
Unification in Blind Signatures

Serdar Erbatur∗ 1, Christopher Lynch † 2, and Paliath Narendran‡ 1

1 University at Albany–SUNY {se,dran}@cs.albany.edu
2 Clarkson University clynch@clarkson.edu

Abstract

Blind signatures are signature schemes that keep the content confidential and have applications in modern
cryptography for electronic voting and digital cash schemes. We study three unification problems based on
an equational theory for blind signatures. This theory consists of two axioms, namely

U(S(B(m, x)), x) = S(m) (E1)

m ∗ B(n, r) = B(m ∗ n, r) (E2)

derived from its implementation with RSA. First, the unification problem modulo E1 is shown to be NP -
complete and of type finitary. An algorithm based on deduction rules is given. Second, unification in E2 is
shown to be decidable and of type unitary. Likewise, we give an algorithm which returns a unique unifier
if there exists one and provide necessary failure rule mechanisms to detect function clash, occur-check and
infinite splitting. Finally, the combination of unification problems E1 and E2 turns out to be decidable. The
result follows from techniques of equational term rewriting systems and unification in the subtheories E1 and
E2. Consequently, these results are useful for symbolic analysis of protocols deploying blind signatures.

1 Introduction

In formal cryptographic protocol analysis, messages are represented as terms, where the functions in the terms
represent actions that can be performed on messages, such as encrypting a message with some key, hashing a
message, or calculating the exclusive OR of two messages.

A protocol is described formally by the actions of a principal, who will receive a message, and then send out
another message based on the message received. An attack can be represented by the intruder learning some
secret. A tool for cryptographic protocol analysis can then work its way back from the goal to initial facts, to
see if a sequence of actions which leads to the intruder learning the secret message is possible. At each stage
of this search, unification must be performed between terms representing messages sent and terms representing
messages that are expected to be received. These terms may contain variables representing unknowns.

Traditionally, cryptographic protocol analysis tools work in the free algebra, which gives no meaning to the
function symbols, and terms can only be equal if they are syntactically the same. However, tools such as the
Maude NPA [7] can give a deeper analysis. Equational properties of terms can be given, which take into account
the meaning of a function symbol. Then unification can be performed modulo the equational theory.

For example, consider the case of blind signatures. There is a blinding function B, which blinds a message
m with a given key x. We can represent this by the term B(m, x). There is an unblinding function U which
performs the inverse of unblinding for some key. There is also a signing function. Blind signatures have the

∗Partially supported by the NSF grants CNS-0831209 and CNS-0905286
†Partially supported by the NSF grants CNS-0831305 and CNS-0905378
‡Partially supported by the NSF grants CNS-0831209 and CNS-0905286

property that if a message m is blinded with some key x, then signed, and then unblinded with x, the signed
message will emerge. These are called blind signatures, because the signer could not tell what was being signed.
Blind signatures are used in electronic voting and digital cash [5]. The properties we have just described can be
represented by the following equation:

U(S(B(m, x)), x) = S(m)

Blind RSA signatures [4] are created by multiplying the message m by a random number r raised to a public
key e. Therefore, multiplying an RSA-blinded message by another number (message) is equivalent to multiplying
the two messages and then blinding them.

The two properties mentioned above are represented by the following axioms:

U(S(B(m, x)), x) = S(m) (1)

m ∗ B(n, r) = B(m ∗ n, r) (2)

We denote axiom (1) as equational theory E1 and axiom (2) as E2.

Performing unification modulo E1 and E2 will allow a cryptographic analysis tool to give a deeper analysis of
a cryptographic protocol which uses blinding. Therefore, in this paper we give unification algorithms for E1, E2

and the theory consisting of both of them.

The algorithms given are based on inference rules originally given in [14], which gave a unification algorithm
for one-sided distributivity. We give an algorithm to generate a complete set of unifiers for each of these theories.
The algorithm for E1 runs in nondeterministic polynomial time and gives a finite complete set of unifiers. The
algorithm for E2 gives a single most general unifier, and the algorithm for the combination of the two also gives
a finite complete set of unifiers.

