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Abstract Encryption ‘distributing over pairs’ is a technique employed in several
cryptographic protocols. We show that unification is decidable for an equational
theory HE specifying such an encryption. The method consists in transforming
any given problem in such a way, that the resulting problem can be solved by
combining a graph-based reasoning on its equations involving the homomorphisms,
with a syntactic reasoning on its pairings. We show HE-unification to be NP-hard
and in EXPTIME. We also indicate, briefly, how to extend HE-unification to Cap
unification modulo HE, that can be used as a tool for modeling and analyzing
cryptographic protocols where encryption follows the ECB mode, i.e., is done block-
wise on messages.

Keywords Rewriting · Unification · Protocol analysis

Work supported by NSF Grants CNS-0831305 and CNS-0831209,
and partially supported by the FP7-ICT-2007-1 Project no. 216471, AVANTSSAR.

S. Anantharaman (B)
LIFO, University of Orléans, Orléans, France
e-mail: siva@univ-orleans.fr

H. Lin · C. Lynch
Clarkson University, Potsdam, NY, USA

H. Lin
e-mail: linh@clarkson.edu

C. Lynch
e-mail: clynch@clarkson.edu

P. Narendran
University at Albany-SUNY, Albany, NY, USA
e-mail: dran@cs.albany.edu

M. Rusinowitch
Loria-INRIA Lorraine, Nancy, France
e-mail: rusi@loria.fr



136 S. Anantharaman et al.

1 Introduction

Several methods based on rewriting have been proposed with success, for the
formal analysis of cryptographic protocols. The following Dolev–Yao system (DY)
underlies many of them:

p1(x.y) → x dec(enc(x, y), y) → x

p2(x.y) → y enc(dec(x, y), y) → x (DY)

The ‘.’ here is the ‘pairing’ operation on messages, p1, p2 are the respective
projections from pairs, and dec(x, y) (resp. enc(x, y)) stands for decryption (resp.
encryption) of message x, using y as key; the second arguments of ‘dec’ and ‘enc’ are
therefore referred to as keys.

The so-called public collapsing theories, used in some works (e.g., [10]), are
presented by rewrite systems where the right-hand-side (rhs) of every rule is a
ground term or a variable. Some other results assume that the rhs of any rule is
a proper subterm of the lhs. A general procedure for protocol security analysis
has been given in [5] for such systems, extensively using equational unification
and narrowing. Rewrite systems with such a ‘subterm property’ have been called
dwindling in [1], where a decision procedure was given for passive deduction—i.e.,
detecting secrecy attacks by an intruder not interacting actively with the protocol
sessions. The technique used is one that combines unification and narrowing with
the notion of cap closure modeling the evolution of the intruder knowledge. The
algorithm presented in [1] was actually shown to be complete for passive deduction
for a class of convergent rewrite systems called �-strong, that contains strictly the
class of dwindling systems; this class contains in particular the following convergent,
non-dwindling system, that we refer to as HE; it extends DY with the requirement
that ‘encryption distributes over pairs’:

p1(x.y) → x

p2(x.y) → y enc(x.y, z) → enc(x, z).enc(y, z)

enc(dec(x, y), y) → x dec(x.y, z) → dec(x, z).dec(y, z)

dec(enc(x, y), y) → x (HE)

We shall refer to the equational theory defined by this system HE as Homomor-
phic Encryption, or again as HE. On protocols where encryption is based on the so-
called Electronic Code Book mode (ECB)—i.e., is performed sequentially on a block
decomposition of the message –, encryption can be modeled as an homomorphism
on pairs. It seems worth mentioning here that, although ECB is known to be
more prone to attacks than other modes such as Cipher Block Chaining (due to
the fact that message blocks with the same content get encrypted exactly alike,
irrespective of where these blocks are located), nevertheless, ECB still seems widely
used in many commercial protocols; cf. e.g., http://csrc.nist.gov/groups/STM/cavp/
documents/aes/aesval.html

As we just mentioned, passive deduction is known to be decidable for protocols
employing HE; but the problem of active deduction for such protocols—i.e., when
the intruder is allowed to interact with the protocol steps, e.g., to forge the identity of
some honest agent—has not been studied yet. For deciding active deduction modulo

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html
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any given intruder theory E, the decidability of E-unification is known to be a
necessary condition (cf. e.g., [8]), and that gave us the motivation for studying
HE-unification. Note that the homomorphism enc(−, y) defined on terms, for any
given y, admits an inverse homomorphism dec(−, y) modulo HE; consequently,
unification modulo HE cannot be reduced directly to unification modulo one-sided
distributivity [18].

This paper is structured as follows: The needed preliminaries are given in
Section 2. Unification modulo HE is shown to be decidable in Section 3. The main
idea consists in reducing any given HE-unification problem into one of solving a set
of ‘simple’ equations of the form Z = enc(X, V) or Z = dec(X, V), where none of
the first arguments under enc gets split into pairs by the other equations. Solving such
a set of ‘simple’ equations is essentially the unification problem modulo the two rules
for encryption and decryption:

dec(enc(x, y), y) → x

enc(dec(x, y), y) → x

which form a confluent, dwindling system, so has a decidable unification problem,
cf. [16]. The method we propose in this work actually combines a graph-based
algorithm reasoning modulo the group structure on homomorphisms—that is specific
to ‘simple’ HE-unification problems—with one that reasons modulo a theory for
pairings. We show that even solving ‘simple’ HE-unif ication problems (i.e., without
pairings) is NP-complete.

A couple of examples are given in Section 4 to illustrate our HE-unification algo-
rithm. Section 5 presents briefly a couple of other convergent rewrite systems mod-
eling Homomorphic Encryption; they show, in particular, that the approach we have
presented here can handle asymmetric keys as well. In Section 6, we recall briefly
the notion of Cap Unification, a technique that extends unification for solving a
sequence of cap constraints—also called ‘deducibility constraints’ by some authors –,
modulo any given intruder theory; such constraints model in a natural manner the
steps of any given (cryptographic) protocol session that an ‘intruder’ can interact
with, for gaining knowledge. We illustrate the technique on a small (Needham–
Schroeder like) ‘toy’ protocol, assuming the encryption mode to be ECB-based.

This paper – which is an enhanced version of [2] – also contains an Appendix,
whose aim is to show that the passive deduction problem and unification can have
unrelated behaviors, in general—a fact which is in sharp contrast with the case of
active deduction, as was already observed in the concluding section of [1], as well as
in [12]. We prove this fact here, by showing that unification modulo general �-strong
rewrite systems is undecidable, by reduction from a suitable version of the Modified
Post Correspondence Problem (MPCP).

