
College of Computing and Information

Computer Science Department

Unification modulo Synchronous Distributivity

SUNYA-CS-12-01

Siva Anantharaman

LIFO - Université d’Orléans

Serdar Erbatur

Dept. of Computer Science

University at Albany—SUNY

Christopher Lynch

Dept. of Mathematics and Computer Science

Clarkson University

Paliath Narendran

Dept. of Computer Science

University at Albany—SUNY

Michael Rusinowitch

Loria-INRIA Lorraine

Unification modulo Synchronous Distributivity

February 6, 2012

Abstract

Unification modulo the theory defined by a single equation which specifies that a binary operator
distributes synchronously over another binary operator is shown to be undecidable. It is the simplest
known theory, to our knowledge, for which unification is undecidable: it has only one defining axiom
and moreover, every congruence class is finite (so, the matching problem is decidable).

Keywords: Equational unification, Intercell Turing machine, Decidability.

1 Preliminaries

It is well known that unification plays a very major role in all formal deduction mechanisms. Syntactic
unification – also known as unification modulo the empty theory – is known to be decidable from
around 1930, and optimized algorithms for it are well-known as well [1]. Semantic (or equational)
unification is an extension of syntactic unification, to meet the situation where terms in the underlying
signature are bound by some given equational theory. Several such theories are of great practical
interest, in particular the theories of commutativity, associativity, associativity-commutativity; and
decision procedures for unification modulo these theories are well-known from around 1970-1980 [2].
Another equational theory of practical interest is distributivity, which specifies that a binary operator
distributes over another binary operator – a typical example being that of multiplication over addition
on integers. Unification modulo such a distributivity is known to be decidable [12, 14]. Note that the
distributivity of multiplication over addition on integers is ‘asynchronous’ when used two-sided, in the
sense that it then works ‘argument-wise’ below addition. There are other instances of distributivity
for which a different theory is needed; for instance, if B stands for the division operation on nonzero
rational numbers and ∗ for multiplication, then the following property is satisfied:

E : B(u, x) ∗B(v, y) = B(u ∗ v, x ∗ y)

In contrast with the example mentioned earlier, here the binary operator B distributes over ∗ syn-
chronously, i.e., in parallel on its arguments. Note that the property E is also satisfied by the RSA-
based implementation of the blind signature scheme for cryptography [3] (B stands in this case for the
product of an integer m with a random number r raised to a given key e, and ∗ is the usual product on
integers). Yet another model for E , of practical interest, is the ‘Exchange Law for concurrent processes’
as defined in [5]. The equation E can be turned easily into a terminating rewrite rule, oriented either
way; it forms a convergent rewrite system in both cases. The theory defined by this equation E will
also be referred to as E in the sequel.

Our objective in this paper is two-fold. We first present a semi-decision procedure for the E-
unification problem. Section 2 presents an inference procedure for this purpose. A dependency graph is

1

associated in a natural manner with any E-unification problem P, given in a ‘standard form’ (see defi-
nition below); and it is shown that the problem admits a solution if and only if the dependency graph
remains bounded under the inferences. We then show that the E-unification problem is undecidable in
general, by reduction from the boundedness problem for deterministic Intercell Turing Machines (ITM),
which is known to be undecidable [10]; this is done in Section 5. Such a reduction is rendered possible
by suitably encoding the relations between the nodes and the paths on the dependency graph of P
as string rewrite relations (string equations), which can be subsequently interpreted as the transition
rules of an ITM1; the technical developments needed for this are presented in Sections 3 and 4.

2 A Semi-Decision Procedure for Elementary E-unification

Our signature consists of a (countably infinite) set of variables X and the two binary symbols B and ‘∗’;
the variables of X will be denoted by lower or upper case letters from u or U , to z or Z, with or without
suffixes and primes. Note that B and ‘∗’ are cancellative: by this, we mean that if s1, t1, s2, t2 are ground
terms in normal form, then B(s1, t1) =E B(s2, t2) if and only if s1 =E s2 and s2 =E t2; similarly for ‘∗’.
(One easy way to show this is to use E as a rewrite rule B(u ∗ v, x ∗ y)→ B(u, x) ∗B(v, y).)

Without loss of generality, the equations of the given unification problem P are assumed to be in a
standard form, i.e., in one of the following forms:

X =? V, X =? B(V, Y), X =? V ∗ Y

where X,Y, V, Z, are variables. A set of equations is said to be in dag-solved form (or d-solved form)
if and only if they can be arranged as a list

x1 =
? t1, . . . , xn =? tn

where (a) each left-hand side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n: xi does not occur in
tj ([8]). A substitution σ′ is an extension of a substitution σ iff there is a substitution δ such that
σ′ = σ ◦ δ = σ ⊎ δ. The following relations on the variables of P will be needed in the sequel:

• U ≻r∗ V iff there is an equation U = T ∗ V

• U ≻l∗ V iff there is an equation U = V ∗ T

• U ≻rB V iff there is an equation U = B(T, V)

• U ≻lB V iff there is an equation U = B(V, T)

• U ≻∗ V iff U ≻r∗ V or U ≻l∗ V

• U ≻B V iff U ≻rB V or U ≻lB V

We also define ≻ as the union of the four relations above; i.e., ≻ = ≻∗ ∪ ≻B.

The semi-decision procedure for E-unification is given by the following transformation (inference)
rules, where EQ stands for a set of equations in the problem P, the symbol ⊎ stands for disjoint set
union, and ∪ is usual set union.

(1) Variable Elimination:

1The reader can see that our undecidability proof is influenced by the techniques in [10] and [7].

