s = t if s = t is a logical consequence of M.
We write M |= s �= t if M �|= s = t. Given an interpretation M and a ground clause C,
M |= C if and only if M |= L for some L in C. Given a set of ground clauses S, an
interpretation M is a model of S if M |= C for all C in S. If T is a set of literals, we
say that T is satisf iable if T has a model.

For an interpretation M and a literal L, let ML = {L′ ∈ M | L′ �r L}. We write
M |=�r L if ML |= L. Let E be a set of equations ordered wrt. �r and s = t be an
equation. We say that s = t has a rewrite proof using E if s and t have the same
normal forms with respect to E, and we will write E � s = t. For an interpretation
M and an equation s = t, we write M � s = t if there is a set of equations E ⊆ M,
ordered wrt. �r, such that E � s = t.

For a clause C, M |=�r C (resp. M � C) if M |=�r L (resp. M � L) for some L ∈ C.
For a set of ground clauses S, we write M |=�r S (resp. M � S) if M |=�r C (resp.
M � C) for all C ∈ S. A set of literals T is consistent with respect to |=�r if there is no
disequation s �= t ∈ T such that T |=�r s = t, similarly T is consistent with respect to �
if there is no disequation s �= t ∈ T such that T � s = t. For a reduction ordering ≺r,
a given interpretation M and an equation s = t, M |= s = t and M � s = t and M |=�r

s = t are not equivalent in general. For example, consider M = {a = b , a = c}. If �r

is an ordering such that b �r a and c �r a, then M |= b = c but M �|=�r b = c and
M �� b = c.

3 Resolution Inference System

We give a Resolution inference system for first order logic without equality. This
can just be viewed as a special case of the Superposition inference system that will
be given later. However, we give this inference system to illustrate some ideas in a
simpler setting, and to relate our work to some previous work.

In this paper, we will represent a truth assignment GM as the set of ground
literals made true by GM. GM is a satisfying truth assignment for a set of clauses
if GM makes all its clauses true. We assume that we have a set of clauses
S, where a SAT procedure has been run on g(S) to produce a satisfying truth
assignment GM of g(S). SAT procedures also construct justification functions
from which lemmas are constructed. Justification functions are formally defined as
follows.

SMELS: Satisfiability Modulo Equality with Lazy Superposition 331

Definition 1 Given a set of ground clauses S, we define cons(S) as the set of ground
literals implied by S. Let GM be a truth assignment. Let G be a set of ground clauses.
A function

j : cons(GM) → P(GM)

is called an (GM, G)-justif ication function if

L ∈ cons(G ∪ j(L))

for all L in cons(GM).
If j(L) = {L}, then L is said to be self-justif ied. If all literals in cons(GM) are

self-justified, then j is a self-justif ication function.

Let us briefly explain the relevance of justification functions. Our aim is to check
consistency of the truth assignment GM along with the set of nonground clauses v(S).
However, the literals in GM may not be consequences of S, and anything derived
from GM and v(S) using Resolution inferences may not be a consequence of S. Our
solution to this problem is to consider the justifications of the literals in GM, that is
for a given literal L ∈ GM, ¬ j(L) ∨ L is a consequence of the input set of clauses
S. Given a set of ground clauses G and a truth assignment GM there is always a
self-justification function, since GM is always a consequence of GM.

Example 1 Let G = {p,¬p ∨ q, r ∨ ¬s,¬q ∨ s ∨ ¬t}. Then GM = {p, q,¬s,¬t} is a
satisfying truth assignment of G. Let j1 be the function such that j1(p) = ∅, j1(q) = ∅,
j1(¬s) = {¬s}, and j1(¬t) = {¬s}. Then j1 is a justification function. But there are
many justification functions. For example, let j2 be identical to j1 except that j2(¬t) =
{p,¬s}. Then j2 is also a justification function. There is also the self-justification
function j3 such that j3(L) = {L} for all L in GM.

The Resolution inference system makes use of an instance ordering ≺i defined on
closures of predicative clauses, which is the lexicographic combination of ≺g and ≺r

defined on predicative clauses, as in Section 2 for equational clauses.
We need the following notion in the Resolution inference system.

Definition 2 Let C be a clause containing a literal L, and let σ be a substitution, we
say that L is σ -var-maximal in C if L ∈ v(C) and there is no literal L′ ∈ C such that
L′ · σ �i L · σ .

For completeness of our Resolution inference system, we need the following
assumption.

Assumption 1 Each satisfying truth assignment GM of g(S) has been extended to the
atoms of GL(S) in any way such that it is def ined on all literals of GL(S).

The (GM, g(S))-justif ication function j must be extended along with the extension
of the model.

A simple way to extend the justification function is to make all the additional literals
self-justified.

332 C. Lynch et al.

We call our Resolution inference system SLR, Satisfiability with Lazy Resolution.
It consists of the inference rules in Fig. 1. The Nonground Resolution and Factoring
inference rules differ from the usual Ordered Resolution and Factoring inference
rules in two ways: they are only allowed on nonground clauses; and they are not
performed on the maximal literals of the premises, but instead on the maximal
nonground literals of the premises. The Justified Resolution rule involves one
nonground premise C with maximal nonground literal L. It produces a new clause
D, where a ground instance of L is replaced by its justification. This is similar to
the process in SAT procedures where a lemma is created. The Justified Resolution
inference rule could be viewed as a Resolution inference between C and a new clause
C′ = Lσ ∨ ¬ j(Lσ). However, C′ does not need to be explicitly created. By definition
of justification function, C′ is implied by g(S).

In the case where the literal L is self-justified, we call the inference Self-justif ied
Resolution. This corresponds to an inference with Lσ ∨ ¬Lσ , a tautology. The
inference then effectively just applies σ to its premise. This is a proper instantiation,
because L must be nonground since it is in v(C). Therefore, SLR with a self-
justification function can be viewed as a combination of an Instantiation-based
inference system such as InstGen [15] with Ordered Resolution, the first such
combination we are aware of.

In the inference rules, we have not considered selection functions. Our complete-
ness results can be adapted to deal with selection rules, but we choose to present just
the ordered case to make the presentation as simple as possible.

Let us take an example to illustrate how SLR works.

Example 2 Let S0 contain the following clauses:

p

¬p ∨ q

r(a) ∨ ¬s

¬q ∨ s ∨ ¬t(b)

¬r(x) ∨ ¬s

t(y)

Fig. 1 Inference rules of SLR

SMELS: Satisfiability Modulo Equality with Lazy Superposition 333

Table 1 SLR execution i g(Si) GMi v(Si) g(Si+1) \ g(Si)

0 p p{} ¬r(x) ∨ ¬s s
¬p ∨ q q{} t(y)

r(a) ∨ ¬s ¬s{¬s}
¬q ∨ s ∨ ¬t(b) ¬t(b){¬s}

1 p p{} ¬r(x) ∨ ¬s ¬s
¬p ∨ q q{} t(y)

r(a) ∨ ¬s s{}
¬q ∨ s ∨ ¬t(b) r(a){}

2 p ¬r(x) ∨ ¬s
¬p ∨ q t(y)

r(a) ∨ ¬s
¬q ∨ s ∨ ¬t(b)

s
¬s

Table 1 recapitulates the execution of SLR on S0. By running a DPLL procedure
g(S0), we obtain a model GM0. The Resolution procedure is next applied on GM0 ∪
v(S0). We have the following Justif ied Resolution inference

t(y)

s

The new set of clauses obtained is noted S1. The new ground clauses resulting from
the Resolution procedure are those in the line 0 and the column g(Si+1) \ g(Si) of
Table 1. Again, we run a DPLL procedure on g(S1), then the Resolution procedure
is applied on GM1 ∪ v(S1). We have the following Justif ied Resolution inference

¬r(x) ∨ ¬s
¬s

The new set of clauses obtained is noted S2. The new ground clauses resulting
from the Resolution procedure are in the line 1 and the column g(Si+1) \ g(Si).
Then DPLL outputs unsatisfiable running on the new set of clauses g(S2) because
it contains both s and ¬s.

4 Superposition Inference System

Now we extend our inference system to first order logic with equality.

Definition 3 A set M of ground equations and disequations is called reduced if M
never contains a literal of the form L[s] along with another literal of the form s = t,
where s �r t.

A set M of ground equations and disequations M is called left-reduced if there
does not exist u[s] �� v and s = t in M with u[s] �r v and s �r t.

If M is left-reduced then M+ is a convergent rewrite system.

334 C. Lynch et al.

Again, we assume a set of clauses S, a satisfying truth assignment GM extended
so that it is defined on all atoms of GL(S), and a (GM, g(S)) justification function,
as in Assumption 1. The only difference between here and the nonequational case is
that we now assume in addition the following.

Assumption 2 GM is reduced.

The inference rules for SMELS, Superposition Modulo Equality with Lazy Su-
perposition, are given in Fig. 2. The ideas are all the same as in the nonequational
case. The inference rules are like the usual Superposition rules on nonground
clauses, except that the ordering only involves the nonground literals. The Justified
Superposition rules can be viewed as a Superposition between a nonground clause
and an implicit ground clause.

Let S be a set of clauses. Let GM be a reduced satisfying truth assignment of
g(S), extended so that it is defined on GL(S). Let j be a (GM, g(S)) justification
function. A SMELS inference system is parameterized by GM and j. So we will refer
to SMELS(GM, j) to indicate what the parameters are. In an actual implementation
of this inference system when an inference rule adds a new ground clause, that clause
will be added to g(S), and a new satisfying truth assignment GM may be created.
Therefore, the parameters of SMELS may change as inferences are performed.