2 Notation and Preliminaries

As usual, � will stand for a ranked signature, and X a countably infinite set of
variables. T = T (�,X ) is the algebra of terms over this signature; terms in T will be
denoted as s, t, . . ., and variables as u, v, x, y, z, . . ., all with possible suffixes. The set
of all positions on any term t is denoted as Pos(t); if q ∈ Pos(t), then t|q denotes the
subterm of t at position q; and the term obtained from t by replacing the subterm t|q
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by any given term t′ will be denoted as t[q ← t′]; a similar notation is employed also
for the substitution of variables of t by terms. We assume a simplification ordering �
on T that is total on ground terms (terms not containing variables). A rewrite rule
is a pair of terms (l, r) such that l � r, and is represented as usual, as l → r; a rewrite
system is a finite set of rewrite rules. The notions of reduction and of normalization
of a term by a rewrite system are assumed known, as well as those of termination and
of confluence of the reduction relation defined by such a system on terms (cf. e.g.,
[4]). A rewrite system R is convergent iff the reduction relation it defines on the set
of terms is terminating and confluent.

By an HE-Unification problem we mean, as usual, any given finite set P of
equations between terms over �; and a solution to the problem P is a substitution
σ such that σ s = σ t mod HE, for every equation s = t in P . For proving that
HE-Unification is decidable, we shall be applying several reductions to the given
problem. To start with, we shall assume (via usual reasonings mod HE) that the given
problem P is in a standard form, in the following sense: each of its equations to solve,
modulo HE, is assumed to have one of the following forms:

Z = T, Z = X.Y, Z = enc(X, Y), Z = const,

where the T, X, Y, Z , . . . stand for variables, and const is any ground constant. (If
an equation in P is given in the form U = dec(V, W), it is rewritten mod HE as
V = enc(U, W).) The equations in P of the f irst and fourth forms are said to be
‘equalities’, equations of the second form are called ‘pairings’ and those of the third
form are said to be of the enc type. We also assume, explicitly, that if such a problem
P contains two equations of the form Z = t, Z ′ = t (with identical right hand sides),
then P also contains the equality Z = Z ′.

The second arguments of enc, in the equations of P , are referred to as the keys or
key variables of P . If Y is a key variable which is also the lhs of an equation of the
fourth form, i.e., the rhs is a constant, then Y as well as the constant of that equation
will both be said to be a key constant of P . Given a problem P in standard form,
we denote by XP the set of its variables, and by KP the set of key variables and key
constants of P .

The conjugate of any enc equation Z = enc(X, Y) in P , is defined as the equation
X = dec(Z , Y); it will be said to be of the ‘dec’ type. For every key variable/constant
Y occurring in P , let hY (resp. hY) denote the homomorphism enc(−, Y) (resp.
dec(−, Y)) defined on terms. An enc equation Z = enc(X, Y) can thus be written as
Z = hY(X), and its conjugate as X = hY(Z ). We denote by H = HP the finite set of
all such homomorphisms associated with the key variables/constants of the problem
P . All our unification problems in the sequel will be assumed to be in standard form
(unless mentioned otherwise explicitly).

The Dependency Graph of P We construct a graph of dependency G = GP be-
tween the variables of the given problem P : Its nodes will be the variables (or
constants) of P . From a node Z on G, there is an oriented arc to a node X on G
iff the following holds:

a) P has an equation of the form Z = hY(X) (resp. X = hY(Z )), for some Y ∈ KP ;
the arc is then labeled with the symbol hY (resp. with hY);

b) P has an equation of the form Z = X.V (resp. Z = V.X): the arc is then
labelled with p1 (resp. with p2).
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Semantics: If G contains an edge of the form Z →h X, with h ∈ H, then Z can be
evaluated by applying the homomorphism h to the evaluation of X. (Note that there
are no ‘equality’ arcs on the graph GP .)

3 Unification Modulo HE

Theorem 1 Unif ication modulo the theory HE is decidable.

To facilitate understanding, we present briefly the outlines of the proof. An
inference procedure will be applied to the unification problem P , given in standard
form. The transformation of P under the rules of this procedure (named trimming
rules) will be based on the following guiding principles:

– Perfect Encryption: If Z = enc(X, Y) ∈ P and also Z = enc(X, Y ′) ∈ P (resp.
Z = enc(X ′, Y) ∈ P), then Y = Y ′ (resp. X = X ′) must be in P .

– Pairing is free in HE: If Z = X.Y and Z = X ′.Y ′ are both in P , then the
equalities X = X ′, Y = Y ′ must be in P .

– Split on Pairs: Z = enc(X, Y) ∈ P and if one of Z , X is the lhs of a pairing
equation in P , then the other must be so too.

– Irredundancy of the Dependency Graph: If Z ′, Z ′′ are two distinct nodes of GP ,
then P must not contain the equality Z ′ = Z ′′.

(The first principle says that, from any given message two different keys cannot
generate the same encrypted message; the third says that no encrypted message
may split into a pair, if the original message itself is not a pair.) Our objective is
to transform the given problem into a ‘trimmed’ problem composed of two sub-
problems which can be treated ‘almost’ separately: one containing only the pairings
and equalities, and the other containing only the enc equations whose lhs variables
(resp. first arguments under enc) are not splittable into pairs; the latter sub-problem
will be solved by ‘combinatorial’ means as we shall be seeing farther down; and their
solutions extend naturally as solutions for the entire problem, via combination with
its equalities and pairings.

Among the four guiding principles above, the third necessitates introducing fresh
‘splitting’ variables, in general. For defining a measure on how deep we may need to
go, for introducing such fresh variables starting from any given variable, we need the
following relations on the set of variables X = XP appearing in P :

Definition 1 U ∼ V is the finest equivalence relation on X such that:

– if U = V ∈ P then U ∼ V;
– if U = enc(V, T) ∈ P or V = enc(U, T) ∈ P , for some T, then U ∼ V;
– if P contains two pairings of the form W = U.X and W ′ = V.X ′ (or of the form

W = X.U and W ′ = X ′.V), where W ∼ W ′, then U ∼ V.

• We write U � V iff there is a loop-free chain from U to V formed of ∼- or p1/p2-
steps, at least one of them being a p1- or p2- step.

• For any problem P and for any given Z ∈ X = XP , the sp-depth of Z (short
for splitting depth of Z , and denoted as spd(Z )) is defined as the maximum
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number of p1- or p2- steps from Z to all possible X ∈ X , along the loop-free
chains formed of ∼- or p1/p2-steps from Z to X.

A ground substitution on the set X = XP is said to be discriminating iff distinct
key variables of P are assigned distinct irreducible ground terms. A discriminating
solution for P is such a substitution that also solves P . A fifth guiding principle is
that, in order that P admits such a solution, there can be no directed loop with a
‘non-trivial label’, and formed only of h/h-arcs, from any node to itself on the graph
GP . In formal terms: Let X, Y be any two nodes on G, and α any given word over
the set H of homomorphisms. We shall write X �α Y iff there is a directed path
from X to Y on G, the arcs of which are labeled respectively by the homomorphisms
forming the word α. The following condition gives our fifth guiding principle:

(SNF): For any directed loop on G = GP from any node Z on G to itself, such
that the labels of its arcs form a word α ∈ H∗, the word α must simplify to the empty
word under the following set of rules:

hT hT → ε, hT hT → ε, T ∈ KP . (D)

This condition SNF is necessary for P to admit a discriminating solution: indeed, if
σ is such a solution for P , and Z �α Z is a non-trivial loop on G formed only of
h/h-arcs, it means the ground term σ(α)(σ Z ) must normalize to σ(Z ), and that can
be done only by the two rewrite rules to the bottom-left of the rewrite system HE.