2

{X =? V } ⊎ EQ

{X =? V } ∪ [V/X](EQ)
if X occurs in EQ

(2) Cancellation on B:
EQ ⊎ {X =? B(V, Y), X =? B(W,T)}

EQ ∪ {X =? B(W,T), V =? W, Y =? T }

(3) Cancellation on ‘∗’:
EQ ⊎ {X =? V ∗ Y, X =? W ∗ T }

EQ ∪ {X =? W ∗ T, V =? W, Y =? T }

(4) Splitting:
EQ ⊎ {X =? B(V, Y), X =? W ∗ Z)}

EQ ∪ {X =? W ∗ Z, W =? B(V0, Y0), Z =? B(V1, Y1), V =? V0 ∗ V1, Y =? Y0 ∗ Y1}

(5) Occur-Check:
EQ

FAIL
if X ≻+ X for some X

An outline of the algorithm is as follows: As long as the rules are applicable, rule (5) (“Occur-Check”),
and rule (1) (“Variable Elimination”), are to be applied most eagerly; the cancellation rules (2) and (3)
come next. The splitting rule (4) is applied with the lowest priority, i.e., only when no other rule is
applicable.

The variable X in the specification of the splitting rule is referred to as a peak. In other words,
a peak is any variable Z such that Z ≻l∗ U , Z ≻r∗ V , Z ≻lB X and Z ≻rB Y for some variables
U, V,X, Y . Note that rule (4) introduces fresh variables; it also moves some variables from the right
side to the left. This may give rise to further applications of (2) and (3). Furthermore, splitting may
not terminate. For instance, U =? B(M,X) and U =? M ∗ Z will cause an infinite loop, by using
rule (4) forever. It is easy to conclude that there will be no solution in such a situation. The proof of
correctness for this algorithm is similar to the one in Tiden-Arnborg [14].

We define a relation ⇒ between sets of equations S and S ′ as follows: S ⇒ S ′ if and only if S ′ can
be obtained from S by applying one of the rules (1) – (5).

Lemma 2.1. Rules (1) – (5) are sound and complete for unification modulo E.

Proof. The soundness of rules (1), (2) and (3) is easily seen2. Now, if there is an occur-check cycle of
any length for a variable X, then clearly there is no solution for EQ; and it is obvious that rule (5)
catches such cycles in the problem if they exist. Hence rule (5) is also sound. We now show, explicitly,
that the splitting rule (4) is sound.

Let S = EQ ⊎ {X =? B(V, Y), X =? W ∗ Z)} where EQ is a set of equations and V,W,X, Y, Z are
variables. And let S ′ be

EQ ∪ {X =? W ∗ Z, W =? B(V0, Y0), Z =? B(V1, Y1), V =? V0 ∗ V1, Y =? Y0 ∗ Y1}

where V0, V1, Y0, Y1 are new variables not occurring in V ar(S). Thus S ⇒ S ′ by rule (4). We have
then:

Claim (i) Any unifier of S ′ is a unifier of S: Indeed, suppose θ is a unifier of S ′. It is easy to check
then that θ(X) =E θ(B(V, Y)).

2A general proof for soundness of these rules can be found in [13].

3

Claim (ii) Let σ be a unifier of S. Then there is a substitution σ′ such that σ′ is an extension of σ and
σ′ is a unifier of S ′: For proving this we reason on terms in normal form under the convergent rewrite
system:

B(u ∗ v, x ∗ y) → B(u, x) ∗B(v ∗ y).

Since σ is a unifier of S, the normal forms of σ(V) and σ(Y) must be product terms, i.e., terms
of the form s0 ∗ s1 and t0 ∗ t1 respectively. Then σ(W) = B(s0, t0) and σ(Z) = B(s1, t1). Thus
σ ◦ {V0 := s0, V1 := s1, Y0 := t0, Y1 := t1} is a unifier of S ′; this proves (ii).

To show completeness, first note that if the algorithm terminates on S without failure, the resulting
system is in d-solved form. On the other hand, if the algorithm does not terminate, then it has to be
because there is infinite splitting — i.e., the splitting rule (4) is applied infinitely often.

Claim (iii) If there is infinite splitting there is no unifier: Assume the contrary. Let θ be a ground unifier
of S. If there is infinite splitting, then there is an infinite sequence of variables Vi = Vi1

≻ Vi2
≻ . . .

where Vi ∈ Dom(θ). From what was shown above, there must also be an infinite sequence of unifiers
θ = θ1, θ2, . . . where each unifier is an extension of the previous one. But this leads to a contradiction,
since if γ is a unifier, V, V ′ ∈ Dom(γ) and V ≻ V ′, then |γ(V)| > |γ(V ′)|.

A sufficient condition for an E-unification problem to be unsatisfiable can be formulated as cycle
checking, on suitably defined relations on the variables of P over some of the models for the equation
E , see Appendix.

3 From E-Unification Problems to Thue Systems

Before we give the reduction proving the undecidability of this unification problem, we need a few
preliminaries.

As explained in the previous section, the set of variables in a problem could get larger since fresh
variables may be created when splitting occurs. If a variable X is split, than we add the equation
X = X0 ∗ X1 to the problem. In general, new variables may be split further and starting from a
variable X we may obtain a variable Xβ where β is a string of 0s and 1s. We shall agree that the
general discipline for creating new variables is specified as: Xβ = Xβ0 ∗Xβ1, where β ∈ {0, 1}∗. Note
that if β = λ, the empty string, then Xβ = X, an original variable in the problem. For a set of variables
V , we define V = {Xβ | X ∈ V, β ∈ {0, 1}∗} to denote the set of all variables which may originate
from V through splitting. In the next section we define our dependency graph notation and describe
splitting and variable elimination in a graph setting.

3.1 The Dependency Graph

It is common to represent the problems by dependency graphs induced by the relations (≻l∗ etc.)
among variables. Each node corresponds to a variable and each directed edge is labeled w.r.t. the
relation among the variables in the nodes. Interpretation of the unification problems through the
relations among variables in a graph setting was used in [14]. Here we have four types of edges in
the dependency graph: l∗, r∗, lB and rB. If two variables X and Y are related through ≻l∗ , then
nodes induced by X and Y are connected by a directed edge labeled as l∗; similarly for the other
relations. No edge on the graph corresponds to an equality. For instance, for the problem given as:

4

U =? V, U =? U0 ∗ U1, U =? B(X,Y), the dependency graph is given in Figure 1; note that V does
not appear as a node on this graph.

rBlB l* r*

U0 U1

U

X Y

Figure 1: Graph for: U =? V, U =? U0 ∗ U1, U =? B(X,Y)

Let S be the initial set of equations of the problem, and let G0 be its dependency graph. Dependency
graphs are not stable; they get updated each time an inference rule applies; we thus we get a sequence
of graphs G0, G1, G2, Recall, in particular that rule (1) is applied eagerly, e.g., when there is an
equation of the form U =? V . The consequence of its application is that U then merges into V , more
precisely V replaces U in the problem as well as on the dependency graph. The problem just considered
thus becomes:

U =? V, V =? U0 ∗ U1, V =? B(X,Y).