A clause C is redundant with respect to a set of clauses S if C is properly subsumed
by a clause in S or if the following conditions hold for every ground instance C · θ

of C:

1. there is a subset E of Gr(S), where E is a set of equations; and
2. all members of E are smaller than C · θ with respect to both orderings ≺i and ≺r;

and
3. there is a ground instance D · σ such that either D · σ is in Gr(S) or D · σ is a

tautology; and

Fig. 2 Inference rules of SMELS

SMELS: Satisfiability Modulo Equality with Lazy Superposition 335

4. D · σ is smaller than C · θ with respect to both orderings ≺i and ≺r; and
5. for every literal Lσ in Dσ , there is a literal L′θ in Cθ such that Lσ and L′θ are

equivalent modulo E and L′ · θ is larger or equal to L · σ with respect to both
orderings ≺i and ≺r.

It is clear that our definition of redundant clauses applies to usual redundancy
elimination techniques such as subsumption, tautology deletion. Our definition
covers demodulation as well. In the definition, C would be the clause before it is
demodulated, and C · θ is a ground instance of C. D would be a ground instance after
C is demodulated, and E would contain the equation used to demodulate. It remains
to make sure that demodulation satisfies property 4 of the definition, that is D · σ is
smaller than or equal to C · θ with respect to both orderings ≺i and ≺r. It is easy to see
that D · σ is smaller than or equal to C · θ with respect to the reduction ordering ≺r.
For the instance ordering ≺i, we know that the equation used to demodulate could
not introduce a new variable, otherwise it would not have a right side smaller than
the left side, so that means that D is ground whenever C is. In other words, D · σ is
smaller than or equal to C · θ with respect to the instance ordering ≺i.

An inference is said to be redundant w.r.t. S if one of its premises is redundant
w.r.t. S, or its conclusion is redundant w.r.t. S, or its conclusion is already present in
S. We say that S is saturated with respect to SMELS if all SMELS(GM, j) inferences
are redundant w.r.t. S, for some satisfying truth assignment GM and justification
function j.

We define a SMELS derivation as a sequence of triples of the form

(S0, G0, j0), (S1, G1, j1), · · ·
where each Si is a set of clauses, each Gi is a truth assignment defined over GL(Si)

such that Gi |= g(Si), and each ji is a (Gi, g(Si)) justification function. Furthermore,
one of the following is true of each Si+1

1. Si+1 is formed by adding the conclusion of a SMELS(GM, ji) inference to Si, or
2. Si+1 is formed by removing a redundant clause from Si, or
3. Si+1 is formed by removing a ground clause C that is implied by g(Si) \ {C}.

We have assumed the existence of one satisfying truth assignment of the set of
ground clauses whenever it is satisfiable. This is trivial if the derivation is finite.
If the derivation is infinite, then ground clauses are added infinitely. We need to
ensure that there are some truth values for the ground literals that occur infinitely
often together, so that we can assume the existence of a single satisfying truth
assignment. This motivates the following definitions of persistence, and fairness for
infinite derivations.

Given a SMELS derivation (S0, G0, j0), (S1, G1, j1), · · · , we say that a clause C is
persistent if C ∈ ⋃

i≥0
⋂

j≥i S j. This is the usual definition of persistent clauses. If L
is a ground literal, and M is a set of ground literals, we say that the pair (L, M) is
persistent if {(Si, Gi, ji) | L ∈ Gi, ji(L) = M} is infinite. This means that the ground
literal occurs infinitely often in the derivation with the same justification.

A Nonground Superposition, Equality Resolution, or Equality Factoring infer-
ence is persistent in a SMELS derivation if its premises are persistent. A Justified
Superposition Into derivation is persistent if its premise is persistent, and the pair
(s = t, j(s = t)) is persistent. A Justified Superposition From derivation is persistent
if its premise is persistent, and the pair (u �� v, j(u �� v)) is persistent.

336 C. Lynch et al.

T
ab

le
2

SM
E

L
S

ex
ec

ut
io

n

i
g(

S i
)

M
i

G
M

i
v
(S

i)
g(

S i
+1

)
\g

(S
i)

0
p(

a,
b

)
=

p 1
p(

a,
b

)
=

p 1
{}

p(
a,

b
)
=

p 2
{p

1
=

p 2
}

p(
x 1

,
y 1

)
�=

p(
x 2

,
y 2

)
∨

x 1
=

x 2
p 1

�=
p 2

∨a
=

c
p(

c,
d)

=
p 2

p(
c,

d)
=

p 2
{}

p(
c,

d)
=

p 2
{}

p 1
�=

p 2
∨

p 2
�=

p 3
∨a

=
e

p(
e,

f)
=

p 3
p(

e,
f)

=
p 3

{}
p(

e,
f)

=
p 3

{}
p 1

=
p 2

∨
p 1

=
p 3

p 1
=

p 2
{p

1
=

p 2
}

p 1
=

p 2
{p

1
=

p 2
}

a
�=

c
a

�=
c{}

a
�=

c{}
a

�=
e

a
�=

e{}
a

�=
e{}

1
p(

a,
b

)
=

p 1
p(

a,
b

)
=

p 1
{}

p(
a,

b
)
=

p 2
{p

1
=

p 2
}

p(
x 1

,
y 1

)
�=

p(
x 2

,
y 2

)
∨

x 1
=

x 2
a

=
e

p(
c,

d)
=

p 2
p(

c,
d)

=
p 2

{}
p(

c,
d)

=
p 2

{}
p 1

�=
p 2

∨
p 2

�=
p(

x 2
,

y 2
)
∨a

=
x 2

p(
e,

f)
=

p 3
p(

e,
f)

=
p 3

{}
p(

e,
f)

=
p 3

{}
p 2

�=
p(

x 2
,

y 2
)
∨c

=
x 2

p 1
=

p 2
∨

p 1
=

p 3
p 1

=
p 3

{}
p 1

=
p 3

{}
p 3

�=
p(

x 2
,

y 2
)
∨e

=
x 2

a
�=

c
a

�=
c{}

a
�=

c{}
a

�=
e

a
�=

e{}
a

�=
e{}

p 1
�=

p 2
∨a

=
c

p 1
�=

p 2
{}

p 3
�=

p 2
{}

p 1
�=

p 2
∨

p 2
�=

p 3
∨a

=
e

2
p(

a,
b

)
=

p 1
p(

x 1
,

y 1
)
�=

p(
x 2

,
y 2

)
∨

x 1
=

x 2
p(

c,
d)

=
p 2

p 1
�=

p 2
∨

p 2
�=

p(
x 2

,
y 2

)
∨a

=
x 2

p(
e,

f)
=

p 3
p 2

�=
p(

x 2
,

y 2
)
∨c

=
x 2

p 1
=

p 2
∨

p 1
=

p 3
p 3

�=
p(

x 2
,

y 2
)
∨e

=
x 2

a
�=

c
p 3

�=
p(

x 2
,

y 2
)
∨a

=
x 2

a
�=

e
p 1

�=
p 2

∨a
=

c
p 1

�=
p 2

∨
p 2

�=
p 3

∨a
=

e
a

=
e

SMELS: Satisfiability Modulo Equality with Lazy Superposition 337

A SMELS derivation is fair if for every persistent inference there is some i ≥ 0
such that this inference is redundant w.r.t. Si, and there exist an enumeration of all
positive literals A1, A2, · · · and an n such that for all m ≥ n, Ai ∈ jm(A j) implies that
i < j. In this definition, we call n a justif ication stabilizer of the derivation. This last
condition ensures that we will not continually add new literals and use those literals
to justify previous literals, which may create a non-well-founded chain that could
destroy completeness.

Let us take an example to see how SMELS works.

Example 3 Let S0 contain the following clauses:

p(a, b) = p1

p(c, d) = p2

p(e, f) = p3

p1 = p2 ∨ p1 = p3

a �= c

a �= e

p(x1, y1) �= p(x2, y2) ∨ x1 = x2

By running a DPLL procedure g(S0), we obtain a model M0. Suppose that the DPLL
engine finds a model M0, then the model M0 is reduced to the model GM0. Now
the Superposition procedure is applied on GM0 ∪ v(S0). For instance, we have the
following Justif ied Superposition Into inference

p(x1, y1) �= p(x2, y2) ∨ x1 = x2

p1 �= p2 ∨ p2 �= p(x2, y2) ∨ a = x2

where the equation p(a, b) = p2 in GM0 is used, and its justification is p1 = p2.
After an exhaustive application of inference rules and redundancy deletion, we
obtain a new set of clauses, noted S1. The new ground clauses resulting from the
Superposition procedure are those in the line 0 and the column g(Si+1) \ g(Si) of
Table 2. Again, we run the DPLL procedure and the reduction algorithm on g(S1),
then the Superposition procedure is applied on GM1 ∪ v(S1). The new set of clauses
obtained is noted S2. The new ground clauses resulting from the Superposition
procedure are in the line 1 and the column g(Si+1) \ g(Si). Then DPLL outputs
unsatisfiable running on the new set of clauses g(S2) because it contains both a = e
and a �= e.

5 Completeness

We will show that if S is saturated with respect to SMELS and does not contain the
empty clause then there is a model M of S with GM+ ⊆ M. This shows that if the
inference rules are applied fairly, then one of the following three things will happen.

1. The original set of clauses is satisfiable, and after a finite number of steps the
process will halt with a set of clauses S and a satisfying truth assignment GM of
g(S) such that GM+ ∪ v(S) |= S.

338 C. Lynch et al.

2. The original set of clauses is satisfiable, and in the limit, there is a set of clauses
S and a satisfying truth assignment GM of g(S) such that GM+ ∪ v(S) |= S.

3. The original set of clauses is unsatisfiable, and after a finite number of steps the
process will halt with a set of clauses S such that g(S) is unsatisfiable.