Note that any non-discriminating solution to P , i.e., one that does not assign
distinct values to distinct key variables, can be seen as a discriminating solution to
a variant of P , obtained by ‘equating some keys’ by adding some further equalities
to P (inference rule 6 below). We are in a position now to formulate our inference
rules.

The Inference Rules We denote by Eq (resp. Pair, Enc) the set of equalities (resp.
pairings, the enc-equations) in P , respectively.

Rule 1. (Perfect Encryption)

a)
Eq; Pair; Enc 	 {Z = enc(X, Y), Z = enc(V, Y)}

Eq ∪ {V = X}; Pair; Enc 	 {Z = enc(X, Y)}

b)
Eq; Pair; Enc 	 {Z = enc(X, Y), Z = enc(X, T)}

Eq ∪ {T = Y}; Pair; Enc 	 {Z = enc(X, Y)}
Rule 1’. (Variable Elimination)

{U = V} 	 Eq; Pair; Enc
{U = V} ∪ [V/U](Eq); [V/U](Pair); [V/U](Enc)

Rule 2. (Pairing is free in HE)

Eq; Pair 	 {Z = U1.U2, Z = V1.V2}; Enc
Eq ∪ {V1 = U1, V2 = U2}; Pair 	 {Z = U1.U2}; Enc
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Rule 3. (Split on Pairs)

a)
Eq; Z = Z1.Z2 ∈ Pair; Enc 	 {Z = enc(X, Y)}

Eq; Pair ∪ {X = X1.X2}; Enc 	 {Z1 = enc(X1, Y), Z2 = enc(X2, Y)}

b)
Eq; X = X1.X2 ∈ Pair; Enc 	 {Z = enc(X, Y)}

Eq; Pair ∪ {Z = Z1.Z2}; Enc 	 {Z1 = enc(X1, Y), Z2 = enc(X2, Y)}
Rule 4. (Occur check)

Eq; Pair; Enc; Z ∼ Z ′ and Z � Z ′

F AIL

Rule 4’. (Clash with Pair)

Eq 	 {Z = a}; Pair 	 {Z = U1.U2}; Enc
F AIL

Rule 4”. (Clash with Constant)

Eq 	 {Z = a, Z ∼ b}; Pair; Enc
F AIL

Rule 5. (SNF Fails)

Eq; Pair; Enc; Z ∈ G, α ∈ H∗, Z �α Z , α �→∗
D ε

F AIL

Rule 6. (Equate Some Keys)

Eq; Pair; Enc; U, V are keys of P
Eq ∪ {U = V}; Pair; Enc

The notation 	 in rules 3a, b signifies disjoint union; it means here that the enc-
equation in the numerator is replaced by the two enc-equations in the denominator;
this might need the variables X1, X2 in rule 3a (resp. Z1, Z2 in rule 3b) to be fresh,
but this is not mandatory. Rules 1, 1′ and 2 are referred to as “Simplif ication Rules”,
and rules 3a and 3b as “Splitting Rules”. Rules 4, 4′, 4′′ and 5 are called “Failure
Rules”. All these rules 1, 1′, 2, 3, 4, 4′, 4′′, 5, constitute our “Trimming Rules”.

A problem P in standard form is said to be trimmed iff none of the trimming rules
is applicable. The ‘Occur-Check’ rule 4 is meant to eliminate easy cases of unsolvabil-
ity, such as when P contains two equations of the form Z = enc(X, T), Z = X.Y;
similarly, rule 4′ (resp. rule 4′′) eliminates unsolvable cases such as Z = a, Z = X.Y
(resp. Z = a, X = b , Z = enc(X, Y)). The graph of the current problem is kept irre-
dundant by rule 1′. The rules 3—which might create fresh splitting variables— are to
be applied only if none of the other rules 1 through 5 are applicable; more precisely:
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the Failure rules are to be applied with the highest priority, followed by rules
1a, 1b , 1′ and 2, and then by rules 3. Rules 1, 2, 3 are don’t-care nondeterministic.
Rule 6 is don’t-know nondeterministic; it is to be applied outside the scope of the
trimming rules (in particular rule 1b), and its role is to produce variants of P . It is
easy to check that the set of solutions of P is equal to the union of the solution sets
of the trimmed problems derived by applying all the inference rules to P .

We will show shortly that such an inference procedure terminates on any problem
given in standard form. Hence only finitely many trimmed problems can be derived
from any problem P given in standard form. For proving termination, we shall be
needing the following notions.

(1) Let P be any such given problem. We introduce a binary, infix operator ‘◦’
representing pairs (but denoted differently, to avoid confusion); and define
Tp(P) = Tp as the set of all terms formed over X , the symbol ‘◦’, and the set of
all homomorphisms hT – where T runs over all the keys of P .

– Any pairing X = X1.X2 in P , is seen as a rewrite rule: X → X1 ◦ X2;
– Any equation Z = enc(X, T) in P gives rise to two rewrite rules:

Z →hT X, and X →hT Z .
Rules of the former type will be called pairing rules; those of the latter type
will be respectively called h-rules or h-rules, with key T, and with target X
for the first among them, and Z for the second. We define RP to be the
rewrite system formed of all such rules. By a critical conf iguration in RP ,
we mean any given pair of distinct rewrite rules of RP such that:

– both rules have the same variable X ∈ XP to their left;
– if one of them is a h-rule (resp. h-rule), then the other rule must be a pairing

rule or a h-rule (resp. pairing rule or a h-rule);
– if both are h-rules (or h-rules), then they have the same key or the same

target.

The common lhs variable of a critical configuration is referred to as its peak.
(2) For any such given problem P , and any given critical configuration wrt RP

with X ∈ X as its peak, let nX stand for the number of distinct nodes on GP to
which there is a loop-free, non-empty chain from X formed only of h- or h- arcs.
The weight of the critical configuration is then defined as the (lexicographically)
ordered pair of integers (spd(X), nX).

Lemma 1 Trimming terminates on problems given in standard form.

Proof Given P in standard form, we only need to consider the inferences other
than 4, 4′, 4′′, 5, which—to be applied whenever applicable—would yield ‘FAIL’. We
define the measure m(P) of P as the lexicographic combination of 2 components:
m1 = m1(P), m2 = m2(P), where:

– m1 is the number of distinct key variables appearing in P ;
– m2 is the multiset of weights of all the critical configurations over RP .
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Consider now any inference on P , by a rule other than 4, 4′, 4′′ and 5. It is not hard
to check that none of the inference rules will increase the sp-depth of a variable. We
then have the following:

– Inference rule 1b will lower m1.
– Inference rules 1a, 2—followed by applying 1′ en bloc—will either lower m1,

or will leave m1 unchanged but lower m2.
– The Splitting inference rules 3a, 3b—followed by applying 1′ en bloc —

will leave m1 unchanged but lower m2.