Its dependency graph is obtained from the one in Figure 1, by changing the label of the node U
to V . It is important to note that the variable U has not been deleted from the problem, which still
contains the equation U =? V ; the only change is that V now represents U on the graph. In intuitive
terms, we shall say: on applying rule (1), two (or more) nodes merge on the dependency graph, and
two (or more) paths merge by merging their end nodes; and any variable of the problem has a unique
representative node on the dependency graph, up to variable equality. Alternatively, one could label
the nodes of the graph with the equivalence classes of the variables of the problem, the equivalence
being defined up to variable equality.

To suit our purposes in the sequel, we agree to shorten the labels of the edges of the dependency
graph as follows: We replace l∗ by 0 and r∗ by 1; and we also replace lB by L and rB by R.

The splitting rule (4) is the only rule that adds nodes to the dependency graph, and new edges joining
these new nodes. When a variable is split, 0- and 1-edges are added; the other equations introduced
by rule (4) cause L- and R-edges to be added too. Thus, for the problem just mentioned above, (after
having applied rule (1)) we apply splitting, and the problem thus derived is:

U =? V, V =? U0 ∗ U1, X =? X0 ∗X1, Y =? Y0 ∗ Y1, U0 =? B(X0, Y0), U1 =? B(X1, Y1)

The dependency graph for the problem thus derived is given in Figure 2, using the short labels for
its edges. Note that the edges from (U or) V to X and Y have been dropped out from the earlier graph
(as well as the equations to which they corresponded).

U0

X0 Y0X1 Y1

U1

U

X Y

0 1

L R

0 1
L R

Figure 2: Graph for the problem of Figure 1 after applying rules (1) and (4)

It is in general necessary to use other rules again after applying rule (4). For instance, consider the
problem given as: {X =? B(Y,Z), X =? X0 ∗X1, X0 =? B(U, V)}. Variables Y and Z split and we

5

obtain X0 =? B(Y0, Z0) as one of the resulting equations. Therefore it is now necessary to apply first
rule (2), followed by rule (1) to the equations U =? Y0 and V =? Z0 thereby derived.

For the purpose of proving the undecidability of E-unification, we slightly modify our view of the
dependency graph representation. Mainly, we don’t explicitly delete any nodes or edges from the graph
– all we do is to merge nodes. This leads to a more general vision of the dependency graph, that could
be said to be the relation graph. We formalize these ideas as follows. Since nodes are merged, we
assume that a node may have several labels. (See Figure 3.)

W V Y T

L R
L R

U

L R

U

W
V

Y
T

Figure 3: Applying the cancellation rule (2)

Thus there is an onto function φ defined from V ar(S) to V (G), the set of vertices of the graph. That
is, each variable points to exactly one node in the graph but a node can be pointed to by more than
one variable. Now using φ define a relation as a tuple (X,µ, Y) where X and Y are variables and µ
is either L or R. In other words, (X,µ, Y) holds if and only if φ(X) and φ(Y) are connected with an
edge labelled as µ.

Given a problem P, let G = G∞ be the set of persistent nodes and edges (i.e., those not dropped
out) in the sequence G0 ∪ G1 ∪ . . ., of graphs, updated along the inferences. We now characterize
this graph in terms of string relations (equalities) over V ar(S) ∪ {L,R}. If X and Y are two distinct
variables such that φ(X) = φ(Y), then we write X =G Y . If there is a directed path Γ ∈ {L,R}∗ from
φ(X) to φ(Y) on G, then we express this ‘path relation’ between X and Y as ΓX =G Y . For paths of
0- and 1-edges, we define a similar relation: if there is a directed path β ∈ {0, 1}∗ from φ(X) to φ(Y)
on G, then we write Xβ =G Y .

We denote the length of any string Π ∈ {L,R}∗ (resp. β ∈ {0, 1}∗) as |Π| (resp. as |β|). We say
that a variable X ∈ X “exists” (in G) if there is a node in G∞ with X as one of its labels.

Lemma 3.1. (i) Let ν ∈ {L,R}, U, Y ∈ X such that ν U =G Y . If U0 exists (and also U1, i.e., U
splits), then ν U0 =G Y0 and ν U1 =G Y1.

(ii) Let Π ∈ {L,R}+, U, Y ∈ X such that ΠU =G Y . If U0 exists (and also U1, i.e., U splits), then
ΠU0 =G Y0 and ΠU1 =G Y1.

(iii) Let Π ∈ {L,R}+, β ∈ {0, 1}∗ such that ΠX =G Yβ. If X0 exists (and also X1, i.e., X splits),
then ΠX0 =G Yβ0 and ΠX1 =G Yβ1.

Proof. Assertion (i): Without loss of generality, we assume ν = L. There are two cases to consider.
First, U itself splits as U = U0 ∗ U1 and the result follows immediately. Otherwise (from the notion of
relation graph defined above) there must be a variable V of P such that φ(U) = φ(V) and V was a
peak at some point. Thus V0 exists, so V0 =G U0 by cancellativity and we get LV0 =G Y0.

Assertion (ii): By induction on the length of Π. Let n = |Π|. The case n = 1 follows from Assertion
(i). So suppose that ΠU = Y where |Π| ≥ 2; and suppose U0 exists. Without loss of generality, let
Π = Π′L and let X = LU . Then X0 = LU0 and X1 = LU1. Thus, we have Π′X = Y , and X0 exists:
by induction hypothesis, we get Π′X0 = Y0 and Π′X1 = Y1.