We describe the algorithm for E1 in Section 3, for E2 in Section 4, and for the combination in Section 5.

2 Preliminaries

We introduce some basic definitions here. The reader is referred to the survey [2] for more details.

Let S = {s1 =?
E t1, . . . , sm =?

E tm} be an E-unification problem. An E-unifier for S is a substitution σ such
that σ(si) =E σ(ti) for all 1 ≤ i ≤ m. That is, equality modulo E , =E , in S is satisfied if we apply σ to every
equation. The set of all E-unifiers of S is denoted by UE(S). It is said that σ is more general modulo E than
θ on a set of variables V , denoted as σ ≤E θ, if and only if there is a substitution τ such that στ(x) =E θ(x)
for all x ∈ V . A complete set of E-unifiers of S is a set Σ of substitutions such that every θ ∈ Σ is an E-unifier
and for every E-unifier θ, there is a substitution σ ∈ Σ where σ ≤E θ holds. A complete set of E-unifiers Σ of a
unification problem S is said to be minimal if and only if for any two E-unifiers σ and θ in Σ, σ ≤E θ implies
that σ =E θ.

An E-unification problem S is of type unitary, if the minimal complete set of E-unifiers of S has size one. S
is finitary (infinitary) if the minimal complete set of E-unifiers of it is finite (infinite). We note that the minimal
set of unifiers might be empty even when the problem is unifiable. We say S is of type zero in that case. An
equational theory E is unitary if the maximal type of an E-unification problem is unitary. Similarly, E is finitary
if E-unification problems have at most type finitary. If there exists a problem of type infinitary on E and no
problem of type nullary, then E is infinitary. E has type zero (or E is nullary) if it has a problem of type zero.

A set of equations (i.e., a unification problem) is said to be in dag-solved form (or d-solved form) if and only
if they can be arranged as a list

x1 =? t1, . . . , xn =? tn

where (a) each left-hand side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n: xi does not occur in tj ([8]). It
is not hard to see that a unification problem in dag-solved form has a unique most general unifier which can be
obtained in a straightforward way [8]. If a set of equations EQ is in dag-solved form, we say that EQ is solved.

A rewrite rule is an ordered pair (l, r) of terms such that the variables in r also appear in l. It is often written
as l → r. A rewrite system R is set of rewrite rules (l, r). Let R be a rewrite system and E a set of equations.
We define extended rewriting with R modulo E, expressed as

s →E\R t,

if and only if there exist a rule l → r in R and a position p in s such that s|p ↔∗
E σ(l), t = s [σ(r)]p for some

substitution σ. See [9] and [3] for detailed expositions of equational rewriting.

A rewrite rule l → r is optimally reducing1 if and only if for any substitution θ for which θ(r) is R-reducible,
there is a proper subterm s of l such that θ(s) is R-reducible. A rewrite system R is optimally reducing iff every
rule in it is optimally reducing modulo R.

3 Unification in E1

We show that E1-unification is NP-Complete and give a nondeterministic algorithm for it.

To show NP-Hardness, the NP-complete problem monotone 1-in-3 3SAT will be polynomially reduced to
E1-unifiability.

The definition of monotone 1-in-3 3SAT is as follows:

Given: A set of clauses C = {c1, . . . , cn} where each clause has exactly three propositional variables.

Question: Is there a satisfying assignment such that exactly one variable is set to true in each clause?

Let C = c1∧· · ·∧cm be an instance of the 1-in-3 3SAT problem and V = {u1, . . . , un} be variables occurring
in C, i.e., V = V ar(C). We show how to construct an instance S of the E1-unification problem from C such that
S is unifiable if and only if C is satisfiable.

First of all, we define ground terms a1, a2, a3 as follows:

a1 = B(B(1, 0), 0)
a2 = B(B(0, 1), 0)
a3 = B(B(0, 0), 1)

For any clause ci = (ui1 , ui2 , ui3), uij
∈ V , i = 1, . . . , m and j = 1, 2, 3, we introduce a term Ti =

B(B(ui1 , ui2), ui3).