The first item is the most interesting. Instantiation methods based on E-matching
[14] do not have this property, because they instantiate universally quantified
variables, and it is never known when it is safe to stop instantiating. Of course,
our inference system is only useful if the first item will happen frequently, and we
suspect that it will, because of the orderings. In this case, we can think of v(S) as
representing a theory, and then GM is actually a satisfying truth assignment of g(S)

modulo the theory v(S). This is useful, because the entire model M cannot always be
represented with a finite number of ground clauses. In the case of the second item
above, we consider the limit of the saturation process. In this case, the satisfying truth
assignment GM referred to is a limit of the satisfying truth assignments constructed
during the saturation process.

For the completeness proof, we build a model as in Bachmair and Ganzinger’s
model construction process. However, our model is more complicated because of
the satisfying truth assignment GM. We construct a model of v(S), which must be
consistent (wrt. |=�r) with GM. Let Gr(v(S)) be the set of all ground instances of
v(S). As usual, we will create an interpretation M. But M will be created in such a
way that M |=�r S which implies that M |= S. Informally, the model is constructed
inductively on the clsures of Gr(v(S)), using the ordering ≺i. The idea of using ≺i is
that the inference system takes place over nonground clauses, but the completeness
proof works over ground instances of those clauses. In order for the ground inference
to be able to be lifted, we need to remember whether the clause it was an instance of
was ground or not.

Definition 4 Let S be a set of nonground clauses and GM be a satisfying truth
assignment of g(S). For a given ground closure C · σ of the form (� ∨ s = t) · σ in
Gr(v(S)), define IC·σ = {(s = t)σ } if and only if all the following conditions hold:

1. (s = t) · σ is maximal in C · σ wrt. �i,
2. M≺iC·σ �|=�r Cσ ,
3. there is no u �= v ∈ GM− such that M≺iC·σ ∪ (s = t)σ |=�r u = v,
4. (s = t)σ is left irreducible by M≺iC·σ , and
5. � does not contain an equation s′ = t′ such that M≺iC·σ |=�r (s = s′)σ implies

M≺iC·σ |=�r (t = t′)σ ,

where M≺iC·σ = ⋃
D·θ≺iC·σ∧D·θ∈Gr(v(S)) ID·θ ∪ GM+; otherwise IC·σ = ∅. We say that

C · σ produces (s = t)σ when IC·σ = {(s = t)σ }, and C · σ is called a productive
closure.

Definition 5 Define MC·σ = M≺iC·σ ∪ IC·σ .
Define M∞ = ⋃

C·σ∈Gr(v(S)) MC·σ .

Let us compare this definition with the usual definition in Bachmair and
Ganzinger’s model construction process. The first difference from the usual com-
pleteness proof is that we build a model using |=�r instead of |=. Recall that in
SMELS we begin with a model of the ground clauses, and we extend this to a model

SMELS: Satisfiability Modulo Equality with Lazy Superposition 339

of all the nonground clauses. Therefore the model construction is only defined over
the nonground clauses. The second difference is that we begin our construction using
GM+ instead of the empty set as is normally done. The third difference is that
whenever we want to add an equation to the model, we can only add it if the model
is consistent with GM−. As a consequence, the completeness proof in our case is
more difficult than usual. One of the most difficult tasks is to prove the confluence
of the model constructed. In the usual model construction it is trivial, as a result of
the fact that only reduced equations are added to the model. Here, it is not so simple.
It is true that we only add reduced literals to the model. So literals added during
the model construction process can be assumed to be reduced on the left-hand side.
Equations in GM+ are reduced by GM+ by definition. However, it is possible that
we may add an equation during the model construction process that reduces the left
hand side of an equation from GM+. Therefore, the model we are constructing may
not be fully reduced. But by saturation, we can show that in the end the model will be
confluent. As in usual completeness proof, the confluence of the model constructed
is the key to prove completeness of SMELS.

Lemma 1 Let C ≡ � ∨ u �� v and D be ground instances in Gr(v(S)) with D �i C.
Then MC |=�r u = v if and only if MD |=�r u = v if and only if M∞ |=�r u = v.

Proof If MC |=�r u = v then MD |=�r u = v and M∞ |=�r u = v because MC ⊆
MD ⊆ M∞.

On the other hand, assume that MC �|=�r u = v, i.e. u = v is not implied by smaller
equations in MC. We distinguish two cases, depending whether u �� v is a closure
with ground skeleton or nonground skeleton:

1. u �� v has a ground skeleton. Remember that the satisfying truth assignment GM
is extended to ground literals in nonground clauses in an arbitrary way. Then
either GM |= u = v or GM |= u �= v. Since GM is reduced, GM |= u = v implies
that GM+ |=�r u = v, and hence MC |=�r u = v, a contradiction. If GM |= u �= v

then GM+ �|=�r u = v; therefore MD �|=�r u = v and M∞ �|=�r u = v.
2. u �� v has a nonground skeleton. If s = t is an equation in M∞ \ MC, then we

know that s = t �i u �� v. Therefore MD �|=�r u = v and M∞ �|=�r u = v.

In both cases, if MC �|=�r u = v then MD �|=�r u = v and M∞ �|=�r u = v. ��

Lemma 2 If a closure of the form (D ∨ s = t) · σ generates the rule (s = t)σ , then
M∞ �|=�r Dσ .

Proof By definition of model generation we have that M≺i(D∨s=t)·σ �|=�r (D ∨ s = t)σ ,
which implies that M≺i(D∨s=t)·σ �|=�r Dσ . Since (s = t) · σ �i D · σ , we must have that
M(D∨s=t)σ �|=�r Dσ . Then, by Lemma 1 we conclude M∞ �|=�r Dσ . ��

Lemma 3 Let S be a set of clauses and let GM be a satisfying truth assignment of g(S),
def ined on GL(S). Let M∞ be the model constructed from Gr(v(S)). Then M∞ |=�r

j(L), for every literal L in GM and every (GM, g(S))-justif ication function j.

Proof By definition GM |= j(L) for every literal L in GM. We know that GM is
reduced, therefore if s = t is an equation in j(L) then GM |= s = t iff GM+ � s =

340 C. Lynch et al.

t iff M∞ |=�r s = t. Similarly if s �= t is a disequation in j(L) then GM |= s �= t iff
GM �|= s = t iff GM+ �� s = t iff M∞ �|=�r s = t iff M∞ |=�r s �= t. ��

Lemma 4 Let S be saturated with respect to SMELS, and M∞ is the model constructed
from Gr(v(S)). Let A be a ground instance of an equation, and MA = {B ≺r A | B ∈
M∞}, and Gr(v(S))A = {C ∈ Gr(v(S)) | C ≺i A}. Suppose that MA |=�r Gr(v(S))A.
Then MA is conf luent.

Proof We create inductively a subset N of MA using the ordering ≺r. More precisely,
let us define N = ⋃

u=v∈MA Nu=v , where Nu=v is defined as follows:

– if u = v is left-irreducible by N≺ru=v then Nu=v = N≺ru=v ∪ {u = v},
– otherwise Nu=v = N≺ru=v ,

where N≺ru=v = ⋃
u′=v′≺ru=v∧u′=v′∈MA Nu′=v′ .

Since every rule in N is left-irreducible by other rules, N is clearly confluent. So
if we can show that N |= MA then MA and N are logically equivalent, which implies
that MA is also confluent.

Suppose that N �|= MA, then let u0 = v0 be the smallest equation in MA such that
N �|= u0 = v0. So then u0 = v0 must be left reducible by some equation s0 = t0 in N,
because otherwise u0 = v0 would be in N. We consider different cases depending
on whether u0 = v0 and s0 = t0 come from GM+ or are produced in the model
construction process:

1. Both u0 = v0 and s0 = t0 are produced during the model construction. Let u0 =
v0 ≡ (u = v)σ and s0 = t0 ≡ (s = t)σ . Let (C ∨ u = v) · σ and (C′ ∨ s = t) · σ be
the two ground closures producing (u = v)σ and (s = t)σ . Since u0 = v0 is left
reducible by s0 = t0, we have uσ |p ≡ sσ for some position p in uσ . We consider
two possibilities, depending on whether p is a (below) variable position:

Inference. u|p is not a (below) variable position of u. Then consider an
inference Nonground Superposition

C ∨ u[s′]p = v C′ ∨ s = t(
C ∨ C′ ∨ u[t]p = v

)
σ ′

where σ ′ is the most general unifier of s and s′, a ground instance of
(C ∨ C′ ∨ u[t]p = v)σ ′ is (C ∨ C′ ∨ u[t]p = v)σ , and (u[t] = v)σ ≺r

(u[s′] = v)σ . By Lemma 2, we have M∞ �|=�r Cσ and M∞ �|=�r

C′σ . If A ≺i C · σ (resp. A ≺i C′ · σ) then by definition of model
construction MA �|=�r Cσ (resp. MA �|=�r Cσ). Otherwise, it follows
from Lemma 1 that MA �|=�r Cσ (resp. MA �|=�r C′σ). By the hy-
pothesis of the lemma, we know that MA |=�r (C ∨ C′ ∨ u[t] = v)σ .
So we must have that MA |=�r (u[t] = v)σ . To derive a contradic-
tion, we only need to prove that N |= (u[t] = v)σ . This is done by
induction on ≺i. By the hypothesis of the lemma, S is saturated,
therefore the inference is redundant, which means that either one
of the premises is redundant or the conlusion is redundant, or
the conclusion is in the S. Ground instances of the premises are

SMELS: Satisfiability Modulo Equality with Lazy Superposition 341

productive, so they cannot be redundant. Thus either the conlusion
is in S, or it is redundant. We consider the following cases:

(a) (C ∨ C′ ∨ u[t] = v)σ is not redundant:

i. (u[t] = v)σ has been produced. Then N |= (u[t] = v)σ and
we are done. Otherwise this would contradict the minimal-
ity of u0 = v0.

ii. (u[t] = v)σ has not been produced because it is not
maximal. Then (u[t] = v) must be implied by smaller
equations in MA, because otherwise we would have
MA �|=�r (C ∨ C′ ∨ u[t] = v)σ . By the induction hypothe-
sis, all those equations are implied by N, which also means
N |= (u[t] = v)σ .

iii. (u[t] = v)σ is maximal but has not been produced. We
know that MA |=�r (u[t] = v)σ , and therefore M(u[t]=v)σ |=
(u[t] = v)σ , i.e. u[t] = v is implied by smaller equations in
MA. By the induction hypothesis, all those equations are
implied by N, which also means N |= (u[t] = v)σ .