6

Assertion (iii): By induction on the length of β. Let n = |β|. For n = 0 the result follows from
Assertion (ii). Suppose n ≥ 1, i.e., ΠX = Yβ where |β| ≥ 1, and suppose X0 exists (i.e., X splits).
Without loss of generality, let Π = Π′L and let Z = LX. Thus ΠX = Π′Z = Yβ. By Assertion (ii) we
know that Z0 exists. Since |Π′| < |Π|, we have, by induction hypothesis, that Π′Z0 = Yβ0. Therefore
Π′LX0 = ΠX0 = Yβ0; we are done.

Lemma 3.2. Let Π ∈ {L,R}+, α, β ∈ {0, 1}∗ and X,Y such that ΠX =G Yβ. If Xα exists then
ΠXα =G Yβα.

Proof. By induction on the length of α, and Lemma 3.1

3.2 Thue systems associated with E-unification problems

We henceforth speak of any E-unification problem as a set of equations in standard form, often denoted
as S. With any given E-unification problem S, we shall associate a Thue system (i.e., string rewrite
system), and subsequently relate the Thue congruence thus obtained, to the path relations on the
dependency graph of S, as defined in the previous section.

Let V = V ar(S) be the set of variables of the given problem S. The alphabet over which the Thue
system is defined is Σ = V ∪ {L,R} ∪ {0, 1}. We obtain string equations from an E–unification
problem as follows. For equations of the form X =? B(Y,Z) we create string equations LX = Y and
RX = Z. For X =? U ∗ Y , we form X0 = U and X1 = Y . (Notice the connection between these and
the binary relations defined in Section 3 - e.g. if X ≻lB Y , then LX = Y .) Let STh denote the set
of string equations (the Thue system) thus associated with S. Every such string equation is either of
the form µX = Y for µ ∈ {L,R}, or of the form Xν = Y for ν ∈ {0, 1}, with X,Y ∈ V . There is a
close connection between the congruence on strings over Σ, modulo these string equations, denoted by
=STh

, and the congruence in the graph context, denoted by =G, that was introduced in the previous
section, on the dependency graph G of the problem S.

The next couple of results show the relation between =STh
and =G; it is assumed in their statements

that X,Y ∈ V ar(S), Π ∈ {L,R}∗, α, β ∈ {0, 1}∗:

Proposition 3.3. For every X,Y,Π, α, β, ΠXα =STh
Y β if and only if there exists α′, β′, γ ∈ {0, 1}∗

such that α = α′γ, β = β′γ and ΠXα′ =G Yβ′ .

Proof. The “if” part is easy to show. For the other direction, we use induction on n, which is the
number of derivation steps to get ΠXα =STh

Y β. If n = 1, i.e., the equation ΠXα =STh
Y β in a

single STh-rewrite step, then there are three cases:

case (i) Π ∈ {L,R}, ΠX = Y is an equation in STh and α = β; here, α′ = β′ = γ = λ, where λ is
the empty string.

case (ii) Π = λ, Xν = Y is an equation in STh for some ν ∈ {0, 1}, and α = νβ; here, α′ = ν, γ = β,
and β′ = λ.

case (iii) Π = λ, X = Y ν is an equation in STh for some ν ∈ {0, 1}, and β = να; here, α′ = λ, β′ = ν,
and γ = α.

Now suppose n > 1 and let ΠXα =STh
Y β be derived in n STh-steps. We consider the leftmost

STh-step. As before, three cases have to be considered (with µ ∈ {L,R} and ν ∈ {0, 1}):

(i) The equation used is of the form µX = Z;

7

(ii) The equation used is of the form Xν = Z;

(iii) The equation used is of the form X = Zν.

In case (i), Π = Π′µ for some Π′ ∈ {L,R}∗. Then: ΠXα = Π′µXα =STh
Π′Zα =STh

Y β. Thus
Π′Zα =STh

Y β in (n − 1) steps and by the induction hypothesis there exists γ such that α = α′γ,
β = β′γ and Π′Zα′ =G Yβ′ ; we are through in this case.

In case (ii), α = νω for some ω ∈ {0, 1}∗. Then: ΠXα = ΠXνω =STh
ΠZω =STh

Y β. Thus
ΠZω =STh

Y β in n − 1 steps and by the induction hypothesis there exists γ such that ω = α′′γ,
β = β′γ and Π′Zα′′ =G Yβ′ . Since Z =G Xν , Zα′′ =G Xνα′′ and thus ΠXνα′′ =G Yβ′ , where
α = να′′γ; we are through in this case.

In case (iii), ΠXα =STh
ΠZνα =STh

Y β. Thus ΠZνα =STh
Y β in n−1 steps and by the induction

hypothesis there exists γ such that να = α′γ, β = β′γ and ΠZα′ =G Yβ′ . Now we need to consider
two subcases, namely α′ = λ and α′ 6= λ.

Subcase where α′ = λ: then ΠZ =G Yβ′ and β = β′να. By assertion (iii) of Lemma 3.1 we get
ΠZν =G Yβ′ν . Since X =G Zν we are done.

Subcase where α′ 6= λ; here α′ = νω for some ω ∈ {0, 1}∗. Thus we have να = α′γ = νωγ and
α = ωγ. Therefore we get ΠZνω =G ΠXω =G Yβ′ and hence the result follows.

Corollary 3.4. For every X,Y,Π, β, ΠX =STh
Y β if and only if ΠX =G Yβ.

Proof. We prove this again by induction on the number of STh-steps in deriving the proof for ΠX =STh

Y β. We consider two cases, depending on the first (leftmost) step:

Case (a) There is an equation X = LU in STh: In this case, the derivation sequence is: ΠX =STh

ΠLU =STh
Y β. Since ΠLU =STh

Y β has a shorter derivation, we have ΠLU =G Yβ by the induction
hypothesis, and the result follows.

Case (b) Π = Π′L and there is an equation LX = U in STh: In this case, the derivation sequence is
ΠX = Π′LX =STh

Π′U =STh
Y β. Since the derivation Π′U =STh

Y β is shorter, we get Π′U =G Yβ.
Since U =G LX we are done.