In addition, auxiliary variables xi, yi, zi and a constant m are created. The equation constructed for ci is

U(S(B(m, U(S(B(m, yi)), a3))), U(S(B(m, a1)), Ti)) =?
E1

U(S(B(m, xi)), U(S(B(m, zi)), a2)).

We note that separate variables xi, yi, zi, which are also pairwise distinct, are created for each clause ci. To
follow the results more easily, we define ti,1, ti,2 and ti,3.

ti,1 = U(S(B(m, a1)), Ti)
ti,2 = U(S(B(m, yi)), a3)
ti,3 = U(S(B(m, zi)), a2)

Therefore, we can now rewrite the equation into the following form:

U(S(B(m, ti,2)), ti,1) =?
E1

U(S(B(m, xi)), ti,3)

Obviously, we in general obtain a set of equations rather than one equation from a given 1-in-3 3SAT instance
C. Let us denote this set by S.

1For term rewriting systems this notion was first introduced in [12], and has been generalized in [6].

Lemma 3.1. S is unifiable if and only if C is satisfiable.

Proof. If C is satisfiable, S is unified trivially. Each clause is assigned to one of (1,0,0) or (0,1,0) or (0,0,1).
We simply unify corresponding ak (k = 1, 2, 3) with Ti’s in each equation. For instance, if Ti =?

E1
a1, then

ti,1 =?
E1

S(m) and the solution follows from assigning a3 to yi and ti,3 to xi. Similar for Ti =?
E1

a2 and Ti =?
E1

a3.

Conversely, let S be unified by following the settings above. For each clause ci in C, it is straightforward to
verify that the equation is satisfied if and only if ti,1 =?

E1
ti,2 or ti,1 =?

E1
ti,3. One of these equations is satisfied

when and only when exactly one of Ti =?
E1

a1 or Ti =?
E1

a2 or Ti =?
E1

a3 is unified. By definition, there is only
one variable uij

in Ti assigned to 1 in the solution. We can set the corresponding variable to true in each clause
of C to build a 1-in-3 satisfying assignment.

Thus, we finally obtain

Theorem 3.2. E1-unification is NP-complete.

Proof. NP-hardness follows from the previous lemma. Membership in NP follows from the fact that the term
rewriting system

U(S(B(m, x)), x) → S(m)

is optimally reducing and convergent.

Since unification modulo convergent, optimally reducing term rewriting systems is finitary2 we get

Theorem 3.3. E1-unification is finitary, and there is an algorithm for computing a complete set of E1-unifiers.

Proof. An alternative proof would be to observe that E1 is saturated under ordered paramodulation and then
use the result in [10] or [13].

However, we also show this in the next section by devising a new algorithm.

3.1 Algorithm

In this section we outline a nondeterministic algorithm for the general E1-unification problem which we plan
to implement. In addition, this algorithm returns a complete set of unifiers for a given problem. We assume,
without loss of generality, that each equation is in one of the following standard forms:

1. X =? V

2. X =? U(V, Y)

3. X =? B(V, Y)

4. X =? S(V)

5. X =? f(V1, . . . , Vn)

In this setting X , V , V1, . . . , Vn and Y are variables and f is an uninterpreted function symbol with arity n.

Transformation rules are created based on the equation forms we specified. Note that rules (h1) and (h2) are
nondeterministic and applied “most lazily.” The goal is to transform the given set of equations to dag-solved form.

2Strictly speaking, this is not shown in [12]. But it is not hard to show, see [6].