(b) (C ∨ C′ ∨ u[t] = v)σ is redundant. We consider two cases ac-
cording to the definition of redundant clauses.

i. (C ∨ C′ ∨ u[t] = v)σ is properly subsumed by a clause
D in S. Then D must contain u[t] = v, because other-
wise MA �|=�r Dσ , which contradicts the hypothesis of the
lemma. Let D be of the form D′ ∨ u[t] = v. We consider
the following cases:

A. (u[t] = v)σ has been produced. Then N |= (u[t] = v)σ

and we are done.
B. (u[t] = v)σ has not been produced because it is not

maximal. Then (u[t] = v)σ must be implied by smaller
equations in MA, because otherwise we would have
MA �|=�r (D′ ∨ u[t] = v)σ . By the induction hypothesis,
all those equations are implied by N, which also means
N |= (u[t] = v)σ .

C. (u[t] = v)σ is maximal but has not been produced.
We know that MA |=�r (u[t] = v)σ , and therefore
M(u[t]=v)σ |= (u[t] = v)σ , i.e. (u[t] = v)σ is implied by
smaller equations in MA. By the induction hypothesis,
all those equations are implied by N, which also means
N |= (u[t] = v)σ .

ii. There exist a set of equations E ⊆ Gr(S) and a ground
instance D · σ ′ such that

– each equation in E is smaller than (C ∨ C′ ∨ u[t] = v) · σ

wrt. both ≺i and ≺r, and
– D · σ ′ is in Gr(S) or D · σ ′ is a tautology, and
– D · σ ′ is smaller than (C ∨ C′ ∨ u[t] = v) · σ wrt. both ≺i

and ≺r, and

342 C. Lynch et al.

– each literal Lσ ′ in Dσ ′ is equivalent to a literal L′σ in
(C ∨ C′ ∨ u[t] = v)σ modulo E, and L · σ ′ is smaller or
equal to L′ · σ wrt. both ≺i and ≺r.

We claim that there is one equation (u′ = v′)σ ′ in Dσ ′
which is equivalent to (u[t] = v)σ modulo E, and (u′ = v′) ·
σ ′ is smaller than or equal to (u[t] = v) · σ wrt. both ≺i and
≺r. Because otherwise MA �|=�r Dσ ′, which contradicts the
hypothesis of the lemma. By the minimality of u0 = v0, we
must have N |= E. If (u′ = v′) · σ ′ ≺i (u[t] = v) · σ then by
induction hypothesis we also have N |= (u′ = v′)σ ′, which
implies that N |= (u[t] = v)σ . If (u′ = v′) · σ ′ is equal to
(u[t] = v) · σ wrt. both ≺i and ≺r, then D is of the form
D′ ∨ u[t] = v. We now consider the following cases:

A. (u[t] = v)σ has been produced. Then N |= (u[t] = v)σ

and we are done.
B. (u[t] = v)σ has not been produced because it is not

maximal. Then (u[t] = v)σ must be implied by smaller
equations in MA, because otherwise we would have
MA �|=�r D′ ∨ (u[t] = v)σ . By the induction hypothesis,
all those equations are implied by N, which also means
N |= (u[t] = v)σ .

C. (u[t] = v)σ is maximal but has not been produced.
We know that MA |=�r (u[t] = v)σ , and therefore
M(u[t]=v)σ |= (u[t] = v)σ , i.e. (u[t] = v)σ is implied by
smaller equations in MA. By the induction hypothesis,
all those equations are implied by N, which also means
N |= (u[t] = v)σ .

Lifting. u|p is a (below) variable position of u. That is p = p′.p′′ and u|p′ is a
variable x. Let θ be a ground substitution with the same domain as
σ but xθ ≡ xσ [tσ]p′′ and yθ ≡ yσ for all other variable y. Again we
only need to prove N |= (u[t] = v)θ to derive a contradiction. This
can be done in a similar way as above.

2. u0 = v0 is from GM+ and s0 = t0 is produced during the model construction.
Let u0 = v0 ≡ (u = v)σ and s0 = t0 ≡ (s = t)σ . Let (C ∨ s = t) · σ be the ground
closure producing (s = t)σ . Since u0 = v0 is left reducible by s0 = t0, we have
uσ |p ≡ sσ for some position p in uσ . Then consider an inference Justif ied
Superposition From

C ∨ s = t(
C ∨ ¬ j

(
u[s′]p = v

) ∨ u[t]p = v
)
σ ′

where σ ′ is the most general unifier of s and s′, a ground instance of (C ∨
¬ j(u[s′]p = v) ∨ u[t]p = v)σ ′ is (C ∨ ¬ j(u[s′]p = v) ∨ u[t]p = v)σ , and (u[t] =
v)σ ≺r (u[s′] = v)σ . The rest of the proof for this case can be handled as in
previous case.

SMELS: Satisfiability Modulo Equality with Lazy Superposition 343

3. u0 = v0 is produced during the model construction, and s0 = t0 is from GM+.
This is impossible by the definition of model construction.

4. Both u0 = v0 and s0 = t0 are from GM+. This is impossible since GM+ is
reduced.

Summing up N is confluent and so is MA. ��

Lemma 5 Let S be saturated with respect to SMELS and not contain the empty clause.
Let GM be the ground model of g(S), def ined on GL(S). Let M∞ be the model
constructed from Gr(v(S)). Then M∞ |=�r Gr(v(S)).

Proof Assume that there is a smallest ground instance C · σ wrt. �i in Gr(v(S)) such
that M∞ �|=�r Cσ . We will analyze why C · σ has not produced any equation in M∞.
There are several cases to be considered depending on the occurrences of its maximal
term s:

1. Cσ contains the equation s = s. This is impossible since M∞ �|=�r Cσ .
2. Cσ is of the form (D ∨ s �= s)σ . Then consider an inference Eq. Resolution

D ∨ s �= s
D

where D · σ is smaller than C · σ wrt. �i. We have that M∞ �|=�r Dσ . If D · σ

is in Gr(v(S)), then we get a smaller counterexample, which contradicts the
minimality of C · σ . If D has been removed because it is redundant, then we
consider two cases according to the definition of redundant clauses.

(a) D is properly subsumed by a clause D′ in S. Then D′ is a counterexample
that is smaller than C. And we have a contradiction with the minimality of
C · σ .

(b) For every ground instance D · θ , there exist a set of equations E ⊆ Gr(S)

and a ground instance D′ · θ ′ such that

– each equation in E is smaller than D · θ wrt. both ≺i and ≺r, and
– D′ · θ ′ is in Gr(S) or D′ · θ ′ is a tautology, and
– D′ · θ ′ is smaller than D · θ wrt. both ≺i and ≺r, and
– each literal L′θ ′ in D′θ ′ is equivalent to a literal Lθ in Dθ modulo E,

and L′ · θ ′ is smaller or equal to L · θ wrt. both ≺i and ≺r.

If D′ · θ ′ is a tautology then M∞ |=�r D′σ , and hence M∞ |=�r Dσ , which
implies that M∞ |=�r Cσ , a contradiction. Otherwise we have M∞ �|=�r

D′θ ′, and again we get a contradiction with the minimality of C · σ .

3. Cσ is of the form (D ∨ s �= t)σ . Since M∞ �|=�r Cσ , we must have M∞ |=�r

(s = t)σ . By the minimality of C · σ as a counterexample, we have M∞ |=�r

Gr(v(S))(s=t)·σ , which implies that M(s=t)σ∞ |=�r Gr(v(S))(s=t)·σ . By Lemma 4,
M(s=t)σ∞ is confluent. This implies that M∞ |=�r (s = t)σ if and only if M(s=t)σ∞ �
(s = t)σ or (s = t)σ is in M∞. In both cases, sσ must be reducible by some rule

344 C. Lynch et al.

l = r in M∞ (l = r could be (s = t)σ), that is sσ |p ≡ l for some position p in sσ .
We consider two cases:

(a) l = r is in GM+. We consider two possibilities, depending on whether p is
a (below) variable position:

Inference. s|p is not a (below) variable position. Then consider an infer-
ence Justif ied Superposition Into

D ∨ s
[
l′
] �= t

(D ∨ ¬ j(l = r) ∨ s[r] �= t) σ ′

where σ ′ is the most general unifier of l and l′, a ground
instance of (D ∨ ¬ j(l = r) ∨ s[r] �= t)σ ′ is (D ∨ ¬ j(l = r) ∨
s[r] �= t)σ , and (D ∨ ¬ j(l = r) ∨ s[r] �= t) · σ ≺i C · σ . Since
M∞ �|=�r Cσ we have that M∞ �|=�r Dσ . By Lemma 3,
M∞ |=�r j(l = r), or equivalently M∞ �|=�r ¬ j(l = r). There-
fore M∞ �|=�r (D ∨ ¬ j(l = r) ∨ s[r] �= t)σ . Again we consider
two cases depending on whether (D ∨ ¬ j(l = r) ∨ s[r] �= t)σ is
in Gr(v(S)) or redundant. As previously we can show that we
have a contradiction in both cases.