Let S be an E-unification problem and STh its associated Thue system. We get back to the variables
which originate from V ar(S) through splitting, i.e., the set V ar(S). We now relate these with the path
relation on the graph of S and the Thue congruence associated with S. For a variable X ∈ V ar(S),
we define its extent3 ext(X) as follows:

ext(X) = {Π ∈ {L,R}∗ | ∃Y ∈ V ar(S) ∧ β ∈ {0, 1}∗ such that STh ⊢ ΠX = Y β }

The finiteness of ext(X) for every X is closely connected to the unifiability of the problem. If ext(X)
is infinite for X, it obviously means that X splits infinitely. The following result is given without proof
since it is (now) obvious:

Proposition 3.5. An E-unification problem S is solvable if and only if no failure rule applies and
ext(X) is finite for every X in V ar(S).

We define this as a general concept for Thue systems. Let T be a Thue a system with the signature
Σ. Let ∆ be a nonempty subset of Σ. T is said to have finite ∆-span if and only if ∀q ∈ ∆, ext(q) is
finite where

3This follows the definition of extent by Jahama and Kfoury [7].

8

ext(q) = {Π ∈ (Σr∆)∗ | ∃ q′ ∈ ∆ ∧ β ∈ (Σr∆)∗ such that Πq ↔∗
T q′β }

4 Thue Systems and Intercell Turing Machines

We give a review of relevant literature, mainly based on the notation used in [10]. An Intercell Turing
Machine (ITM) is defined as a triple M = 〈Q,Σ, δ〉, where Q is a set of states, Σ is a finite tape
alphabet, and δ is a transition relation defined as δ ⊆ Q × D × Σ × Σ × Q. Here D points to the
direction of the move of the tape head (assumed placed between two tape cells) and is one of {−1,+1}.
An instantaneous description (ID) of M is defined as a quadruple 〈w1, q,m,w2〉 where q is the current
state of the machine, w1w2 is the string over Σ that forms the current tape content, m is an integer,
and the header is between the cells m−1 and m, and it also separates w1 and w2

4 . A move of M , from
one ID to another, is denoted as a relation ⊢M formally defined as follows, where s, t ∈ Σ, w1, w2 ∈ Σ∗

and q1, q2 ∈ Q, and q1 is the current state:

• left-move: For 〈q1,−1, s, t, q2〉 ∈ δ, 〈w1s, q1,m,w2〉 ⊢M 〈w1, q2,m− 1, tw2〉

• right-move: For 〈q1,+1, s, t, q2〉 ∈ δ, 〈w1, q1,m, sw2〉 ⊢M 〈w1t, q2,m+ 1, w2〉

An ITM is said to be deterministic if and only if:

(i) the set of states Q splits as left-move and right-move states Ql and Qr

so that δ ⊆ (Ql × {−1} × Σ× Σ×Q) ∪ (Qr × {+1} × Σ× Σ×Q); and

(ii) δ is partial function from Q×D × Σ to Σ×Q.
This implies that there is at most one possible move from any given ID of a deterministic ITM: a
left-move or a right-move.

The symmetric closure of an ITM M = 〈Q,Σ, δ〉 is defined as the ITM Ms = 〈Q,Σ, δs〉 where:

δs = δ ∪ {〈q1,−x, a, b, q2〉 | 〈q2, x, b, a, q1〉 ∈ δ}

An ITM M is said to be symmetric iff M = Ms holds. An ITM M is said to be bounded iff there
exists a positive integer n such that for any arbitrary ID I of M , the number of different IDs reachable
by M from I is at most n.

The following results on the boundedness problem are shown in [10] by using the ideas from [6].

Lemma 4.1. It is undecidable to check whether a deterministic ITM is bounded.

Lemma 4.2. A deterministic ITM M is bounded if and only if its symmetric closure Ms is bounded.

Corollary 4.3. Given a deterministic ITM M , it is undecidable to check whether its symmetric closure
Ms is bounded.

Let M = 〈Q,Σ, δ〉 be a deterministic ITM with tape alphabet Σ = {0, 1}. We shall use L,R to
represent tape symbols 0, 1 respectively, to the left of the tape head. Under such a vision, any transition
of M can be expressed as a string rewrite rule of the form:

q1a ∼ bq2

4We refer the reader ro Turing’s work [15] for similar ideas of ‘left-facing’ and ‘right-facing’ internal configurations, i.e.,
IDs here. Following Turing, Gurevich and Lewis use the same idea, defining ‘left-looking’ and ‘right-looking’ states [4].

9

where a ∈ {0, 1}, b ∈ {L, R}, and ∼∈ {←, →}. For instance, q2 t ← Lq1 represents the left-move
〈q1,−1, 0, t, q2〉; and q1 s→ Rq2 represents the right-move 〈q1,+1, s, 1, q2〉 of the ITM.

Let RM be the string rewrite system consisting of all these rules and let SM be the Thue system
obtained by symmetrizing the rewrite rules, i.e., making them bidirectional5. Observe that one can
also get SM by first getting the symmetric closure of M and then getting the string rewrite rules.

rewrite
rules

rewrite
rules

M M

RM SM

symmetrize

symmetrize

S

Figure 4: Commuting diagram for SM

The extent of a state q in the ITM M is defined in terms of the system SM :

ext(q) = {Π ∈ {L,R}∗ | ∃ q′ ∈ Q ∧ β ∈ {0, 1}∗ such that SM ⊢ Πq = q′β }

Lemma 4.4. Let M = 〈Q,Σ, δ〉 be a deterministic ITM. Then M is bounded if and only if ext(q) is
finite for every state q in M .

Proof. If ext(q) is infinite for some state q in M , then clearly M is unbounded. On the other hand,
suppose M is unbounded, and assume that ext(q) is finite for every q ∈ Q. Let k be the length of the
longest string that appears in any ext(q). (Recall that Q is finite.) Since M is unbounded, there are
configurations C and C ′ such that C = 〈Π, q, m, wβ〉 and C ′ = 〈ΠB, q′, m + p, β〉, such that C ′ is
reachable from C, with p = |w| = |B| > k, and the header never moves left past the mth cell, nor right
past the (m+ p)th cell. Then the configurations 〈ǫ, q, m, w〉 and 〈B, q′, m+ p, ǫ〉 are reachable from
each other as well by definition, and thus qw ↔∗

S
M

Bq′. Since |B| > k this contradicts the assumption

that k is the length of the longest string in any ext(q).