(a)
{X =? V }] EQ

{X =? V } ∪ [V/X](EQ)
if X occurs in EQ

(b)
EQ] {X =? B(V, Y), X =? B(W, T)}

EQ ∪ {X =? B(V, Y), V =? W, Y =? T}

(c)
EQ] {X =? S(V), X =? S(W)}

EQ ∪ {X =? S(V), V =? W}

(d)
EQ] {X =? U(V, Y), V =? S(W ′), W ′ =? B(W, Y))}

EQ ∪ {X =? S(W), V =? S(W ′), W ′ =? B(W, Y))}

(e)
EQ] {X =? U(V, Y), X =? S(W)}

EQ ∪ {X =? S(W), V =? S(W ′), W ′ =? B(W, Y))}

(f)
EQ] {X =? U(V, Y), X =? U(W, Y)}

EQ ∪ {V =? W, X =? U(W, Y)}

(g)
EQ] {X =? U(V, Y), X =? U(V, T)}

EQ ∪ {X =? U(V, Y), Y =? T}

(h1)
EQ] {X =? U(Y, Z)}

EQ ∪ {Y =? S(Y ′), Y ′ =? B(M, Z), X =? S(M)}
if EQ] {X =? U(Y, Z)} is not solved

(h2)
EQ] {X =? U(V, W), X =? U(Y, Z)}

EQ ∪ {X =? U(Y, Z), V =? Y, W =? Z}

Variables Y ′, M in rule (h1) and W ′ in rule (e) are fresh variables.

For uninterpreted function symbols, we have

(i)
EQ] {X =? f(V1, . . . , Vn), X =? f(W1, . . . , Wn)}

EQ ∪ {X =? f(V1, . . . , Vn), V1 =? W1, . . . , Vn =? Wn}

We use rule (a) to eliminate a variable V from the rest of the system. By rules (b), (c), (f), (g) and (i),
we remove function symbols from the problem, i.e., narrow the equations. Right after applying those rules, we
apply rule (a) to the resulting equations for variable elimination. The soundness of rules (d) – (h2) follow from
axiom (1).

Rule (a) is applied most eagerly, followed by the cancellation rules (b), (c), (f), (g) and (i), then (d) and (e)
in that order of priority. As mentioned earlier, the nondeterministic rules (h1) and (h2) have the lowest priority.

We have the following failure rules:

(F1)
EQ] {X =? U(V, Y), X =? B(W, T)}

FAIL

(F2)
EQ] {X =? B(V, Y), X =? S(W)}

FAIL

We also add a failure rule, which is applied when at least one of f and g is an uninterpreted function symbol.

(F3)
EQ] {X =? f(V1, . . . , Vm), X =? g(W1, . . . , Wn)}

FAIL
if (f 6= g)

These rules could be combined into

(F4)
EQ] {X =? f(V1, . . . , Vm), X =? g(W1, . . . , Wn)}

FAIL
if (f 6= g) and {f, g} 6= {U, S}

Another kind of failure is occur-check which can be implemented as an extended cycle check as done in
algorithms for standard unification. (This can be defined similar to the failure rule (F2) in the next section.)
In the presence of the nondeterministic rules (h1) and (h2) this is enough to catch all failures. For instance,
consider X =? U(Y, X). If (h1) is not applied at all, this would cause occur-check failure. But once (h1) is
applied we get the set of equations {Y =? S(Y ′), Y ′ =? B(M, X), X =? S(M)} which is unifiable.

Termination can be shown by using the following measure

m(S) = (number of occurrences of the symbol U , number of unsolved variables)

The first component decreases in all applications of rules (d) through (h2). Furthermore, it does not increase
in rules (a)-(c) and (i). The second component clearly decreases in the case of rule (a); it also decreases for
rules (b), (c) and (i), provided that rule (a) is applied immediately afterwards. Since (a) is applied most eagerly,
this follows.

Theorem 3.4. Rules (a)-(i) terminate.

4 Unification in E2

We describe an algorithm by using transformation rules, as we did for E1 in Section 3.1. Furthermore, the
algorithm returns a most general unifier if the input equations are unifiable. Without loss of generality, equations
will be in one of these forms:

X =? V, X =? B(V, Y), X =? V ∗ Y, X =? f(V1, . . . , Vn)

(U , V , V1, . . . , Vn and Y are variables and f is an uninterpreted function symbol with arity n.)

Both of the function symbols, B and ∗, are cancellative. Note that we do not assume that B or ∗ is commu-
tative or associative.