Lifting. s|p is a (below) variable position of s. That is p = p′.p′′ and
s|p′ is a variable x. Let θ be a ground substitution with the
same domain as σ but xθ ≡ xσ [rσ]p′′ and yθ ≡ yσ for all other
variable y. Then we have that C · θ ≺i C · σ and M∞ �|=�r Cθ ,
a contradiction with the minimality of C · σ .

(b) l = r is produced by a closure (D′ ∨ l′ = r′) · θ and l = r ≡ (l′ = r′)θ . We
consider two possibilities, depending on whether p is a (below) variable
position:

Inference. s|p is not a (below) variable position. Then consider an infer-
ence Nonground Superposition

D ∨ s
[
l′′

] �= t D′ ∨ l′ = r′
(
D ∨ D′ ∨ s

[
r′] �= t

)
σ ′

where σ ′ is the most general unifier of l′ and l′′, a ground
instance of (D ∨ D′ ∨ s[r′] �= t)σ ′ is (D ∨ D′ ∨ s[r′] �= t)σ , and
(D ∨ D′ ∨ s[r′] �= t) · σ ≺i C · σ . Also, we have that M∞ �|=�r

Dσ and M∞ �|=�r D′σ . That implies M∞ �|=�r (D ∨ D′ ∨
s[r′] �= t)σ . By the same argument as above, we can derive a
contradiction with the minimality of C · σ .

Lifting. s|p is a (below) variable position of s. That is p = p′.p′′ and
s|p′ is a variable x. Let θ be a ground substitution with the
same domain as σ but xθ ≡ xσ [r′σ]p′′ and yθ ≡ yσ for all other
variable y. Again we can derive a contradiction in a similar
way as above.

SMELS: Satisfiability Modulo Equality with Lazy Superposition 345

4. Cσ is of the form (D ∨ s = t ∨ s′ = t′)σ and (s = t)σ has not been produced
because M≺iC·σ |=�r (s = s′)σ implies M≺iC·σ |=�r (t = t′)σ . Then consider an
inference Eq. Factoring

D ∨ s = t ∨ s′ = t′(
D ∨ t �= t′ ∨ s = t′

)
σ ′

where σ ′ is the most general unifier of s and s′, a ground instance of
(D ∨ t �= t′ ∨ s = t′)σ ′is (D ∨ t �= t′ ∨ s = t′)σ , and (D ∨ t �= t′ ∨ s = t′) · σ ≺i C ·
σ . By Lemma 1, M≺iC·σ |=�r (t = t′)σ implies that M∞ |=�r (t = t′)σ , or equiv-
alently M∞ �|=�r (t �= t′)σ . We also have that M∞ �|=�r (D ∨ s′ = t′)σ . Therefore
M∞ �|=�r (D ∨ t �= t′ ∨ s′ = t′)σ ; and again by the same argument as previously
we obtain a contradiction.

5. Cσ is of the form (D ∨ s = t)σ and (s = t)σ has not been produced because s is
reducible by some rule l = r in M≺iC·σ (l = r could be (s = t)σ). That is sσ |p ≡ l
for some position p in sσ . We consider two cases:

(a) l = r is in GM+. We consider two possibilities, depending on whether p is
a (below) variable position:

Inference. s|p is not a (below) variable position. Then consider an infer-
ence Justif ied Superposition Into

D ∨ s[l′] = t
(D ∨ ¬ j(l = r) ∨ s[r] = t) σ ′

where σ ′ is the most general unifier of l and l′, a ground
instance of (D ∨ ¬ j(l = r) ∨ s[r] = t)σ ′ is (D ∨ ¬ j(l = r) ∨
s[r] = t)σ , and (D ∨ ¬ j(l = r) ∨ s[r] = t) · σ ≺i C · σ . Since
M∞ �|=�r Cσ we have that M∞ �|=�r Dσ . By Lemma 3,
M∞ |=�r j(l = r), or equivalently M∞ �|=�r ¬ j(l = r). There-
fore M∞ �|=�r (D ∨ ¬ j(l = r) ∨ s[r] = t)σ . Again we consider
two cases depending on whether (D ∨ ¬ j(l = r) ∨ s[r]t)σ is in
Gr(v(S)) or redundant. As previously we can show that we
have a contradiction in both cases.

Lifting. s|p is a (below) variable position of s. That is p = p′.p′′ and
s|p′ is a variable x. Let θ be a ground substitution with the
same domain as σ but xθ ≡ xσ [rσ]p′′ and yθ ≡ yσ for all other
variable y. Again we have that C · θ ≺i C · σ and M∞ �|=�r Cθ ,
a contradiction with the minimality of C · σ .

(b) l = r is produced by a closure (D′ ∨ l′ = r′) · θ and l = r ≡ (l′ = r′)θ . We
consider two possibilities, depending on whether p is a (below) variable
position:

Inference. s|p is not a (below) variable position. Then consider an infer-
ence Nonground Superposition

D ∨ s[l′′] = t D′ ∨ l′ = r′
(
D ∨ D′ ∨ s[r′] = t

)
σ ′

where σ ′ is the most general unifier of l′ and l′′, a ground
instance of (D ∨ D′ ∨ s[r′] = t)σ ′ is (D ∨ D′ ∨ s[r′] = t)σ , and

346 C. Lynch et al.

(D ∨ D′ ∨ s[r′] = t) · σ ≺i C · σ . Also, we have that M∞ �|=�r

Dσ and M∞ �|=�r D′σ . That implies M∞ �|=�r (D ∨ D′ ∨ s[r] =
t)σ . By the same argument as above, we can derive a contra-
diction with the minimality of C · σ .

Lifting. s|p is a (below) variable position of s. That is p = p′.p′′ and
s|p′ is a variable x. Let θ be a ground substitution with the
same domain as σ but xθ ≡ xσ [r′σ]p′′ and yθ ≡ yσ for all
other variable y. Again we we have that C · θ ≺i C · σ and
M∞ �|=�r Cθ , a contradiction with the minimality of C · σ .

6. Cσ is of the form (D ∨ s = t)σ and (s = t)σ has not been produced because there
is a disequation u �= v ∈ GM− such that M≺iC·σ ∪ {(s = t)σ } |=�r u = v. Let F be
the set containing all the ground instances in GM ∪ {Gr(v(S))}, having the form

(� ∨ u′ �= v′) · θ

where

– for each literal Lθ in �θ we have that M∞ �|=�r Lθ and L · θ ≺i (s = t) · σ ;
and

– (u′ = v′)θ is implied by a set of equations in M∞ ∪ {(s = t)σ }, containing
ground instances of equations, which are smaller than or equal to (u′ = v′) · θ

wrt. ≺r, and smaller than or equal to (s = t) · σ wrt. ≺i.

We show that M∞ �|=�r C′ for each C′ ∈ F. We consider two cases:

(a) (u′ �= v′) · θ is not maximal. Then by definition M∞ �|=�r (� ∨ u′ �= v′)θ .
(b) (u′ �= v′) · θ is maximal. Suppose that there exist a smallest closure (� ∨

u′ �= v′) · θ wrt. ≺i in F such that M∞ |=�r (� ∨ u′ �= v′)θ . By definition
(u′ = v′)θ is implied by a set of equations in M∞ ∪ {(s = t)σ }, containing
ground instances of equations, which are smaller than or equal to (u′ =
v′) · θ wrt. ≺r, and smaller than or equal to (s = t) · σ wrt. ≺i. This also
means that M∞ ∪ {(s = t)σ } � (u′ = v′)θ . Let (l1 = r1)θ1, . . . , (ln = rn)θn be
all the rules in the rewrite proof of (u′ = v′)θ using M∞ ∪ {(s = t)σ }. Then
u′θ must be reducible by one of the rules. Let us say that this rule is
(l1 = r1)θ1 and the productive closure is (C1 ∨ l1 = r1) · θ1. We consider
an inference Justif ied/Nonground Superposition involving � ∨ u′ �= v′ and
C1 ∨ l1 = r1, whose conclusion D′ has a ground instance D′ · θ ′ smaller than
(� ∨ u′ �= v′) · θ wrt. ≺i. Furthermore we can show that M∞ |=�r D′θ ′. This
contradicts the minimality of (� ∨ u′ �= v′) · θ .

Now we know that M∞ �|=�r C′ for each C′ ∈ F. By definition of F, u �= v must
be in F, and hence M∞ �|=�r u �= v, which is clearly a contradiction with the
conditions of the model construction. ��

Lemma 6 Let S be saturated with respect to SMELS and not contain the empty clause.
Let GM be the ground model of g(S), def ined on GL(S). Let M∞ be the model
constructed from Gr(v(S)). Then M∞ is conf luent.

Proof As in Lemma 4, we build a left-reduced subset N of M∞, which is clearly
confluent. Then we show that N |= M∞.