A few words by way of justifying the last two claims: If some nodes ‘become equal’
under the inferences, but if the number of keys is not lower for the new problem
derived, then we have the following situation:

– either some of the critical configurations have been eliminated, while
the others remain unchanged;

– or some ‘current’ critical configurations are replaced by one or more new ones.

In the latter case, for each of the new critical configurations with Y as a peak,
replacing an old one with X as a peak, we have: either spd(Y) < spd(X), or spd(Y) =
spd(X) and nY < nX . This follows from the definition of spd and of nX , nY . The strict
inequality on the n’s holds for Splitting, because the enc/dec arc between Y and X
gets cut under such an inference. The contribution of all the replacing peaks Y to
the measure of the modified problem is thus strictly smaller than that of X to the
measure of the initial problem. 
	

Example 1

(i) The following problem is not in standard form:

T = Z , Z = enc(X, Y), X = dec(T, Y), X = U.V, Y = Y1.Y2, Y2 = a.

We first put it in standard form:

T = Z , Z = enc(X, Y), T = enc(X, Y), X = U.V, Y = Y1.Y2, Y2 = a.

Under variable elimination (rule 1′), we first get:

T = Z , Z = enc(X, Y), X = U.V, Y = Y1.a, Y2 = a;
which has one critical configuration: Z ←hY X → U ◦ V. Only a splitting
inference is applicable (on Z ); the trimmed equivalent that we get is:

T = Z , Z = Z1.Z2, X =U.V, Y =Y1.a, Y2 =a, Z1 =enc(U, Y), Z2 =enc(V, Y).

(ii) The following problem:

Z = enc(X, Y), Y = enc(Z , T), T = enc(Z , W), Y = Y1.Y2.

is in standard form, but not trimmed: we have one critical configuration,
namely: Z ←hT Y → Y1 ◦ Y2, with peak at Y. Now spd(Y) = 1, but nY = 3 (we
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can go from Y to T, X, Z using only enc/dec arcs); so m2 here is {(1, 3)}, and
the measure m(P) of the problem is (3, {(1, 3)}).
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Trimming needs here several splitting steps. We first write Z = Z1.Z2, and re-
place the second enc equation by the 2 equations: Y1 = enc(Z1, T), Y2 = enc(Z2, T);
we get a problem with two critical configurations, both with peak at Z , spd(Z ) = 1
and nZ = 2; so the measure is lowered to (3, {(1, 2), (1, 2)}): The evolution of the
dependency graph of the problem under splitting is illustrated below (where, for
readability, we have not put in the h-arcs).
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Finally, we write T = T1.T2 and replace the last enc equation by: T1 = enc(Z1,

W), T2 = enc(Z2, W). We get the following trimmed equivalent, with measure (3,

{(0, 0)}:
Z1 = enc(X1, Y), Z2 = enc(X2, Y),

Y1 = enc(Z1, T), Y2 = enc(Z2, T),

T1 = enc(Z1, W), T2 = enc(Z2, W),

Y = Y1.Y2, Z = Z1.Z2, X = X1.X2, T = T1.T2.

Remark 1

(i) The number of equations in a trimmed equivalent of a problem P given in
standard form—derived at the end of the inference procedure, when it does not
FAIL—can be exponential wrt the number of initial equations in P ; a typical
illustrative example is the following:

X1 = enc(X2, U1) X11 = enc(X12, U2) X111 = enc(X112, U3)

X1 = X11.X12 X11 = X111.X112 X111 = X1111.X1112

(Intuitively: Splitting here fills out a full binary tree with the fresh variables
created.)

(ii) A key variable of a problem P (in standard form), can also be a ‘message
variable’, as the Y, T of Example 1.(ii) above. Note that as a key it will remain
unaffected under trimming, even when it gets split as a ‘message’. So, the
number of keys of a problem remains unaffected under trimming.

A problem P is said to be admissible iff it is a trimmed equivalent of itself. Such
a problem P is divided into two sub-problems: one containing only the pairings
and equalities of P , and the other containing only its enc equations; this latter sub-
problem will be referred to as the kernel of P . A problem P will be said to be simple
if f it is its own kernel, i.e., if P is admissible and has no pairings.

The graph of an Admissible Problem The dependency graph GP of such a problem
P is irredundant: if X, V are two distinct nodes on GP , then X = V is not an equality
in P . An admissible problem P will actually be seen as a combination of its kernel
P ′, and its ‘other’ subproblem P ′′ consisting only of the pairings and equalities; and
its graph G = GP as a ‘join’ of the dependency graph G′ = GP ′ of its kernel P ′—
each arc of which is labeled with an h or an h—and the dependency graph G′′ of the
subproblem P ′′, each arc of which is labeled with either p1 or p2.

Lemma 2

(i) From any given node Z on G′ there is at most one loop-free path on G′ to any
other given node X on G′.

(ii) For any given word α over {p1, p2}, and any given node Z on G′′, there is at
most one directed path outgoing from Z that is labeled by α.
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Proof Assertion (i) follows from SNF, and assertion (ii) from Inference rule 2, and
the fact that the dependency graph is irredundant (rule 1b). 
	

Definition 2 Between the variables of an admissible problem P , we define a relation
called key-dependency and denoted as �k:

• Z �k X iff Z �= X, and there is a directed path from Z to X on the graph GP
that contains an arc labeled with hX ′ or hX ′ , where X ′ = X or X ′

� X.

An admissible problem P and its graph GP are said to satisfy the condition
NKDC—short for ‘No-Key-Dependency-Cycle’, if f the following two conditions hold:

(i) The graph G = GP does not contain any node X such that X �+
k X,

where �+
k is the transitive closure of the relation �k.

(ii) If the graph G′ of the kernel P ′ of P contains a constant node a,
then a is �k-minimal on its connected component.

These relations play a key role in our method for solving a trimmed problem.

3.1 Discriminating Solutions for Admissible Problems

Let P be any given admissible problem. The case where the kernel of P is empty—
i.e., when P contains only equalities and pairings—is trivial, as is easily checked; we
shall therefore assume henceforth that P has a non-empty kernel P ′. Our objective
in this section is to prove the following proposition:

Proposition 1 An admissible problem admits a discriminating solution if and only if
it satisf ies NKDC.

NKDC is Necessary In this paragraph, θ stands for a discriminating substitution
on the set X . For any X ∈ KP , h̃X stands for either hX or its conjugate hX ; and
C, C′, . . . , referred to as contexts, stand for words over the h̃X . For any term t, |t|
stands as usual for its size. If θ solves P , then it must also solve P ′. Now, we know
that solving P ′ amounts to solving the unification problem modulo the convergent
system R formed of the following two rules:

(R) : enc(dec(x, y), y) → x, dec(enc(x, y), y) → x.

Lemma 3 Assume that Y = h̃X(C(t)) for some context C, and term t. Then, for any
R-normalized ground substitution θ , we have that θ(Y) is either a subterm of θ(C(t))
or θ(X) is the outermost key of θ(Y).