(a)
{X =? V }] EQ

{X =? V } ∪ [V/X](EQ)
if X occurs in EQ

(b)
EQ] {X =? B(V, Y), X =? B(W, T)}

EQ ∪ {X =? B(V, Y), V =? W, Y =? T}

(c)
EQ] {X =? V ∗ Y, X =? W ∗ T}

EQ ∪ {X =? V ∗ Y, V =? W, Y =? T}

(d)
EQ] {U =? B(X, Y), U =? U1 ∗ U2}

EQ ∪ {X =? U1 ∗ Z, U2 =? B(Z, Y), U =? U1 ∗ U2}

Rule (d) (the “splitting rule”) introduces a fresh variable Z.

To handle uninterpreted functions, we add the same rules as in the case of E1.

(e)
EQ] {X =? f(V1, . . . , Vn), X =? f(W1, . . . , Wn)}

EQ ∪ {X =? f(V1, . . . , Wn), V1 =? W1, . . . , Vn =? Wn}

A standard failure rule for function clash is:

(F1)
EQ] {X =? f(V1, . . . , Vm), X =? g(W1, . . . , Wn)}

FAIL
if (f 6= g) and {f, g} 6= {B, ∗}

The outline of the algorithm is as follows: As long as rules are applicable, rules (a) and (F1) are applied most
eagerly, and the cancellative rules (b), (c) and (e) come next. The splitting rule (d) is applied, if necessary, at
the end, i.e., rule (d) has the lowest priority.

The proof of correctness for this algorithm is similar to the one in Tiden-Arnborg [14].

We define the following relations between terms.

• U �r∗
V iff there is an equation U = T ∗ V

• U �l∗ V iff there is an equation U = V ∗ T

• U �rB
V iff there is an equation U = B(T, V)

• U �lB V iff there is an equation U = B(V, T)

• U �∗ V iff U �r∗
V or U �l∗ V

• U �B V iff U �rB
V or U �lB V

• U �f V iff there is an equation U = f(. . . , V, . . .), where f is uninterpreted.

Let � = �r∗
∪ �l∗ ∪ �rB

∪ �lB ∪ �f , i.e., the union of the four relations above. Thus, each of these
relations is a subrelation of �. Alternatively, � = �∗ ∪ �B ∪ �f .

We define an extended occur-check failure rule using �.

(F2)
EQ

FAIL
if X �+ X for some X

Let ∼rp(∗), and ∼lp(B) be the reflexive, symmetric and transitive closures for �r∗
and �lB , respectively.

We also define a set of relations β = {β1, β2} where

• β1 = ∼rp(∗) ◦ �B ◦ ∼rp(∗)

• β2 = ∼lp(B) ◦ �∗ ◦ ∼lp(B).

One can define two interpretations for E2, namely interpreting B as left and ∗ as right projections. We denote
these interpretations as projection functions symbols rp(∗), and lp(B). For instance, if we interpret ∗ as right
projection by rp(∗), then the axiom m ∗ B(n, r) = B((m ∗ n), r) is trivially satisfied. The same holds if we take
B as left projection.

Both interpretations give valid models for the theory. That is, if a problem is solvable modulo E2, it is also
solvable modulo any of these interpretations. This fact is used to prove the following lemma.

Lemma 4.1. If one of β1 or β2 is cyclic, then the problem is not solvable.

Proof. Without loss of generality assume β1 is not well-founded. If we interpret ∗ with rp(∗) (which gives a
model for E2), it is not hard to see that all variables in the same ∼rp(∗)-equivalence class become equal to each
other. Hence the relation �B becomes not well founded on the set of variables. This implies that there is a cycle
w.r.t. �B in the interpreted problem (which is a standard unification problem) and hence there is no solution.
Thus the result follows, since the interpreted problem is solvable if the original problem is solvable. A similar
argument holds for β2.