SMELS: Satisfiability Modulo Equality with Lazy Superposition 347

Suppose that N �|= M∞, let u0 = v0 be the smallest equation in M∞ such that
N �|= u0 = v0. So then u0 = v0 must be left reducible by some equation s0 = t0 in N,
because otherwise u0 = v0 would be in N. We consider different cases depending
on whether u0 = v0 and s0 = t0 come from GM+ or are produced in the model
construction process:

1. Both u0 = v0 and s0 = t0 are produced during the model construction. Let u0 =
v0 ≡ (u = v)σ and s0 = t0 ≡ (s = t)σ . Let (C ∨ u = v) · σ and (C′ ∨ s = t) · σ be
the two ground closures producing (u = v)σ and (s = t)σ . Since u0 = v0 is left
reducible by s0 = t0, we have uσ |p ≡ sσ for some position p in uσ . We consider
two possibilities, depending on whether p is a (below) variable position:

Inference. u|p is not a below variable position of u. Then consider an inference
Nonground Superposition

C ∨ u[s′]p = v C′ ∨ s = t
(C ∨ C′ ∨ u[t]p = v)σ ′

where σ ′ is the most general unifier of s and s′, a ground instance of
(C ∨ C′ ∨ u[t]p = v)σ ′ is (C ∨ C′ ∨ u[t]p = v)σ , and (u[t] = v)σ ≺r

(u[s′] = v)σ . By Lemma 2, we have M∞ �|=�r Cσ and M∞ �|=�r C′σ .
Moreover, by Lemma 5, we know that M∞ |=�r C ∨ C′ ∨ u[t] = v,
which implies that M∞ |=�r u[t] = v. We consider the following
cases:

(a) (C ∨ C′ ∨ u[t] = v)σ is not redundant.

i. (u[t] = v)σ has been produced in M∞.
ii. (u[t] = v)σ has not been produced in M∞ because it is not

maximal.
iii. (u[t] = v)σ is maximal but has not been produced in M∞.

(b) (C ∨ C′ ∨ u[t] = v)σ is redundant.

In each case we can derive a contradiction, as done in Lemma 4.
Lifting. u|p is a below variable position of u. That is p = p′.p′′ and u|p′ is a

variable x. Let θ be a ground substitution with the same domain as
σ but xθ ≡ xσ [tσ]p′′ and yθ ≡ yσ for all other variable y. Again we
only need to prove N |= (u[t] = v)θ to derive a contradiction. This
can be done in a similar way as above.

2. u0 = v0 is from GM+ and s0 = t0 is produced during the model construction.
Let u0 = v0 ≡ (u = v)σ and s0 = t0 ≡ (s = t)σ . Let (C ∨ s = t) · σ be the ground
closure producing (s = t)σ . Since u0 = v0 is left reducible by s0 = t0, we have
uσ |p ≡ sσ . Then consider an inference Justif ied Superposition From

C ∨ s = t(
C ∨ ¬ j

(
u[s′]p = v

) ∨ u[t]p = v
)
σ ′

where σ ′ is the most general unifier of s and s′, a ground instance of (C ∨
¬ j(u[s′]p = v) ∨ u[t]p = v)σ ′ is (C ∨ ¬ j(u[s′]p = v) ∨ u[t]p = v)σ , and (u[t] =
v)σ ≺r (u[s′] = v)σ . The rest of the proof for this case can be handled as in
previous case.

348 C. Lynch et al.

3. u0 = v0 is produced during the model construction, and s0 = t0 is from GM+.
This is impossible by the definition of model construction.

4. Both u0 = v0 and s0 = t0 are from GM+. This is impossible since GM+ is
reduced. ��

Theorem 1 Let S be saturated with respect to SMELS. Then, S is satisf iable if and
only if it does not contain the empty clause.

Proof The only if direction is implied by the soundness of SMELS.
For the if direction, we show that if S does not contain the empty clause then we

can exhibit a model of S. Let M∞ be the model constructed from Gr(v(S)). We will
show that M∞ |= S.

The proof is exactly the same as in Lemma 5, i.e. we derive a smaller counterex-
ample from the minimal counterexample, but this time the counterexample is with
respect to |=.

Assume that there is a smallest clause C in Gr(v(S)) such that M∞ �|= C. We will
analyze the position of occurrences of the maximal term s of C. There are exactly the
same cases to consider, as in Lemma 5. In each case, we use the confluence of M∞,
which is stated in Lemma 6, to get a smaller counterexample. ��

Lemma 7 Let S be a set of clauses and C be a clause redundant w.r.t S. Let S′ be a
set of clauses obtained by adding the conclusion of a SMELS(GM, j) inference with
premises from S′ to S, or by removing from S a clause which is redundant w.r.t. S.
Then C is still redundant w.r.t. S′.

Proof For the generation case, it is easy to see that if C is redundant w.r.t S then C is
redundant w.r.t S′ obtained by adding the conclusion of a SMELS(GM, j) inference
with premises in S to S itself.

Let us now consider the deletion case. We need to consider the following cases:

1. C is properly subsumed by C′ ∈ S, and C′ is properly subsumed by C′′ ∈ S′. Then
C′′ must properly subsume C. So C is redundant in S \ {C′}.

2. C is properly subsumed by C′, and C′θ is redundant in Gr(S) for all θ , by
properties 1–5 of redundancy. We need to show that, for all θ , Cθ is redundant
in Gr(S \ {C′}) by properties 1–5 of redundancy. Since C is properly subsumed
by C′, that means C′θ contains a subset of the literals of Cθ . Then the set E that
makes C′θ redundant also makes Cθ redundant.

3. Cθ is redundant in Gr(S) for all θ , by properties 1–5 of redundancy. Assume
that C′θ is contained in the E that makes Cθ redundant, and that C′θ is properly
subsumed in S. Let C′′ be the clause that subsumes C′. Then C′′θ is a subset of
C′θ . If C′θ is the clause Dσ in the definition of redundancy of Cθ , then C′′θ will
also serve as the clause Dσ used to make Cθ redundant. If C′θ is not the clause
Dσ then C′′θ can replace C′θ , because C′′θ logically implies C′θ .

4. Cθ is redundant in Gr(S) for all θ by properties 1–5 of redundancy. Assume
that C′θ is contained in the E that makes Cθ redundant and that C′θ is also
redundant in Gr(S) for all θ by properties 1–5 of redundancy. Let E′ be the
set that makes C′θ redundant, and let D′σ ′ be the clause Dσ mentioned in
property 3 of redundancy. If C′θ is the clause Dσ mentioned in property 3 for
the redundancy of Cθ , then redundancy of Cθ can be shown by (E \ {C′θ}) ∪ E′,

SMELS: Satisfiability Modulo Equality with Lazy Superposition 349

where D′σ ′ is the clause Dσ mentioned in property 3. If C′θ is not the clause
mentioned in property 3, then redundancy still holds because E′ logically implies
C′θ . ��

Lemma 8 Let (S0, G0, j0), (S1, G1, j1), · · · be a fair SMELS derivation. Then S∞ is
saturated w.r.t SMELS.

Proof Let T0 be the sequence Gn, Gn+1, · · · , where n is a justification stabilizer of
the derivation. Therefore, T0 is just the subsequence of the derivation where we can
be assured that the justification function is well-founded. We define a sequence of
sequences inductively based on the enumeration A1, A2, · · · of the positive literals.
We need to define what Ti is, in terms of Ti−1 and Ai from the enumeration of
positive literals. The idea is to make Ti be a subsequence of Ti−1 such that either
Ai or ¬Ai occurs in all ground truth assignments, and has the same justification each
time.

We define Ti as follows:

1. If there exists an M such that (Ai, M) is persistent in the sequence Ti−1, then
Ti is the subsequence of all triples (Sk, Gk, jk) in Ti−1 such that Ai ∈ Gk and
jk(Ai) = M. In this case, define Gprodi = {Ai}, and define jprodi = M

2. Else if there exists an M such that (¬Ai, M) is persistent in the sequence Ti−1,
then Ti is the subsequence of all triples (Sk, Gk, jk) in Ti−1 such that ¬Ai ∈ Gk

and jk(¬Ai) = M. In this case, define Gprodi = {¬Ai}, and define jprodi = M.
3. Else Ti is the subsequence of all triples (Sk, Gk, jk) in Ti−1 such that Ai �∈ Gk and

¬Ai �∈ Gk. In this case, define Gprodi = ∅.

Let GM = ⋃
Gprodi, and let j be the justification function so that for all L ∈ GM

with Gprodi = {L}, we have j(L) = jprodi.
By construction of GM and by definition of justification stabilizer, if L occurs

infinitely often in GM then it must occur infinitely often with the same justification.
As usual, if an inference does not involve GM, then this inference will be

redundant in some Si, and it follows from Lemma 7 that this inference will be
redundant in S∞. If there is an inference involving GM, then any nonground clause in
that inference is persistent, but also any clause in GM must have appeared infinitely
often with the same justification function, so the inference is persistent. By fairness
every persistent SMELS(GM, j) inference is redundant w.r.t Si for some i ≥ 0. It
follows from Lemma 7 that this SMELS(GM, j) inference is redundant w.r.t S∞.

Summing up this means that every SMELS(GM, j) inference with a premise in
S∞ is redundant w.r.t S∞. In other words, S∞ is saturated w.r.t SMELS. ��

Theorem 2 If (S0, G0, j0), (S1, G1, j1), · · · is a fair SMELS derivation then S0 is
unsatisf iable if and only if Si contains the empty clause for some i ≥ 0.

Proof It follows from Lemma 8 that S∞ is saturated w.r.t SMELS. By definition of
derivation, S∞ is logically equivalent to S0, which implies that S∞ is unsatisfiable
if and only if S0 is unsatisfiable. By Theorem 1 S∞ is unsatisfiable if and only if
S∞ contains the empty clause, and hence Si contains the empty clause for some
i ≥ 0. ��

350 C. Lynch et al.

6 Implementation

We have implemented SMELS and our implementation follows Algorithm 1. The
algorithm starts out (line 2) by splitting the input set of clauses Input into two sets
of clauses, the first set Ground only contains ground clauses and the second set
Nonground only contains nonground clauses. The set of ground clauses Ground is
then provided to the SAT solver to find a justified model Justif iedModel if there
exists one (lines 3 and 4); otherwise SMELS terminates returning UNSAT (line
15). Justif iedModel and Nonground are sent to the Superposition engine (line 6) to
check for satisfiability and to derive new ground clauses (line 7). There are several
possibilities to consider. First, the Superposition procedure may not terminate but
derive new ground clauses in the meantime. One way to handle this is to stop the
Superposition procedure as soon as one new ground clause is derived, and then
GroundDerived, containing exactly this new ground clause, is added to the current set
of ground clauses maintained by the SAT solver to find yet another new model (lines
11 and 12). However proceeding this way is not efficient in practice because restarting
the SAT solver and the Superposition procedure is computationally expensive.
Therefore we have decided to stop the Superposition procedure after a timeout
and then GroundDerived, containing all the new ground clauses derived so far, is
added to the current set of ground clauses maintained by the SAT solver to find
yet another new model (lines 11 and 12). Second, the Superposition procedure does
not terminate and does not derive any new ground clauses then SMELS does not
terminate. Finally, the Superposition procedure terminates and there are no new
ground clauses derived, then the satisfiability result of SMELS is exactly the same
as the one of the Superposition engine (lines 8–10). The process continues like this
until the SAT solver cannot find any models, and then SMELS terminates with the
result UNSAT.