Proof

Case i) Where the encryption (or decryption) key θ(X) gets cancelled by the
outermost decryption (or encryption) key of the term θ(C(t)): in this case,
θ(Y) must be a subterm of the term θ(C(t)).

Case ii) Where the key θ(X) does not get cancelled, by the key just below in the
term θ(C(t)): in this case θ(X) will remain the outermost key of θ(Y). 
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Lemma 4 Let X, Y be two dif ferent nodes on the graph of the kernel P ′ of some
admissible problem P ; and suppose the (unique) loop-free, directed path on G′ = GP ′

from Y to X contains an arc labeled with an h̃X ′ , where X ′ = X or X ′
� X. Then, for

any discriminating R-normalized ground substitution θ , we have: |θ(Y)| > |θ(X)|.

Proof We observe to start with, that P ′ being itself admissible, remains unmodified
under inference rule 1; so the following holds: Suppose h̃T , h̃T ′ label two successive
arcs on any loop-free path on G′, then:

– either T = T ′: in which case, the two successive arcs have to be both enc-arcs,
or both dec-arcs;

– or T �= T ′: in which case θ assigns different ground normal terms to T and T ′.

In either case, it follows that the two keys h̃θ(T), h̃θ(T ′)—images under θ of the two
successive labels—cannot cancel each other.

Now, by assumption, between the two nodes X, Y on G′, we have a relation of the
form Y = C′(h̃X ′(C(X))), for some contexts C′ and C, where we may assume wlog
that the context C contains no homomorphism of the form h̃X ′ such that X ′ = X or
X ′

� X. So we have θ(Y) = θ(C′)(h̃θ(X ′)(θ(C)(θ(X))). From what we observed above
(namely: the successive keys in the term to the right cannot cancel each other), and
from Lemma 3, it follows that the assertion of the lemma needs to be checked only
in the case where the contexts C, C′ are empty; i.e., when θ(Y) = h̃θ(X ′)(θ(X)). But
then the term to the right is R-irreducible, due to our assumption on X ′. We are
done. 
	

Corollary 1 Let P be any admissible problem on which our inference procedure does
not fail; and suppose the graph G′ = GP ′ of its kernel P ′ contains a constant node, for
some ground constant a. Then a is minimal for the relation �k on G′.

Proof Immediate from the preceding Lemma. 
	

Lemma 5 Let P be any admissible problem, that is solvable; and suppose the graph
GP of P does not satisfy the criterion NKDC; then there is no discriminating solution
for the kernel P ′ of P , so no discriminating solution for the problem P .

Proof Suppose P admits a discriminating solution θ , but GP does not satisfy NKDC;
constants are �k-minimal by Corollary 1, so this means that there are two nodes Y, Z
on the graph GP ′ of its kernel P ′ such that:

– some arc on the (unique) path on GP ′ from Y to Z uses a Y ′ as key, where
Y ′ = Y or Y ′

� Y;
– and also that some arc on the (unique) path from Z to Y (which has to be the

reverse of the path from Y to Z , cf. Lemma 2), uses a Z ′ as key, where Z ′ = Z
or Z ′

� Z .

But then, by Lemma 4 above, we would have |θ(Y)| > |θ(Z )| > |θ(Y)|—absurd. 
	

It follows from Lemma 5, and Corollary 1, that the two conditions for NKDC are
indeed necessary for an admissible problem to have a discriminating solution.
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Example 2 Consider the following (simple) problems:

(i) P1 : Y = enc(Z , X), X = enc(Z , Y)

(ii) P2 : Z = enc(X, X), Z = dec(T, T)

(iii) P3 : U = enc(X, Z ), Z = enc(U, Y), Y = enc(U, X)

(i) P1 does not admit any discriminating solution: Indeed we have Y �k X �k Y,
so, if there is a solution, it must assign the same value to X, Y; thus, if the
keys are to be unequal, then P1 would be unsolvable; or else, we could have
guessed the key equality X = Y (inference rule 6), and reduced the problem
to one single equation X = enc(Z , X), which is solvable as Z = dec(X, X).

(ii) Problem P2 is unsolvable: First, we have X �k T �k X, so P2 does not admit
any discriminating solution; if the keys are to be unequal, one deduces then
that there is no solution. On the other hand, if we had guessed X = T, the
problem to solve would reduce to: Z = enc(X, X), Z = dec(X, X), for which
there can be no solution at all modulo the 2-rule system R; inference rule 5
(‘SNF fails’) applies, leading to failure.

(iii) No discriminating solution is possible for P3, since X �k Z �k Y �k X. And
guessing an equality on the keys, such as e.g., Y = Z , would transform the
problem into one of the two problems just studied. 
	

NKDC is Suf f icient Let P be an admissible problem (with a non-empty kernel),
satisfying NKDC. We propose then a method for constructing a discriminating
solution, assuming that the graph GP is connected (the general case follows). The
idea is easily understood on an example. First a definition.

Definition 3 Let � be any connected component on the graph GP of P .

i) A base-node on �, for P and its kernel P ′, is any node V0 ∈ � that is minimal for
the key-dependency relation �+

k .
ii) An end-node for P on � is any node X such that:

– there is an incoming path at X each arc of which is labeled with either p1

or p2;
– there is no outgoing arc from the node X.

On any given component �, there may be several base-nodes and end-nodes; note
also that there may not be any end-node.

Example 3 Consider the following trimmed problem:

(P) : Z = X.W, X = enc(U, V), U = enc(V, T), V = enc(Y, U)

whose kernel P ′ is formed of the three enc-equations. Its graph is connected, and
there is a single maximal (loop-free) path between the nodes X and Y:

1
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h h h
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U V Y

U

U
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This graph satisfies NKDC: indeed, we only have two key-dependencies X �k V
and Y �k U ; there are no key-dependency cycles, and both U and V are minimal
for the relation �k. So, either U or V can be chosen as a ‘base-node’; W is the only
‘end-node’. Thus, if we take U to be the base-node, the following substitution is a
discriminating solution for P :

V = hT(U), Y = hU (V) = hU hT(U), X = hV(U), Z = X.W

with U, T and W arbitrary. The value assigned by this solution to any given node (or
variable) is obtained by ‘propagating’ the values assigned to the chosen base-node
and end-node, along the unique paths from the given node to these latter nodes;
propagation is done by using the homomorphisms (resp. pairings) which label the
arcs of these unique paths.

Before we proceed to establish the principal result of this paragraph (Lemma 7
below), we first prove an auxiliary result whose role is technical.

Lemma 6 If P is admissible and solvable, then no connected component of the graph
G′ of its kernel P ′ can contain two distinct constant nodes.

Proof Suppose a, b are two distinct constant nodes on some connected component
of G′. Then we have a path from a to b formed only of enc- and/or dec- arcs. So,
we would have a ∼ b under the relation ‘∼’ (cf. Definition 1); and inference rule 4′′
(Clash with Constant) would have led to failure. 
	