Therefore, we introduce the following failure rule:

(F3)
EQ

FAIL
if any of the βi, i ∈ {1, 2}, is cyclic

We will illustrate these with an example. Let U =? B(X, Y) and U =? U1 ∗ U2 be two equations. After
rule (d) is applied to this pair of equations, we get

U =? U1 ∗ U2, X =? U1 ∗ Z, U2 =? B(Z, Y)

where Z is a new variable. Now observe that Z ∼lp(B) U2 and Z ∼rp(∗) X . Thus every new variable introduced
by an application of rule (d) is below an already existing variables by �∗ and �B (see Figure 1) and also equivalent
to existing variables by one of {∼rp(∗), ∼lp(B)}.

Lemma 4.2. For each equivalence relation in {∼rp(∗),∼lp(B)}, the number of equivalence classes does not in-
crease with the splitting rule.

Proof. Trivial, since if we apply rule (d), we see that new variable Z ‘joins’ the existing ∼rp(∗)- and ∼lp(B)-
equivalence classes (see Figure 1).

The number of equivalence classes modulo any equivalence relation will be less than or equal to the number
of initial variables in a given problem.

Lemma 4.3. If rules (a)-(d) are applied infinitely, then one of the relations βi (i = 1, 2) is cyclic.

Proof. The only case we need to look at carefully is when the splitting rule is applied. By Lemma 4.2 new
variables will not create new equivalence classes; instead they join already existing equivalence classes. Note
that for every new variable X created by the splitting rule there is another variable Y �∗ X which was created
earlier. Thus if splitting goes on indefinitely, then we get arbitrarily long chains of the form

Xi1 �∗ Xi2 �∗ . . .

U1 U2

U1 U2

rBlB l* r*

l* r*
l*

r* lB

rB

U

U

X Y

X

Z

Y

Figure 1: Splitting

But since the number of ∼lp(B)- equivalence classes for the problem do not increase, there are indices j and k
such that j < k and Xij

∼lp(B) Xik
. (In fact, if n is the number of variables in the original problem, then

j < k ≤ n + 1). This will cause β2 to be cyclic after finitely many steps.

Theorem 4.4. The unification problem modulo E2 is decidable.

Proof. Let S be a problem modulo E2. If S is unifiable, rules (a)-(e) will return a solution. On the other hand,
if S is not unifiable, then the possible errors are function clash, occur check error and infinite splitting among
variables. Rules (F1) and (F2) detect function clash and occur check in finite time. In the case of infinite
splitting, the algorithm will encounter the failure rule (F3) which checks if any of βi relations is cyclic. Thus,
our algorithm decides if S is unifiable (and computes a comlete set of unifiers)

Theorem 4.5. Unifiability modulo E2 is in P.

Proof. By Lemma 4.2, we know that the number of equivalence classes remains same throughout the algorithm.
Let n be the number of variables. It is easy to see that the number of equivalence classes in both ∼lp(B) and
∼rp(∗) is at most n. Note that the algorithm terminates if rule (d) terminates. Rule (d) removes an existing
lB-edge between equivalence classes and adds a new one, which is one level below the old one with respect to r∗

(see Figure 1). By Lemma 4.3, this cannot go on for more than n times without failure. Therefore the result
follows.

In the next section, we show that the cardinality of minimal complete set of unifiers is “one”.

4.1 Unification Type of E2

We know that standard forms can be used to represent any problem modulo E2. Therefore, the transformation
rules which we define form a complete method for the problem. We use this fact indirectly to show that the
unification type of E2 is unitary. We first prove that the transformation steps (a)–(e) “preserve unifiers.”

Lemma 4.6. Let S be a unification problem in standard form and let S ′ be obtained after applying one of (a)–(e).
Then

1. Every unifier of S ′ is a unifier of S.

2. For every unifier σ of S there is a unifier σ̂ of S ′ such that σ ≡V ar(S) σ̂.

Theorem 4.7. The unification type of E2 is unitary, and our algorithm computes a complete set of E2-unifiers.