Algorithm 1 SMELS
1: procedure SMELS(Input)
2: (Ground, Nonground) := SplitInput(Input);
3: SatInput := CreateSatInput(Ground);
4: (JustifiedModel, SatReturn) := ExecuteJustifiedSat(SatInput);
5: while SatReturn = SAT do
6: SupInput := CreateSupInput(JustifiedModel, Nonground);
7: (GroundDerived, SupReturn) := ExecuteJustifiedSup(SupInput);
8: if Sizeof(GroundDerived) = 0 then
9: Return SupReturn;

10: else
11: SatInput := CreateSatInput(Ground, GroundDerived);
12: (JustifiedModel, SatReturn) := ExecuteJustifiedSat(SatInput);
13: end if
14: end while
15: Return UNSAT;
16: end procedure

Since we assume that Justif iedModel is reduced, we need to have a module for
reducing models computed by the SAT solver. There are several ways to implement
such a module. One way is to use off-the-shelf Rewriting rules in the Superposition

SMELS: Satisfiability Modulo Equality with Lazy Superposition 351

procedure. The reduction of models is rather simple, Rewriting rules apply as usual
to literals in models except that now they must take into account the justification of
literals. Another way would be to use a Congruence Closure algorithm, combined
with a SAT solver in the DPLL(T) style [16]. This requires us to order terms
appropriately to be consistent with the ordering used in the Superposition procedure.
At this point, we have chosen to use the former to spare time and effort.

SMELS is flexible and modular enough to be implemented reusing an existing
SAT Solver and Superposition Theorem Prover. We choose MiniSat 2.2.0 (cf. http://
minisat.se) as the SAT Solver and SPASS 3.7 (cf. http://www.spass-prover.org) as
the Superposition Theorem Prover. Since SMELS works on justified models and
justified clauses we need to modify MiniSat and SPASS so that each literal in
a propositional model has a justification and each clause also has a justification.
The inferences in MiniSat and SPASS have been modified in order to meet the
requirement of justified models and clauses. SMELS’s source code and binary are
available at http://is.hut.edu.vn/ khanhtd/project/smels.

6.1 Justified MiniSat

We have to modify MiniSat so that each literal in every propositional model has
a justification. This can be done by adding a data structure to MiniSat to store
justifications of all literals. In MiniSat all literals are indexed, and propositional
models are encoded by boolean vectors. If the boolean element at index i is true
then the corresponding literal i is positive in the model and conversely. We have
added a vector of vectors of literals in which the vector element at index i represents
the justification of literal i. Next we need to calculate the justification of a literal
resulting from a step of the DPLL procedure. A literal resulting from a decision has
itself as its justification. If a literal results from a propagation, then its justification is
the union of all justifications of all literals used in the propagation step. In the case
of backjumping, the justification of the value-switching literal must be recalculated.
Thus we are guaranteed that a justification of every literal only contains decision
literals.

6.2 Justified SPASS

We have made significant modifications to SPASS without Splitting. They concern
justification of clauses, the inference rules Nonground Superposition, Equality Res-
olution, Equality Factoring, Justified Resolution, and Justified Superposition, and
crucially redundancy deletion rules.

Adding a justification to each clause is straightforward. SPASS uses a data
structure to encode clauses, we only add a new field for justification to this data
structure to have justified clauses.

The Nonground Superposition, Equality Resolution, and Equality Factoring infer-
ences work in the same way as usual Resolution and Superposition inferences, except
that they are performed on nonground parts of clauses. We only need to modify
the ordered selection in SPASS. Justified Resolution and Justified Superposition are
similar to usual Resolution and Superposition combined with the addition of the
justification of one of the two premises to the conclusion.

http://minisat.se
http://minisat.se
http://www.spass-prover.org
http://is.hut.edu.vn/~khanhtd/project/smels

352 C. Lynch et al.

Redundancy deletion rules are tricky. One of our purposes is to reuse existing
tools as much as possible to spare implementation time and effort. We select usual
deletion rules which could be adapted but still obeying the redundancy criteria of
SMELFortunately, S., we could reuse most of the deletion rules of SPASS, provided
that the applicability conditions must be re-adapted. Examples of applicability
conditions for Subsumption are that the subsuming clause has no justification, or
that the justification of the subsuming clause is a subset of the subsumed clause.

7 Experimentation

We have experimented with SMELS on TPTP v4.0.1. The experimentation was per-
formed on a Ubuntu 10.10 Linux machine equipped with an Intel Dual Core E2140,
1.6 Ghz processor and 2 Gb RAThe, M., selected results of the experimentation
are reported in Tables 3, 4 and 5. Full results of the experimentation can be found
at http://is.hut.edu.vn/ khanhtd/project/smels. In each table, experimental results of
SMELS are compared to ones of SPASS 3.7 (without/with Splitting), iProver 0.7 and
Darwin 1.4.5. The reasons we have chosen these three theorem provers are that they
are implemented based on three of the most well-known first order theorem proving
methods: Superposition, Instantiation and Model Evolution. We have chosen SPASS
as the Superposition theorem prover because we have implemented SMELS on top

Table 3 Number of successful
cases

Division Size SMELS SPASS SPASS + iProver Darwin
Splitting

AGT 52 17 17 17 18 18
ALG 392 72 168 211 91 57
CAT 130 45 53 54 51 50
COL 239 127 146 148 100 92
COM 46 30 36 36 34 33
CSR 756 94 141 141 391 330
FLD 279 45 107 107 117 107
GEO 589 320 374 375 378 324
GRA 126 8 15 24 25 21
HAL 9 3 2 2 1 0
HWV 83 61 71 71 59 53
KLE 225 88 106 106 23 19
KRS 271 180 195 197 211 200
LAT 727 90 127 127 99 60
LCL 1079 303 352 355 352 433
MGT 156 110 139 136 152 138
MSC 33 22 23 23 25 24
NLP 520 396 407 431 434 363
NUM 1091 234 349 349 267 175
PRO 72 12 23 22 23 23
PUZ 183 77 87 86 92 92
RNG 261 105 128 131 103 48
SEU 1766 275 378 374 398 166
SWC 846 453 541 565 379 122
SYN 1291 769 890 924 1153 1124

http://is.hut.edu.vn/~khanhtd/project/smels

SMELS: Satisfiability Modulo Equality with Lazy Superposition 353

of SPASS, and we need to compare SMELS with a Superposition theorem prover
with a similar implementation base.

Table 3 shows the number of successful cases of SMELS and other provers. A case
is considered successful if the prover returns the correct result within 180 s. In solving
problems SMELS is close to SPASS, iProver and Darwin which are more mature in
term of implementation investment. In the COL, HAL, HWV, KLE, RNG and SWC
divisions SMELS has more successful cases than iProver and Darwin, and especially
SMELS is better than all other theorem provers in the HAL division.

Table 4 shows the number of cases that SMELS can solve but other provers can
not. We can see that SMELS can sometimes solve problems within the 180 seconds
timeout that SPASS, iProver and Darwin cannot. In the PUZ and SYN divisions
those problems have more ground clauses than nonground clauses. In the GRA,
HAL, KLE, KRS, LAT, LCL, NUM, RNG, SEU and SWC divisions those problems
are mostly equational, and the unsatisfiability is found after only several iterations. In
other words, all those problems only require SMELS to perform a few instantiations,
and therefore SMELS spends most of the time in ground (equational) reasoning.