Lemma 7 If P is admissible and satisf ies NKDC, then P admits a discriminating
solution.

Proof We show that the kernel of P admits a discriminating solution. (Such a
substitution, under a condition of minimality, can be extended as a solution to
the entire problem, as illustrated in the Example above, via propagation on every
connected component of GP . For a formal algorithm, see Section 3.2 below.) So we
assume P itself to be simple, and GP to be connected.

On every given connected component � of the graph G = GP of P , choose some
base-node V; if � contains a constant node, choose that as the base-node. (Note that
a constant node has to be �k-minimal on � by Corollary 1; also, by Lemma 6, �

cannot contain more than one constant node.) Then, for any given node X on �, we
solve for X by propagating to X any value v that is assignable to the chosen base-
node V: i.e., we set X = αXV(v), where αXV is the word over H labeling the (unique)
loop-free path from X to the base-node V. Such an assignment is sound; i.e., the term
assigned to X is well-defined: indeed, none of the arcs along this path can be labeled
with a hX or hX : otherwise we would have V �k X, and V wouldn’t be �k-minimal
on �.

Note that if T is any key of P which is not also a node on GP , then T is ‘unaffected’
by such a substitution, i.e., it keeps its symbolic (or constant) value. Note also that if
X, Y are any two distinct variables not ‘made equal by any equalities’ of P , then they
must correspond to distinct nodes of GP ′ , then (by admissibility), the words labeling
the paths from X, Y to the base-node V must be distinct, so αXV(v) �= αYV(v) by
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Perfect Encryption. We deduce that the substitution constructed is indeed a discrim-
inating solution. 
	

To conclude this subsection, we observe that if σ is a non-discriminating solution
for P , then there is a variant P1 of P , obtained by applying Inference Rule 6 to equate
some further keys (possibly followed by further trimming rules) as appropriate, such
that σ defines a discriminating solution for P1.

3.2 Solving a Problem in Standard Form

We can formulate now a non-deterministic decision procedure for solving any HE-
unification problem, given in standard form. For that, we need the notion of a
minimal discriminating solution for the kernel of a trimmed problem (condition
needed for propagation as solution to the entire problem):

Definition 4 Let P be a HE-unification problem in trimmed form, P ′ its kernel, and
σ, τ two discriminating solutions for P ′. We define σ � τ iff:

– Dom(σ ) � Dom(τ ), and
– ∃ variables Z , X of P such that Z � X and Z ∈ Dom(σ ) � Dom(τ ).

σ is said to be a minimal discriminating solution for the kernel P ′ iff it is minimal
for the strict relation �.

A minimal discriminating solution for the kernel P ′, of a trimmed problem P , thus
does not instantiate any key variable that is not also a node on GP ′ .

Example 4 The following problem is in trimmed form :

V = V1.V2, V1 = enc(W1, V), V2 = enc(W2, V).

Its admissible kernel is formed of the two enc-equations above; its graph has two
connected components, respectively with V1 and V2 as base-nodes (there are no end-
nodes). Among the following two discriminating solutions for this kernel, constructed
as described in the previous lemma:

α : W1 = dec(V1, V), W2 = dec(V2, V), V1 = a, V2 = b ,

τ : W1 = dec(V1, V), W2 = dec(V2, V), V1 = a, V2 = b , V = c

only α is minimal: we have τ � α.

The Algorithm A Given: An HE-unification problem P , in standard form;
G = the dependency graph for P .

1a. Non-deterministically generate a non-Failing trimmed equivalent of P .
1b. Replace P by the trimmed equivalent thus obtained; set

P ′ = the kernel of P ; G′ = the sub-graph of GP for P ′.
2a. Check for the criterion NKDC on every connected component of G′;
2b. If NKDC is unsatisfied on some component, exit with ‘Fail’;
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3a. On each connected component � of G′, choose a base-node V� for P ′:
if there is a constant node choose that as base-node,
otherwise choose any node that is minimal for the relation �+

k ;
3b. Build a minimal discriminating substitution for the variables on each compo-

nent, derived via propagation from V� to each of them (as described in the
previous lemma). Let σ ′ be the substitution, solution for P ′, thus obtained.

4a. On each connected component of G, choose all the end-nodes (if any).
4b. To the variables of the equalities and pairings of G that are not in G′, assign

the values deduced (via propagation) from σ ′, and the values assigned to the
end-nodes (if any); return σ = substitution thus obtained, as solution to P .

Note that the Step 4b of the algorithm assigns a unique, well-def ined, term modulo
HE, to the variables of G which are not in G′: indeed P being trimmed, we have the
following:

– No two distinct pairing equations of P can have the same variable to the left; and
the variable to the left of any pairing equation is not a node on the (sub)graph
GP ′ .

– Variables to the left or to the right of the equalities of P have a unique
representative node on the graph.

Proposition 2 The algorithm A is sound and complete.

Proof Given P in standard form, and P1 a problem derived from P by applying A,
let σ1 be a solution for P1; one can then deduce from σ1 a solution σ for P ; so A is
sound. The algorithm A is complete as well: this follows from the fact that NKDC is
a necessary condition for any simple problem to admit a discriminating solution; and
on the other hand, if there is a non-discriminating solution σ for P , then, following
A, we can derive a trimmed variant of P (after an inference based on Rule 6), for
which σ gives a discriminating solution. 
	

Proposition 3 Unif ication modulo HE, based on algorithm A, is NP-hard and is in
EXPTIME wrt the number of initial equations, for any problem P given in standard
form.

Proof We first observe that an upper bound N(P) for the number of equations
generated by trimming P can be given as follows: Let Variant(P) be the set of all
‘variants’ of P obtained by adding some further equalities between the keys; let m be
the sup of the number of equations in all these variants, and let d stand for the sup of
the sp-depths of the variables in these variants. Then N(P) ≤ m 2d.

Once P is trimmed, the algorithm A runs on its kernel P ′ in polynomial time
wrt the number of equations in P ′: indeed, checking for the NKDC criteria on any
component of GP ′ can be done in polynomial time wrt the number of nodes on
the graph GP ′ ; and solving for P in terms of the solutions for P ′ is also done in
polynomial time. We therefore get an EXPTIME upper bound for the algorithm A.

The NP lower bound follows from our next Proposition, where we actually prove
a more precise statement. 
	

Proposition 4 Solving simple HE-unif ication problems is NP-complete.
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Proof We just saw that solving simple problems is in NP. So, we need only to prove
the NP lower bound; that is done by reduction from the following so-called Monotone
1-in-3 SAT problem:

• Given a propositional formula without negation, in CNF over 3 variables, check
for its satisfiability under the assumption that exactly one literal in each clause
evaluates to true.

This problem is known to be NP-complete [17]. Now consider the simple problem
(without pairings) derived from the following unification problem over the 2-rule
system R, involving 3 variables x1, x2, x3:

dec(enc(dec(enc(dec(enc(a, b), x1), b), x2), b), x3) =? dec(enc(a, b), c).

Obviously, solving this problem amounts to saying that exactly one of the three
variables x1, x2, x3 is assigned the term c. 
	