Proof. Let T be the solved form for S. It is easy to see that T itself is a sequential unifier, and the corresponding
parallel unifier, say σ, is a unifier of S. On the other hand, let θ be a unifier of S. By induction on the number
of steps we can show, using Lemma 4.6, that there is a unifier θ̂ of T such that θ ≡V ar(S) θ̂. We can now show

that θ̂ is an instance of σ.

5 Unification in E1 ∪ E2

We show the decidability of unification modulo the union of E1 and E2. This theory has the following convergent
system:

U(S(B(m, x)), x) → S(m)

m ∗ B(n, r) → B(m ∗ n, r)

Orienting the second axiom the other way causes the Knuth-Bendix completion procedure to diverge.

Let us consider the term rewriting system U(S(B(m, x)), x) → S(m) associated with E1 and denote it by
R. Consequently, we use the equational (or class) rewriting relation R/E2 and the extended rewriting relation
E2\R which is between R and R/E2, i.e.,

R ⊆ E2\R ⊆ R/E2

From Section 3, we know that R is convergent and optimally reducing. We extend these results to E2\R. In
other words, we show that E2\R is convergent and optimally reducing modulo E2.

Termination of R/E2 follows easily. We observe that for each term t, its equivalence class [t]=E2

is finite.

Applying the rewrite rule in R modulo E2 causes a U symbol to disappear. Hence there is no infinite descending
chain t →R/E2

t
′

→R/E2
. . .. Furthermore, termination of E2\R follows.

Recall that R is E2-confluent if and only if for every s, t such that s =R∪E2
t, there exist s′, t′ such that

s →∗
E2\R

s′ and t →∗
E2\R

t′, and s′ =E2
t′ [11].

Lemma 5.1. E2\R is convergent modulo E2.

Proof. This follows from the critical pair criteria given by Jouannaud and Kirchner [9]. That is, if R/E2 is
terminating and all E2-classes are finite, then E2\R is confluent if and only if all critical pairs in CPE2

(R,R) and
CPE2

(R, E) are joinable. Note that all equivalence classes of E2 are finite and R/E2 is terminating. Furthermore,
the subterm ordering modulo E2, denoted as %E2

, is also well-founded [3] since the equation m ∗ B(n, r) =
B(m ∗ n, r) is regular and size-preserving, i.e., left and right hand sides of the equation are of the same size.
Thus the necessary conditions to apply the result in [9] are satisfied. Consider the complete sets of E2-critical
pairs CPE2

(R,R). The only non-variable position p in term l = U(S(B(m, x)), x) such that l|p can be unified
with (a variant of) l modulo E2 is p = ε (i.e., at the root). But this leads to a trivial critical pair. It is not
hard to see that the set of critical pairs CPE2

(R, E2), obtained from overlapping R “below” E2, is empty. Since
E2-unification is decidable and unitary, the result follows.

We next extend the optimal reducibility of R to the optimal E2-reducibility of R. A rewrite rule l → r
is optimally E-reducing if and only if for any substitution θ for which θ(r) is E\R-reducible, there is a proper
subterm s of l such that θ(s) is E\R-reducible. A rewrite system R is optimally E-reducing iff every rule in it is
optimally E-reducing modulo R.

Lemma 5.2. R is optimally E2-reducing.

Proof. Straightforward, since for all substitutions θ, θ(S(m)) is reducible if and only if θ(m) is.

Furthermore, we use the following fact about E2\R. Since the root symbol of the left-hand side of E1, namely
U , is not in Sig(E2), if s is in normal form and θ is an irreducible substitution modulo E2\R, then θ(s) can be
reduced to its E2\R-normal form in |s| steps by the innermost reduction strategy.

As mentioned earlier, it was shown by Narendran et al [12] that every optimally reducing and confluent term
rewriting system has a decidable unification problem. We give a similar proof to the one in [12] for showing that
E2\R is decidable.

Theorem 5.3. Unification modulo E1 ∪ E2 is decidable and finitary, and there is an algorithm to compute a
complete set of E1 ∪ E2-unifiers.