Table 5 indicates the number of cases in which SMELS is faster than other provers.
SMELS is faster than SPASS on some problems in various divisions. In the AGT,
PUZ and SYN divisions those problems have more ground clauses than nonground
clauses. In the CSR, GEO, KRS, NLP, NUM, RNG, SEU and SWC divisions those
problems are mostly equational, and the unsatisfiability is found after only several

Table 4 Number of cases that
SMELS is better than other
provers in solving problems

Division Size vs. SPASS vs. SPASS + vs. iProver vs. Darwin
Splitting

AGT 52 0 0 0 0
ALG 392 0 0 22 27
CAT 130 1 1 4 7
COL 239 0 0 45 40
COM 46 1 1 2 3
CSR 756 0 0 1 0
FLD 279 0 0 0 1
GEO 589 1 2 11 38
GRA 126 2 0 0 0
HAL 9 2 2 2 3
HWV 83 1 1 9 11
KLE 225 2 2 67 69
KRS 271 3 3 3 6
LAT 727 1 1 35 41
LCL 1079 5 4 63 44
MGT 156 0 0 1 9
MSC 33 1 1 0 1
NLP 520 11 0 39 107
NUM 1091 4 4 48 92
PRO 72 1 1 2 2
PUZ 183 1 1 3 2
RNG 261 5 4 43 67
SEU 1766 12 12 32 132
SWC 846 94 69 142 337
SYN 1291 6 2 14 28

354 C. Lynch et al.

Table 5 Number of cases that
SMELS is faster than other
provers

Division Size vs. SPASS vs. SPASS + vs. iProver vs. Darwin
Splitting

AGT 52 2 1 0 0
ALG 392 4 4 49 41
CAT 130 1 1 13 11
COL 239 1 1 60 47
COM 46 1 2 6 3
CSR 756 14 13 11 5
FLD 279 2 2 2 5
GEO 589 7 5 33 41
GRA 126 3 1 0 0
HAL 9 2 2 3 3
HWV 83 3 2 25 20
KLE 225 2 2 72 78
KRS 271 6 5 16 8
LAT 727 7 7 53 54
LCL 1079 5 4 112 59
MGT 156 1 1 16 11
MSC 33 1 1 0 1
NLP 520 17 4 131 117
NUM 1091 13 16 99 116
PRO 72 1 1 3 2
PUZ 183 3 3 7 3
RNG 261 8 8 63 77
SEU 1766 34 35 110 153
SWC 846 161 148 318 386
SYN 1291 23 20 54 36

iterations. In the GEO, LAT, LCL and PRO divisions the unsatisfiability is found
only after a few iterations. Compared to iProver and Darwin, SMELS is faster on
many problems. One of the reasons is that for some of those problems SMELS
only requires a few instantiations to detect unsatisfiability by ground (equational)
reasoning. Another reason is that SMELS is implemented on top of SPASS and
SPASS is already faster than iProver and Darwin on some of those problems.

Overall, SMELS performs fairly well in solving problems in TPTP v4.0.1. In many
problems we can see that SMELS is faster than iProver and Darwin, and sometimes
SMELS is even faster than SPASS even though it is built on top of SPASSMELS, S.,
can sometimes solve problems that SPASS, iProver and Darwin cannot.

8 Conclusion

We have presented SMELS, which is a novel complete method for solving sat-
isfiability in first order logic with equality. SMELS inherits the best of the two
worlds of SAT solvers and ATPs: a DPLL procedure and a ground reduction
algorithm to handle efficiently ground equational clauses; and a complete Superpo-
sition procedure to efficiently handle nonground equational clauses using powerful
orderings. SMELS has several interesting properties compared to other existing
methods. SMELS is complete for First Order Logic with Equality, in contrast with
SMT solvers, which use incomplete heuristics to handle quantifiers. SMELS does

SMELS: Satisfiability Modulo Equality with Lazy Superposition 355

not perform any inferences among ground clauses in the Superposition procedure
but delegates them to an efficient SAT solver and a reduction algorithm instead.
SMELS uses powerful orderings to limit the search space and hence prevent many
nonterminating cases. Even though SMELS has been recently implemented, its
performance is fairly good, compared to SPASS, iProver and Darwin, which are
much more mature systems engineered with much more time and effort.

There are some lines of future work. It is worth to implement and experiment
another technique for reducing models computed by the SAT solver. At this point
we have used the Rewriting rule of SPASS as the model reduction engine. The idea
would be to use a Congruence Closure algorithm, coupled with Justified MiniSat
in the DPLL(T) style [16] instead. This method would require us to order terms
appropriately in Congruence Closure to be consistent with the ordering used in
Justified Superposition. An interesting line of future work is to apply the Schematic
Saturation technique in [23] to have an efficient implementation of SMELS. The
idea is that in Superposition, we perform unification and inferences over and over
again. With Schematic Saturation, we just perform matching to derive new clauses.
It would also be interesting to study how SMELS can be used to derive decision
procedures for finitely presented theories, along the lines of [1]. Finally, it is worth to
study how to integrate a solver for linear arithmetic into SMELS. Although, we know
that there exists no complete calculus for the first order theory of linear arithmetic
and uninterpreted symbols [20], it is interesting to identify subclasses of formulae
which enjoy completeness.

Acknowledgements Some ideas presented in this article were discussed while the first and the
last authors were visiting the Automation of Logics research group of Max-Plank-Institute für
Informatics. The authors would like to thank Christoph Weidenbach for instructing us on SPASS’s
code, and for answering all our questions during the implementation of SMELS. The authors would
like also to thank the anonymous referees for their fruitful comments and suggestions that helped to
improve the clarity of the article.

The authors would like to thank the National Foundation of Science and Technology Develop-
ment for its support under Grant 102.01.30.09.

References

1. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures.
Inform. J. Comput. 183(2), 140–164 (2003)

2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 1, chap. 2, pp. 19–100. The MIT Press (2001)

3. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation and superposition. In:
Automated Deduction—CADE-11, 11th International Conference on Automated Deduction,
Saratoga Springs, NY, USA. Lecture Notes in Computer Science, vol. 607, pp. 462–476. Springer
(1992)

4. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) Proceedings of the 19th
International Conference on Computer Aided Verification (CAV’07), Berlin, Germany. Lecture
Notes in Computer Science, vol. 4590, pp. 298–302. Springer (2007)

5. Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL method. Artif.
Intell. 172, 591–632 (2008)

6. Bonacina, M.P., Echenim, M.: Theory decision by decomposition. Symb. J. Comput. 45(2), 229–
260 (2010)

7. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215
(1960)

356 C. Lynch et al.

8. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun.
ACM 5(7), 394–397 (1962)

9. de Moura, L., Bjørner, N.: Engineering dpll(t) + saturation. In: Automated Reasoning, 4th
International Joint Conference, Sydney, Australia, 12–1 August 2008. Lecture Notes in Com-
puter Science, vol. 5195, pp. 475–490. Springer (2008)

10. de Moura, L., Bjørner, N.: Z3: : An Efficient SMT Solver. In: Proceedings of the 14th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems,
Budapest, Hungary. Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008)

11. Déharbe, D., Ranise, S.: Light-weight theorem proving for debugging and verifying units of
code. In: Press, I.C.S. (ed.) Proc. of the Int. Conf. on Software Engineering and Formal Methods
(SEFM’03) (2003)

12. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical Computer
Science, vol. B, chap. 6, pp. 244–320 (1990)

13. Deshane, T., Hu, W., Jablonski, P., Lin, H., Lynch, C., McGregor, R.E.: Encoding first order
proofs in SAT. In: Proceedings Automated Deduction—CADE-21, 21st International Confer-
ence on Automated Deduction, Bremen, Germany, 17–20 July 2007. Lecture Notes in Computer
Science, vol. 4603, pp. 476–491. Springer (2007)

14. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM
52(3), 365–473 (2005)

15. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proc.
18th IEEE Symposium on Logic in Computer Science (LICS’03), pp. 55–64. IEEE Computer
Society Press (2003)

16. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast deci-
sion procedures. In: Alur, R., Peled, D. (eds.) Proceedings of the 16th International Con-
ference on Computer Aided Verification (CAV’04), Boston, Massachusetts. Lecture Notes
in Computer Science, vol. 3114, pp. 175–188. Springer (2004). ftp://ftp.cs.uiowa.edu/pub/
tinelli/papers/GanHNOT-CAV-04.pdf

17. Hooker, J.N., Rago, G., Chandru, V., Shrivastava, A.: Partial instantiation methods for inference
in first-order logic. J. Autom. Reasoning 28(5), 371–396 (2002)

18. Jackson, D.: Automating first-order relational logic. In: SIGSOFT FSE, pp. 130–139 (2000)
19. Korovin, K.: iProver—an instantiation-based theorem prover for first-order logic (system de-

scription). In: Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney,
Australia, 12–15 August 2008, Proceedings. Lecture Notes in Computer Science, vol. 5195,
pp. 292–298. Springer (2008)

20. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Com-
puter Science Logic (CSL’07). Lecture Notes in Computer Science, vol. 4646, pp. 223–237.
Springer (2007)

21. Lee, S.J., Plaisted, D.A.: Eliminating duplication with the hyper-linking strategy. J. Autom.
Reasoning 9(1), 25–42 (1992)

22. Lynch, C., McGregor, R.E.: Combining instance generation and resolution. In: Ghilardi, S.,
Sebastiani, R. (eds.) Frontiers of Combining Systems, 7th International Symposium, FroCoS
2009, Trento, Italy, 16–18 September 2009. Lecture Notes in Computer Science, vol. 5749,
pp. 304–318. Springer (2009)

23. Lynch, C., Ranise, S., Ringeissen, C., Tran, D.K.: Automatic decidability and combinability. Inf.
Comput. 209(7), 1026–1047 (2011)

24. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Hand of Automated Reasoning. The MIT Press (2001)

25. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2),
91–110 (2002)

26. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41
(1965)

27. Schulz, S.: E– a brainiac theorem prover. J. AI Commun. 15(2/3), 111–126 (2002)
28. Strichman, O., Seshia, S.A., Bryant, R.E.: Deciding separation formulas with sat. In: Brinksma,

E., Larsen, K.G. (eds.) Computer Aided Verification, 14th International Conference, CAV 2002,
Proceedings, Copenhagen, Denmark, 27–31 July 2002. Lecture Notes in Computer Science,
vol. 2404, pp. 209–222. Springer (2002)

29. Sutcliffe, G.: The cade-22 automated theorem proving system competition—CASC-22. AI
Commun. 23(1), 47–59 (2010)

30. Weidenbach, C.: Spass version 0.49. J. Autom. Reasoning 14(2), 247–252 (1997)

ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/GanHNOT-CAV-04.pdf
ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/GanHNOT-CAV-04.pdf

	SMELS: Satisfiability Modulo Equality with Lazy Superposition
	Abstract
	Introduction
	Related Work
	Structure of the Paper

	Preliminaries
	Resolution Inference System
	Superposition Inference System
	Completeness
	Implementation
	Justified MiniSat
	Justified SPASS

	Experimentation
	Conclusion
	References