Remark 2 It turns out that the Tiden-Arnborg algorithm [18] for unification modulo
one-sided distributivity takes exponential time in the worst case [15]. (Note: This is
in contradiction with an assertion of [18], where a polynomial complexity estimate is
given for this unification problem.)

4 Illustrative Examples

The solutions for a problem P that the algorithm A returns, are substitutions that
are built “lazily” (in its steps 3a through 4b); i.e., the variables of P get instantiated
only if and when needed, as is shown in Example 5 below.

Example 5 Consider the following problem:

(P ′) : Z = enc(X, Y), Y = enc(Z , T), T = enc(Z , W).

The problem is simple, and its dependency graph is connected:

Y
Z

Y T

X
hY

hW

hT hWhT

h

The graph does satisfy NKDC: the key-dependency relations are X �k Y �k T;
so, T is the only base-node here. We solve for Z and Y, along the path from Y
to T: namely Y →hT Z →hW T; choosing arbitrarily T, W we get Z = hW(T), Y =
hT hW(T) as solutions for Z , Y; and for the variable X, connected to this path at
Z , we deduce get X = hY(Z ) = hY hW(T). (Note: the base-node T has not been
assigned any specific term here.)

Suppose now, the problem (P ′) is the kernel of a non-simple problem, e.g.,
(P) : Z = enc(X, Y), Y = enc(Z , T), T = enc(Z , W), X = a. Then, for the above
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solution for its kernel to be valid, we need to check if a = hY hW(T) holds; this can be
done by instantiating T, now, as T = hWhY(a).

Example 6 The following simple problem is unsolvable :

X = enc(Y, T), Y = enc(Z , X), Z = enc(W, V), W = enc(V, S)

Indeed, its graph (is connected and) fails to satisfy NKDC:
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Indeed we have X �k V �k X. So, no discriminating solution can exist; on the
other hand, it is easy to check that, no matter which keys are ‘made equal’ (via
inference rule 6), NKDC will continue to fail for the variant obtained.

5 Other Systems for Modeling Homomorphic Encryption

(a) HE1 = A convergent system for homomorphic encryption, where decryption is
modeled as “encryption with the inverse key”.

p1(x.y) → x enc(enc(x, y), g(y)) → x

p2(x.y) → y enc(enc(x, g(y)), y) → x

enc(x.y, z) → enc(x, z).enc(y, z)

The method we presented above, for HE, works unchanged for this system
HE1: indeed, all we need is the fact that every homomorphism arc on the
dependency graph of a problem admits an inverse homomorphism arc. It
follows that the method presented in this paper can be easily adapted to handle
asymmetric keys.

(b) The following rewrite system HE2 assumes that dec is only a left-inverse for enc,
and not a right-inverse as well.

p1(x.y) → x dec(enc(x, y), y) → x

p2(x.y) → y enc(x.y, z) → enc(x, z).enc(y, z)

HE2 is non-convergent, but can be made convergent by adding a single schema-
tized rewrite rule.1 The method we gave above for the system HE cannot be made
to work for the system HE2. However, Active Deduction modulo HE2 can be shown
to be decidable, via an Inference procedure for solving a set of constraints known
as Cap constraints, based on a notion of Cap Unif ication, cf. [3] (the definition
of this notion is briefly recalled in the next section, along with a small illustrative

1Alternatively we can show that the other three rules are confluent and terminating modulo the
distributivity rule.
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example). It follows that unification modulo HE2 is decidable too, as was observed
in the Introduction.

6 Extending HE-Unification for Analyzing Protocols Under ECB

Our goal here is to briefly illustrate a technique for extending unification modulo any
given intruder theory E into one known as cap unif ication modulo E , for modeling
and analyzing cryptographic protocols. We shall be doing this for the theory HE, so
assuming that the encryption mode is ECB. (Our presentation here is an adaptation
from a more complete and detailed development, given in [3].)

Typically, any given protocol step is seen as a pair ({t1, . . . , tn}, t) referred to as a
deduction rule, where the ti’s and t are all terms, over some suitable signature; we
shall denote such a rule as {t1, . . . , tn} � t, with the following intended semantics: if σ

is a substitution such that the terms tiσ, 1 ≤ i ≤ n, are already “part of the intruder
knowledge”, then (s)he can deduce the term tσ .

Protocol rules are used to simulate a protocol step in a protocol session. It suffices
to consider the analysis of one protocol session, since the case of several sessions
can be reduced to that of a single session, via standard techniques [10]. Thus, every
protocol rule is used only once; and when the variables of a rule are instantiated, their
values are propagated to all the other rules; therefore, the variables of a protocol rule
are often said to be ‘rigid’ variables.

The sequence of steps in any given protocol session is then transformed into an
ordered set of constraints, called Cap Constraints. (Note: these have also been called
“Deducibility constraints” in many related works; cf. e.g. [6, 14].). Cap Unification
modulo E is a technique for solving the set of all Cap Constraints thus derived,
from the steps of the protocol session that the ‘intruder’ can interact with (or
exploit), for gaining further knowledge. A few definitions are appropriate before we
proceed.

Definition 5

(i) Let S be a given set of terms over the signature of HE. Then the Cap Closure
of S is the set of terms denoted as Cap(S), and defined as follows:

– S ⊆ Cap(S)

– If ti ∈ Cap(S), for all 1 ≤ i ≤ n, and f is a symbol in HE of arity n, then
f (t1, t2, . . . , tn) ∈ Cap(S).
(It is assumed here, that if f is p1 or p2, then its argument t must be a pair.)

(ii) A cap constraint over HE is a constraint written in the form S �HE t, where S
is a set of terms, and t is a term. It is solvable iff there exists s ∈ Cap(S), and a
substitution σ such that sσ = tσ mod HE. We call σ a solution of S �HE t.

Let � = {Si �HE ti, 1 ≤ i ≤ n} be any given set of cap constraints. A substitution
σ is said to be solution for � iff σ is a solution for every cap constraint in �.

An Illustrative Example We present here a small (Needham–Schroeder like) toy
protocol, and an attack on it, to illustrate how Cap Unification captures attacks. (In
[3], it is also shown how to transform a sequence of randomly chosen steps of a given
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protocol session, into a sequence of cap constraints satisfying the property that any
variable that appears in the LHS of some constraint, has already been ‘deduced’; i.e.,
has already appeared in the RHS of an earlier constraint in the sequence).

A, B, I principals
na, nb (fresh) nonces
K′ (symmetric) longterm key shared between A and B.
k a session key that A sends to B, paired with na and encrypted with K′.