Corollary 4.5. Let M = 〈Q,Σ, δ〉 be a deterministic ITM. Then M is bounded if and only if SM has
a finite Q-span.

5 The Undecidability of Elementary E-Unification

The undecidability result is by a reduction of the boundedness problem for deterministic ITMs. We
shall proceed as follows: for each transition t of M we add two new (dummy) states along with their
transitions — the reason for this will be clear later — but making sure that the resulting system,
denoted M ′, is still deterministic, and furthermore, M ′ is bounded if and only if M is bounded. We
then symmetrize M ′ to obtain M ′

s. Thus M
′
s is bounded if and only if M ′ is bounded (by Lemma 4.2)

if and only if M is bounded. We shall finally show how to construct an E-unification problem such
that the problem is solvable if and only if M ′

s is bounded.

5Such a Thue system is sometimes called a “symmetric semi-Thue system”!

10

For any deterministic ITM M = 〈Q,Σ, δ〉 with tape alphabet Σ = {L, R} ∪ {0, 1}, we construct
another deterministic ITM M ′ based on M . For that, we first introduce the following notation: for
a ∈ {0, 1}, we set 1−a = 1 if a = 0, and 1−a = 0 if a = 1. Analogously, for b ∈ {L,R} we let b = R
if b = L and b = L if b = R. Recall that in Section 4 a move of M was specified as q1a ∼ bq2 where
∼ is either ← or →. Let us consider first the (rightward) move q1a → bq2; we then add a left-move
state and a right-move state, denoted as w′ and w respectively, for each transition of M along with the
following transitions:

q1 (1− a) ← bw′

wa → bq2

w (1− a) → bw′

w (1− a) ← bw′

The construction is the same for the leftward move q1a ← bq2: the same set of states and transitions
get added, i.e., the direction of the move does not affect the modifications. In all other cases, different
state pairs are added to M ′ for different transitions of M ; one could thus adopt the notation wt and
w′
t corresponding to every transition t in M . So the extension M ′ is defined as 〈Q′, Σ, δ′〉, where:

Q′ = Q ∪ {wt, w
′
t | for each corresponding transition t of M }

and δ′ consisting of δ plus new transitions induced by the extra moves above. M ′ is also deterministic
because every state in Q′ has only one possible move. Note that M and M ′ have the same tape
alphabet Σ with four symbols L,R, 0, 1. (See illustrative Figure 5 for the move q10 → Lq2 of M , and
the corresponding part in the extended ITM M ′.)

q
1

q
2

0 L

1 R
0 R

R 1

L 1

w’ w

Figure 5: Extension M ′ of a deterministic ITM M . Edges/Nodes not in M are dashed.

Lemma 5.1. M is bounded if and only if M ′ is bounded.

Proof. The “if” part is trivial, due to the fact that M ′ includes all transitions of M . For the “only if”
part, we need to show that any ID involving w or w′ can reach finitely many different IDs. Note that
the move w (1− a) ↔ bw′ will cause only one different ID for both types of IDs. The moves back and
forth between IDs corresponding to w (1−a) and bw′ don’t affect the number of different IDs reachable
from them. In the remaining transitions w reaches an ID with q2 and w′ to an ID with q1. Then we
are done since we assume M is bounded and q1 and q2 are from M .

Both M and M ′ are deterministic but not symmetric. For our purpose we symmetrize M ′. This
is done by first finding symmetric closure M ′

s of M ′ along with the transition set δ′s as defined in

11

Section 4. Thus we get M ′
s = 〈Q

′, Σ, δ′s〉. By Lemma 4.2 a deterministic ITM is bounded if and only
if its symmetric closure is also bounded. Thus

Lemma 5.2. M is bounded if and only if M ′
s is bounded.

Let SM ′ be the Thue system for the symmetric ITM M ′. For each transition q1a ∼ bq2 of M , SM ′

will contain string equalities of the following forms:

q1a↔ bq2

q1 (1− a)↔ bw′

wa↔ bq2

w (1− a)↔ bw′

Obviously SM ′ is an extension of SM , the Thue system of M .

We now show how each string equality can be simulated using unification problems. Let S be the
set of equations that we create. We first look at original transitions in M . Note that depending on
what a and b are in a transition t we have four possible types of moves. Then, we construct M ′ as
described above. The variables of the unification problem are exactly the states of M ′. Therefore for
each possible pair (a, b) that t involves a unique equation modulo E with variables q1, q2, w and w′ is
constructed as shown below:

Case 1: If the transition of M is q10 ↔ Lq2, then we (effectively) add the following equation to S:

B(q1, w) =
?
E q2 ∗ w′ (1)

Since we assume that S is in standard form in our unification procedure, we transform this into standard
form by using another new variable. Hence we create the equations

u =?
E
B(q1, w), u =?

E
q2 ∗ w′

where u is fresh. Note that if we apply the splitting rule to (1), we get

u = q2 ∗ w′, q1 = q10 ∗ q11, w = w0 ∗ w1, q2 = B(q10, w0), w
′ = B(q11, w1) (2)

Therefore we see that the string equation (and hence the move of M) indeed corresponds to one of the
relations among variables in (2). Note that q10 = q10 and Lq2 = q10. This is the motivation behind
the reduction. In addition there are three other similar relations which can be observed in (2).

q1 1 = Lw′

w 0 = Rq2

w 1 = Rw′

The motivation for the construction of M ′ and M ′
s should now be clear. In fact, the equalities above

are included in SM ′ . Recall that in Section 3.2 we defined the Thue system for a E-unification problem
S and denoted it as STh. Hence the congruence induced by SM ′ is a subset of that induced by STh, or,
↔∗

S
M′

⊂ ↔∗
STh

.