Proof. Let s and t be two terms and θ an irreducible substitution that unifies them. θ(s) and θ(t) are reduced
to E2\R-normal forms by the rule U(S(B(m, x)), x) → S(m) in at most |s| and |t| steps respectively by
the innermost reduction strategy. Consider the sequence of positions where the reductions occur. Without
performing unification, we instead mimic each reduction step as s|p =?

E2
η(U(S(B(m, x)), x)), where p is a

position that a reduction occurs and η an appropriate renaming. Repeat the same for new term s [η(S(m))]p
and so on. Thus, the idea is to transform the problem by mimicking an innermost reduction sequence where the
reductions take place at each original term position. We obtain at most |s| + |t| + 1 equations to be unified.
We apply E2-unification to the resulting equations and see if there is a solution. Since E2-unification is decidable
and unitary, the result follows.

6 Conclusion

We have given an equational theory based on the RSA implementation of blind signaures and studied three
relevant unification problems. We first considered the two axioms E1 and E2 as separate theories and finally
unification modulo E1∪E2, which turned out to be decidable and finitary. The equational theories we consider are
only some of the many possible axiomatizations about blind signatures. Future work would include incorporating
other equational axioms. Furthermore, we plan to implement the algorithms and integrate them with the Maude-
NPA protocol analyzer [7].

References

[1] S. Anantharaman, H. Lin, C. Lynch, P. Narendran, M. Rusinowitch. “Cap Unification: Application to
Protocol Security modulo Homomorphic Encryption”. In: Proc. of the 5th ACM Symp. on Information,
Computer and Communications Security , ASIACCS’10, pp. 192–203, April 2010.

[2] F. Baader, W. Snyder. “Unification Theory”. In: Handbook of Automated Reasoning , pp. 440–526, Elsevier
Sc. Publishers B.V., 2001.

[3] L. Bachmair. Canonical Equational Proofs. Birkhäuser 1991.

[4] D. Chaum. “Security without Identification: Transaction System to Make Big Brother Obsolete”. Commu-
nications of the ACM 28(2): 1030–1044, 1985.

[5] D. Chaum. “Blind signatures for untraceable payments”. In: Advances in Cryptology - Crypto ’82 199–203,
1983.

[6] H. Comon-Lundh, S. Delaune. “The finite variant property: how to get rid of some algebraic properties”. In:
Proc. of RTA’05 (J. Giesl, ed.), LNCS 3467, pages 294–307. Springer-Verlag, 2005.

[7] S. Escobar, C. Meadows, J. Meseguer. “Maude-NPA: Cryptographic Protocol Analysis Modulo Equational
Properties”. In: Foundations of Security Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures
(A. Aldini, G. Barthe, and R. Gorrieri, eds.) LNCS 5705, pages 1–50.

[8] J.-P. Jouannaud, C. Kirchner. “Solving equations in abstract algebras: a rule-based survey of unification.”
In: Computational Logic: Essays in Honor of Alan Robinson, pp. 360–394, MIT Press, Boston (1991).

[9] J.-P. Jouannaud, H. Kirchner. “Completion of a Set of Rules Modulo a Set of Equations”. SIAM J. Com-
put. 15(4): 1155–1194, 1986.

[10] C. Lynch, B. Morawska. “Basic Syntactic Mutation.” In: Proc. of CADE 2002 (A. Voronkov, ed.),
LNCS 2392, pages 471–485.

[11] C. Meadows, P. Narendran. “A Unification Algorithm for the Group Diffie-Hellman Protocol”. In: Proc. of
WITS 2002 3(1–2): 14–15, 2002.

[12] P. Narendran, F. Pfenning, R. Statman. “On the Unification Problem for Cartesian Closed Categories”. J.
Symbolic Logic 62(2): 636–647, 1997.

[13] R. Nieuwenhuis. “Basic paramodulation and decidable theories.” In: Proc. 11th IEEE Symposium on Logic
in Computer Science (LICS’96) 473–482.

[14] E. Tiden, S. Arnborg. “Unification Problems with One-sided Distributivity”. Journal of Symbolic Compu-
tation 3(1–2): 183–202, 1987.