1. A → B : enc(k.na, K′)
2. B → A : enc(na.nb , K′)
3. A → B : nb

We observe that:

B’s point of view on Step 2 is If Receive: enc(x.y, K′), then Send: enc(y.nb , K′)
A’s point of view on Step 3 is If Receive: enc(na.z, K′), then Send: z

The following is an attack by intruder I, impersonating B, and intercepting the
message sent at step 1:

1’. A → I(B) : enc(k.na, K′)
2’. I(B) → A : enc(na.k, K′)
3’. A → I(B) : k

This attack is based only on homomorphism, and is deducible by cap unification:
(Knowing how the protocol is specified) Intruder I needs only to solve the following
cap constraints modulo HE:

{enc(k.na, K′)} �HE enc(na.z, K′)
{enc(k.na, K′), z} �HE k

σ : z = k is a solution. Indeed, let s = p2(enc(k.na, K′)) . p1(enc(k.na, K′)); then the
term s is in the cap closure of intruder’s initial knowledge, namely the message (s)he
intercepted in step 1′; and we have σ(s) =HE σ( enc(na.z, K′) ).

7 Conclusion

We have presented a unification procedure for the theory HE modeling homo-
morphic encryption, with the hope that it can be used for analyzing cryptographic
protocols employing the ECB encryption mode. (As observed in the Introduction,
despite being vulnerability-prone, ECB is still being used in several commercial
protocols.) On the other hand, many protocols employ other encryption modes, such
as Cipher Block Chaining using the AC-operator XOR (cf. [9, 11]), to overcome
the vulnerability inherent in ECB; it is possible to model such a CBC in terms of a
finite, convergent, AC-rewrite system, cf. the concluding section of [3]. It would be of
interest to propose a procedure based on unification and cap unification modulo such
a rewrite system, that would be complete for active (or at least passive) deduction.

We also believe that the techniques we have employed in this work are general
enough to be customizable for some other algebraic properties; and that this work
would be a first step towards deriving a unification-based algorithm for protocol
security, when the crypto-operators satisfy additional algebraic properties besides
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DY (cf. e.g., [7, 13]). It seems in particular possible to adapt the inference procedure
given here into one that is complete for unification modulo a simple rewrite system
modeling a cipher block chaining technique using no AC-operators.

Acknowledgements Our thanks to the anonymous referees for their comments, which have helped
us clarify some of the technical details.

Appendix

The decision procedure given in [1], based on forming the cap closure of terms, was
shown to be complete for passive deduction modulo certain classes of convergent
intruder systems. This holds in particular for the so-called �-strong systems, of
which the system HE studied above is a special case. Our objective here is to
show that unification modulo general �-strong systems is undecidable; we get as
a corollary that passive deduction and unification may be unrelated. We first recall
some notational preliminaries from [1].

We assume given a proper subset P of symbols of the given signature �—referred
to as the set of public symbols – such that � � P contains at least one ground
constant; the symbols of � � P will be said to be private. Any convergent rewrite
system R, such that the top-symbol of the lhs of every rule in R is a public symbol,
will be said to be an intruder theory.

Suppose R0 is any given convergent intruder system. An n-ary public symbol f is
said to be transparent in/for R0, or R0-transparent, if and only if, for all x1, . . . , xn,
there exist ‘context-terms’ (with a single hole) t1(�), . . . , tn(�) such that the following
holds: ti[� ← f (x1, . . . , xn)] →∗

R0
xi, for every 1 ≤ i ≤ n. For instance, the public

function ‘.’ (“pair”) is transparent for the system: p1(x.y) → x, p2(x.y) → y, where
p1 and p2 are both public. We shall consider public constants as transparent for any
intruder system R0. A public function symbol is R0-resistant (or simply resistant if
R0 is clear from the context) iff it is not R0-transparent. Private functions will be
considered as resistant for any intruder system R0. By definition, an R0-resistant
term is one whose top-symbol is R0-resistant.

Let now R be any given convergent intruder theory, containing a dwindling
subsystem. We assume given a simplification ordering � on terms containing R,
which is precedence based (such as rpo or lpo), and is such that every private symbol
is greater than any public symbol, under �. Let � be a subsystem consisting of (some
of the) dwindling rules of R. A rewrite rule l → r ∈ R is said to be �-strong, wrt the
given simplification ordering �, if and only if every �-resistant subterm of l is greater
than r wrt �. The intruder theory R is said to be �-strong wrt � if and only if every
rule in R � � is �-strong wrt �.

The rewrite system HE studied above is �-strong, if � is taken to be the subsystem
formed of the four dwindling rules of HE, and every function symbol is considered
public: indeed the lpo ordering built over the precedence enc > dec > . > p1 > p2 is
ground total and contains HE; the symbols ‘dec’ and ‘enc’ are both �-resistant.

Proposition 5 Unif ication modulo general, convergent, �-strong theories is undecid-
able.
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Proof The proof is by reduction from a restricted version of the modified Post
Correspondence Problem (MPCP).

Let � = {a, b}, and let P = {(φi, ψi) | i = 1, . . . , n} ⊆ �+ × �+ be a finite se-
quence of non-empty strings over � for which the following restricted version of
the Modified Post Correspondence Problem (MPCP) is undecidable:

Instance A non-empty string α ∈ �+.
Question Do there exist indices i1, . . . , ik ∈ {1, . . . , n} such that

αφi1φi2 . . . φik = ψi1ψi2 . . . ψik ?

For any string w over �, let w̃(x) denote the term formed by treating a and b
as unary function symbols and the concatenation operator as function composition;
more precisely, we set:

˜λ(x) = x, ãu(x) = a(̃u(x)), ˜bu(x) = b (̃u(x)).

Let f be a ternary function and g1, . . . , gn be distinct unary function symbols.
Consider then the system S formed of the following rewrite rules:

f (˜φi(x), gi(y), ˜ψi(z)) → f (x, y, z)

for every pair (φi, ψi) of the MPCP. We also add a new unary function symbol h and
the following set � of dwindling rules:

h(a(x)) → x, h(b(x)) → x, h(gi(x)) → x, i ∈ {1, . . . , n}.

The effect of this addition is that the monadic functions a, b , g1, . . . , gn are all
�-transparent, whereas f is �-resistant. The role played by the gi is to ensure that
the rewrite system has no critical pairs. The system R formed of all these rewrite
rules (i.e., S ∪ �) is therefore convergent and �-strong (all function symbols being
considered public). It is not hard then to see that the following unification problem

f (X, Y, α̃(X)) =?
R f (c, c, c)

has a solution if and only if the instance of the restricted MPCP above has a solution.
The “if” part is fairly straightforward: If αφi1φi2 . . . φik = ψi1ψi2 . . . ψik for some

indices i1, . . . , ik ∈ {1, . . . , n}, then the substitution

τ = {X ← ˜φi1
˜φi2 . . . ˜φik(c), Y ← gi1 gi2 . . . gik(c)}

is a solution for the unification problem: indeed, we have

α̃(τ (X)) = α̃ ˜φi1
˜φi2 . . . ˜φik(c) = ˜ψi1

˜ψi2 . . . ˜ψik(c).

On the other hand, suppose θ is a solution for the above equation. Without
loss of generality it can be assumed that θ is R-normalized. Then the following
necessarilty holds: f (θ(X), θ(Y), α̃(θ(X))) −→!

S f (c, c, c). Now a solution for the
MPCP instance can be obtained from θ(Y). 
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