Case 2: If the move of M is q11 ↔ Lq2, then we add:

u =?
E
B(q1, w), u =?

E
w′ ∗ q2

12

Case 3: If the move of M is q11 ↔ Rq2, then add:

u =?
E
B(w, q1), u =?

E
w′ ∗ q2

Case 4: If the move of M is q10 ↔ Rq2, then add:

u =?
E
B(w, q1), u =?

E
q2 ∗ w′

We proceed now to show the following in several steps: STh has finite V ar(S)-span if and only if
SM ′ has finite Q-span; the “if” part is easy to prove:

Lemma 5.3. If STh has finite V ar(S)-span then SM ′ has finite Q-span.

Proof. Trivial since the congruence induced by SM ′ is a subset of the congruence induced by STh and
Q ⊆ V ar(S) = Q ∪ {ut | for each transition t in M}.

We next prove the converse of Lemma 5.3, i.e., that finite Q-span of SM ′ implies finite V ar(S)-span
of STh. For that we consider the string rewrite systems which are obtained by orienting equations in
STh and SM ′ according to the order defined below. We then apply Knuth-Bendix completion to those
systems as specified in [9]. It was shown there that those final string rewrite systems are possibly
infinite and lex-confluent6. Hence for any Thue system T there exists a lex-confluent system equivalent
to it.

Let Σ′ be the alphabet of SM ′ . Note that Σ′ = Σ ∪ Q. Let U be the set of variables ut that
are added to ensure that the unification problem S is in standard form. Then the alphabet of STh is
Σ′′ = Σ′ ∪ U . Equations in SM ′ can be oriented with the help of a length+lexicographical ordering
on strings in Σ′∗ induced by a total ordering ≻ on Σ′. One such ordering can be defined as x > y if
and only if:

(1) Either |x| > |y|;

(2) Or |x| = |y|, x = ax′, y = by′ where a, b ∈ Σ′; and,

either a ≻ b or (a = b and x′ > y′).

with the following assumptions on the symbol ordering ≻:

Symbols in Σ are ordered as L ≻ R ≻ 0 ≻ 1

Symbols in Q are ordered as q1 ≻ q2 ≻ . . .

For any X ∈ Σ and Y ∈ Q, we assume X ≻ Y .

Let C∗

M ′ be the resulting confluent system. A total length+lexicographic ordering on Σ′′ can be
defined similarly with an additional assumption such that the variables ut are greater than the symbols
in Q. Thus every equation in STh will be oriented in such a way that the variables ut are on the left.

We denote by
−−→
STh this new rewrite system.

Lemma 5.4. C∗

M ′ ∪
−−→
STh is confluent.

Proof. It is not hard to see the forms of the rules in both subsystems.
−−→
STh has rules of the form

Πut → q′ or utβ → q for ut and Π ∈ {L,R} and β ∈ {0, 1}. On the other hand, C∗

M ′ (possibly
infinite) includes the rules like Πq → q′β with Π and β defined as before. We already know that C∗

M ′

is confluent, i.e., any critical pair in C∗

M ′ is joinable. Note that left-hand sides in
−−→
STh do overlap and

6This is abbreviation for length+lexicographic confluence, which was introduced in [9].

13

thus give rise to critical pairs. But these critical pairs are joinable by the rules of C∗

M ′ . For instance

suppose
−−→
STh has Lut → q and ut0 → q′. Here Lut0 is an overlap which gives rise to the critical pair

(Lq′, q0). But we have Lq′ → q0 already in C∗

M ′ by definition.

To prove the converse of Lemma 5.3, we assume that SM ′ has finite Q-span in the sense we explained
earlier; we begin by showing that that the state variables have finite extent in both STh and SM ′ .

Lemma 5.5. Let Π ∈ {L,R}∗ and β ∈ {0, 1}∗ and q1, q2 ∈ Q be two states in M ′, where q1, q2 ∈
V ar(S). Then Πq1 ↔

∗
S
M′

q2β if and only if Πq1 ↔
∗
STh

q2β.

Proof. The “only if” part is obvious since↔∗
S
M′

is subsumed by↔∗
STh

. Conversely, suppose Πq1 ↔
∗
S
M′

q2β holds. In this case note that the only applicable rules in C∗

M ′ ∪
−−→
STh are the rules in C∗

M ′ . By

Lemma 5.4 C∗

M ′ ∪
−−→
STh is confluent and then by assumption, Πq1 and q2β will rewrite to the same term

w.r.t. SM ′ . Then the rules involving the non-state variables ut do not affect the derivation and hence
−−→
STh does not affect the rewrite steps. As a result Πq1 and q2β will have the same rewrite proof w.r.t.
STh.

The next couple of results are easy consequences of the above lemmas:

Lemma 5.6. Let Π ∈ {L,R}∗, β ∈ {0, 1}∗, q ∈ Q, ut ∈ U . Then Πq ↔∗
STh

utβ if and only if there

exist b ∈ {0, 1}, q′ ∈ Q, β′ ∈ {0, 1}∗ and a rule utb → q′ in
−−→
STh such that: (i) β = bβ′, and (ii)

Πq ↔∗
S
M′

q′β′

Proof. The “if” part follows from Lemma 5.5, thanks to conditions (i) and (ii). For the “only if” part,

the assumption implies the existence of b ∈ {0, 1}, such that β = bβ′. By the construction of
−−→
STh,

there exists a state q′ and a rule utb→ q′; it is not hard then to show that Πq ↔∗
S
M′

q′β′.

Corollary 5.7. Let q ∈ Q be a state of M ′. If ext(q) is finite with respect to SM ′ then it is also finite
with respect to STh.

It follows then that the new variables ut in V ar(S) have finite extent in STh, under the assumption
that S′

M has finite Q-span:

Lemma 5.8. Let Π ∈ {L,R}∗ and β ∈ {0, 1}∗, and ut ∈ V ar(S). If ext(ut) is infinite then there is
a state q ∈ Q such that ext(q) is infinite.

Proof. Note that
−−→
STh has rules of the form utb→ q′ with b ∈ {0, 1}. Thus the result follows from the

definition of ext.

Corollary 5.9. If SM ′ has finite Q-span, then STh has finite V ar(S)-span.

Lemma 5.10. SM ′ has finite Q-span if and only if STh has finite V ar(S)-span.

Proof. The “only if” assertion is the preceding Corollary; and the “if” assertion is Lemma 5.3.

Lemma 5.11. M ′ is bounded if and only if S is unifiable.

Proof. In Sections 3.1 and 3.2 we showed that the unification problem S is solvable if and only if
STh has finite V ar(S)-span. By Lemma 5.10 STh has finite V ar(S)-span if and only if SM ′ has finite
Q-span. Finally the result follows since M ′ is bounded iff SM ′ has finite Q-span by Corollary 4.5.

14

From the lemmas established in this section, we finally get our main result:

Theorem 5.12. Unifiability modulo E is undecidable.

6 Conclusion

The equational theory E studied in this paper is defined by a single equation, which is orientable either
way to give a convergent term rewrite system, and for which every congruence class is finite. It is
surprising that the unification problem could be undecidable for such a “weak” theory.

Since elementary unification modulo E is undecidable, so are unification with free constants and
general unification. The semi-decision procedure that we have given in this paper for elementary
unification can be easily extended to these cases. Finally, matching modulo E appears actually to be
tractable (decidable in polynomial time); and this could be of some interest for the possible applications
mentioned in the introduction.

References

[1] F. Baader, W. Snyder. “Unification Theory”. In: Handbook of Automated Reasoning , pp. 440–526,
Elsevier Sc. Publishers B.V., 2001.

[2] F. Baader, T. Nipkow. Rewriting and all that. Cambridge University Press, New York NY, USA,
1998.

[3] D. Chaum. “Security without Identification: Transaction System to Make Big Brother Obsolete”.
Communications of the ACM 28(2):1030–1044, 1985.

[4] Y. Gurevich, H. R. Lewis. “The Word Problem for Cancellation Semigroups with Zero”. J. Symbolic
Logic 49(1):184–191, 1984.

[5] C.A.R. Hoare, A. Hussain, B. Möller, P.W. O’Hearn, R.L. Petersen, G. Struth. “On Locality and the
Exchange Law for Concurrent Processes”. In Proc. of CONCUR 2011, LNCS 6901, Springer-Verlag,
September 2011, pp. 250–264.

[6] P. K. Hooper. “The Undecidability of the Turing Machine Immortality Problem”. J. Symbolic
Logic 31(2):219-234, 1966.

[7] S. Jahama, A. J. Kfoury. “A General Theory of Semi-Unification”. Technical Report 1993-018,
Dept. of Computer Science, Boston University, December 1993.

[8] J.-P. Jouannaud, C. Kirchner. “Solving equations in abstract algebras: a rule-based survey of
unification.” In: Computational Logic: Essays in Honor of Alan Robinson, pp. 360–394, MIT Press,
Boston (1991).

[9] D. Kapur, P. Narendran. “The Knuth-Bendix Completion Procedure and Thue Systems”. SIAM
Journal on Computing 14(4):1052–1072, 1985.

[10] A. J. Kfoury, J. Tiuryn, P. Urzyczyn. “The Undecidability of the Semi-Unification Problem”.
Information and Computation 102(1): 83-101, 1993.

15

[11] P. Narendran, F. Pfenning, R. Statman. “On the Unification Problem for Cartesian Closed Cate-
gories”. J. Symbolic Logic 62(2): 636–647, 1997.

[12] M. Schmidt-Schauss. “A Decision Algorithm for Distributive Unification”. Theor. Comput. Sci-
ence 208 (1-2): 111–148, 1998.

[13] W. Snyder. A Proof Theory for General Unification. pp. 25–26, Birkhäuser, Boston (1991).

[14] E. Tiden, S. Arnborg. “Unification Problems with One-sided Distributivity”. Journal of Symbolic
Computation 3(1–2): 491–505, 1987.

[15] A. M. Turing. “The Word Problem in Semi-groups with Cancellation”. Annals of Mathemat-
ics 52(2): 183–202, 1950.

16

Appendix: A sufficient condition for non-unifiability

One can define four different interpretations for E , by interpreting B and ∗ as left or right projections
on pairs. We denote these interpretations by function symbols lp(∗), rp(∗), lp(B) and rp(B). For
instance, if we interpret ∗ as left projection via lp(∗), then the axiom B(m,x)∗B(n, r) = B(m∗n, x∗r)
is trivially satisfied. The same holds if we take ∗ as right projection; and similarly for B. Now, if a
problem is solvable modulo E , it is also solvable on any of its models; we use this fact to prove the
following lemma.

Lemma 6.1. Let ∼rp(∗),∼lp(∗),∼rp(B),∼lp(B) denote the reflexive, symmetric and transitive closures
of ≻r∗ ,≻l∗ ,≻rB , ≻lB , respectively, on the set of variables of any E-unification problem. and let β1, β2,
β3, β4 be relations on these variables defined as follows:

- β1 = ∼lp(∗) ◦ ≻B ◦ ∼lp(∗)

- β2 = ∼rp(∗) ◦ ≻B ◦ ∼rp(∗)

- β3 = ∼lp(B) ◦ ≻∗ ◦ ∼lp(B)

- β4 = ∼rp(B) ◦ ≻∗ ◦ ∼rp(B)

If any of these relations is not well-founded, then the problem is not solvable.

Proof. Suppose for instance that β1 is not well-founded. If we interpret ‘∗’ as lp(∗), it is not hard to
see that all variables in the same ∼lp(∗)-equivalence class become equal to each other. The relation ≻B

then becomes not well-founded on the set of variables. This implies that there is a cycle w.r.t. ≻B in
the interpreted problem – which is a standard unification problem –, hence there is no solution. So
the result follows, since the interpreted problem is solvable if the original problem is solvable. Similar
arguments hold for β2, β3 and β4.

We could therefore introduce the following additional failure rule:

(6) (Failure rule-2)
EQ

FAIL
if any of the βi, i ∈ {1, 2, 3, 4} is cyclic

17

